Wednesday, May 05, 2021

Mysterious hydrogen-free supernova sheds light on stars' violent death throes

ROYAL ASTRONOMICAL SOCIETY

Research News

IMAGE

IMAGE: ARTIST'S IMPRESSION OF A YELLOW SUPERGIANT IN A CLOSE BINARY WITH A BLUE, MAIN SEQUENCE COMPANION STAR, SIMILAR TO THE PROPERTIES DERIVED FOR THE 2019YVR PROGENITOR SYSTEM IN KILPATRICK ET... view more 

CREDIT: KAVLI IPMU / AYA TSUBOI

A curiously yellow pre-supernova star has caused astrophysicists to re-evaluate what's possible at the deaths of our Universe's most massive stars. The team describe the peculiar star and its resulting supernova in a new study published today in Monthly Notices of the Royal Astronomical Society.

At the end of their lives, cool, yellow stars are typically shrouded in hydrogen, which conceals the star's hot, blue interior. But this yellow star, located 35 million light years from Earth in the Virgo galaxy cluster, was mysteriously lacking this crucial hydrogen layer at the time of its explosion.

"We haven't seen this scenario before," said Charles Kilpatrick, postdoctoral fellow at Northwestern University's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), who led the study. "If a star explodes without hydrogen, it should be extremely blue -- really, really hot. It's almost impossible for a star to be this cool without having hydrogen in its outer layer. We looked at every single stellar model that could explain a star like this, and every single model requires that the star had hydrogen, which, from its supernova, we know it did not. It stretches what's physically possible."

Kilpatrick is also a member of the Young Supernova Experiment, which uses the Pan-STARRS telescope at Haleakalā, Hawaii to catch supernovae right after they explode. After the Young Supernova Experiment spotted supernova 2019yvr in the relatively nearby spiral galaxy NGC 4666, the team used deep space images captured by NASA's Hubble Space Telescope, which fortunately already observed this section of the sky two and a half years before the star exploded.

"What massive stars do right before they explode is a big unsolved mystery," Kilpatrick said. "It's rare to see this kind of star right before it explodes into a supernova."

The Hubble images show the source of the supernova, a massive star imaged just a couple of years before the explosion. Several months after the explosion however, Kilpatrick and his team discovered that the material ejected in the star's final explosion seemed to collide with a large mass of hydrogen. This led the team to hypothesize that the progenitor star might have expelled the hydrogen within a few years before its death.

"Astronomers have suspected that stars undergo violent eruptions or death throes in the years before we see supernovae," Kilpatrick said. "This star's discovery provides some of the most direct evidence ever found that stars experience catastrophic eruptions, which cause them to lose mass before an explosion. If the star was having these eruptions, then it likely expelled its hydrogen several decades before it exploded."

In the new study, Kilpatrick's team also presents another possibility: a less massive companion star might have stripped away hydrogen from the supernova's progenitor star. However, the team will not be able to search for the companion star until after the supernova's brightness fades, which could take up to a decade.

"Unlike its normal behaviour right after it exploded, the hydrogen interaction revealed it's kind of this oddball supernova," Kilpatrick said. "But it's exceptional that we were able to find its progenitor star in Hubble data. In four or five years, I think we will be able to learn more about what happened."


Mar. 29, 2018 — Novas have long captured the imagination of those who watch the sky. The very idea of a star becoming unstable and exploding into cosmic fury ...
Nov. 4, 2010 — The theme of Nova is sensory stimulus. There's Dan, who had his senses burned out observing a nova, so now he sees and hears and smells ...

'Oddball supernova' appears strangely cool before exploding

Never-before-seen scenario 'stretches what's physically possible'

NORTHWESTERN UNIVERSITY

Research News

IMAGE

IMAGE: HUBBLE SPACE TELESCOPE (HST) IMAGING SHOWING THE EXPLOSION SITE OF 2019YVR FROM 2.5 YEARS BEFORE ITS EXPLOSION. UPPER LEFT: THE SUPERNOVA ITSELF IS SEEN IN AN IMAGE FROM THE GEMINI-SOUTH... view more 

CREDIT: CHARLES KILPATRICK / NORTHWESTERN UNIVERSITY

A curiously yellow star has caused astrophysicists to reevaluate what's possible within our universe.

Led by Northwestern University, the international team used NASA's Hubble Space Telescope to examine the massive star two-and-a-half years before it exploded into a supernova. At the end of their lives, cool, yellow stars are typically shrouded in hydrogen, which conceals the star's hot, blue interior. But this yellow star, located 35 million lightyears from Earth in the Virgo galaxy cluster, was mysteriously lacking this crucial hydrogen layer at the time of its explosion.

"We haven't seen this scenario before," said Northwestern's Charles Kilpatrick, who led the study. "If a star explodes without hydrogen, it should be extremely blue -- really, really hot. It's almost impossible for a star to be this cool without having hydrogen in its outer layer. We looked at every single stellar model that could explain a star like this, and every single model requires that the star had hydrogen, which, from its supernova, we know it did not. It stretches what's physically possible."

The team describes the peculiar star and its resulting supernova in a new study, which was published today (May 5) in the Monthly Notices of the Royal Astronomical Society. In the paper, the researchers hypothesize that, in the years preceding its death, the star might have shed its hydrogen layer or lost it to a nearby companion star.

Kilpatrick is a postdoctoral fellow at Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and member of the Young Supernova Experiment, which uses the Pan-STARSS telescope at Haleakalā, Hawaii, to catch supernovae right after they explode.

Catching a star before it explodes

After the Young Supernova Experiment spotted supernova 2019yvr in the relatively nearby spiral galaxy NGC 4666, the team used deep space images captured by NASA's Hubble Space Telescope, which fortunately already observed this section of the sky.

"What massive stars do right before they explode is a big unsolved mystery," Kilpatrick said. "It's rare to see this kind of star right before it explodes into a supernova."

The Hubble images showed the source of the supernova, a massive star imaged just a couple years before the explosion. Although the supernova itself appeared completely normal, its source -- or progenitor star -- was anything but.

"When it exploded, it seemed like a very normal hydrogen-free supernova," Kilpatrick said. "There was nothing outstanding about this. But the progenitor star didn't match what we know about this type of supernova."

Direct evidence of violent death

Several months after the explosion, however, Kilpatrick and his team discovered a clue. As ejecta from the star's final explosion traveled through its environment, it collided with a large mass of hydrogen. This led the team to hypothesize that the progenitor star might have expelled the hydrogen within a few years before its death.

"Astronomers have suspected that stars undergo violent eruptions or death throes in the years before we see supernovae," Kilpatrick said. "This star's discovery provides some of the most direct evidence ever found that stars experience catastrophic eruptions, which cause them to lose mass before an explosion. If the star was having these eruptions, then it likely expelled its hydrogen several decades before it exploded."

In the new study, Kilpatrick's team also presents another possibility: A less massive companion star might have stripped away hydrogen from the supernova's progenitor star. The team, however, will not be able to search for the companion star until after the supernova's brightness fades, which could take up to 10 years.

"Unlike it's normal behavior right after it exploded, the hydrogen interaction revealed it's kind of this oddball supernova," Kilpatrick said. "But it's exceptional that we were able to find its progenitor star in Hubble data. In four or five years, I think we will be able to learn more about what happened."

###

The study, "A cool and inflated progenitor candidate for the type Ib supernova 2019 yvr at 2.6 years before explosion," was supported by NASA (award numbers GO-15691 and AR-16136), the National Science Foundation (award numbers AST-1909796, AST-1944985), the Canadian Institute for Advanced Research, the VILLUM Foundation and the Australian Research Council Centre of Excellence. In addition to the Hubble Space Telescope, the researchers used instruments at the Gemini Observatory, Keck Observatory, Las Cumbres Observatory, Spitzer Space Telescope and the Swope Telescope.




 MEN'S STUDIES

Coalitions and conflict among men

In the Bolivian Tsimané, who supports who is affected by physical size, social status, and existing cooperative and antagonistic relationships

MAX PLANCK INSTITUTE FOR EVOLUTIONARY ANTHROPOLOGY

Research News

IMAGE

IMAGE: ILLUSTRATION OF MALE MEMBERS OF THE BOLIVIAN TSIMANÉ. IN THEIR STUDY, THE RESEARCHERS DESCRIBE WHICH CONFLICTS MAY ARISE BETWEEN MEN IN THIS SMALL-SCALE SOCIETY AND WHO SUPPORTS WHO IN CASE... view more 

CREDIT: DANIEL REDHEAD

Daniel Redhead, from the Max Planck Institute for Evolutionary Anthropology, and Chris von Rueden, from the University of Richmond, published a new study that describes coalition formation among men in Tsimané Amerindians living in Amazonian Bolivia, over a period of eight years. In two Tsimané communities, the authors describe the inter-personal conflicts that tend to arise between men, and the individual attributes and existing relationships that predict the coalitional support men receive in the event of conflicts.

Conflicts that arise between men concern disputes over access to forest for slash-and-burn horticulture, as well as accusations of theft, laziness, negligence, domestic abuse, and sexual affairs.

Men tend to reciprocate coalitional support

Key findings are that men who are kin or who exchange food and labor are more likely to subsequently provide support to each other in the event of a conflict. Men tend to reciprocate coalitional support over time, and an ally of a man's current ally is likely to become a future ally. The authors also find evidence that men who share a common adversary become allies, though this finding did not hold consistently across the eight years of the study.

In reference to the impact of these findings, Redhead, said: "Coalition formation among men is multiply determined in the Tsimané, and likely in other human societies. Importantly, the social network analyses we used show that properties of the network, not just the individual, affect coalition formation."

Higher status men more likely to provide coalitional support

Furthermore, Tsimané men who are physically formidable or who have more informal influence in their community are more likely to provide coalitional support to others. Evidence was mixed that they receive more coalitional support. These higher status men are hubs of their community's coalitional support network, and there is little indication that this network is partitioned into clearly separable coalitions that divide the community.

"In the Tsimané, men who have higher informal status strategically deploy coalitional support to build up a diverse, community-wide following. In many cases, both disputants in a conflict will report the same higher status man as having provided coalitional support, which points to the often blurry line between coalitional support and conflict mediation", von Rueden said. "Politics is the art of persuading enough people you have their interests at heart. In less egalitarian societies where there is more privately available wealth and community sizes are larger, status is less contingent on providing direct support to a broad swath of community members, there is greater homophily by status, and coalitional divides within a community are more likely to be pronounced."

Redhead and von Rueden focus their study on men because they at present lack longitudinal data on women's coalition formation. However, there is reason to analyze coalition networks separately by gender, given evidence of gender differences in how men and women build and leverage their social relationships, particularly in societies like the Tsimané where there is a pronounced gendered division of labor.

###

Original publication:

Daniel Redhead and Christopher R. von Rueden
Coalitions and conflict: A longitudinal analysis of men's politics
Evolutionary Human Sciences, 05 May 2021, https://doi.org/10.1017/ehs.2021.26

 

Examination of an Estonian patient helped discover a new form of muscular dystrophy

ESTONIAN RESEARCH COUNCIL

Research News

IMAGE

IMAGE: PROFESSOR OF CLINICAL GENETICS OF THE UNIVERSITY OF TARTU KATRIN ÕUNAP view more 

CREDIT: UNIVERSITY OF TARTU

In about a quarter of patients with hereditary diseases, the cause of the disease remains unclear even after extensive genetic testing. One reason is that we still do not know enough about the function of many genes. Of the 30,000 known genes, just a little more than 4,000 have been found to be associated with hereditary diseases.

At the Department of Clinical Genetics of the University of Tartu Institute of Clinical Medicine, under the leadership of Professor Katrin Õunap, patients with hereditary diseases of unclear cause have been studied in various research projects since 2016. In collaboration with the Broad Institute of MIT and Harvard, these patients have undergone extensive genome-wide sequencing analyses at the level of the exome (the sequence of all genes), genome (whole DNA sequence), and transcriptome (RNA transcribed from the genome).

Professor Katrin Õunap described that in a girl with progressive muscle weakness, they found two changes in the JAG2 gene that had not been associated with any hereditary disease before. "In cooperation with an international team of researchers, we found 22 other patients with similar problems and changes in the JAG2 gene from all over the world," said Õunap.

The study showed that the misfunction of the JAG2 gene interferes with the development of muscle cells and their ability to recover, thereby causing progressive muscle damage.

Estonian researchers conducted a transcriptome (RNA) analysis of the patient's muscle tissue, which provided important information on pathological changes in gene expression in muscle cells. "Also, for the first time in Estonia, our patient underwent a special muscular magnetic resonance imaging scan, which revealed a pattern of muscle involvement characteristic of pathogenic variants in JAG2 in lower limb muscles," explained Õunap.

###

The article was published in the American Journal of Human Genetics in cooperation with researchers from Estonia, Belgium, the United States, the United Kingdom, France, Germany, Poland, Iran, Egypt and Japan.

 

Tübingen study raises hope for effective malaria vaccine

GERMAN CENTER FOR INFECTION RESEARCH

Research News

IMAGE

IMAGE: THE VACCINE IS INJECTED INTO THE SUBJECT AT THE SAME TIME AS THEY RECEIVE AN ANTIMALARIAL DRUG. view more 

CREDIT: UNIVERSITÄT TÜBINGEN / PAUL MEHNERT

Sanaria® PfSPZ-CVac" is a live vaccine consisting of infectious Plasmodium falciparum (Pf) malaria parasites that are injected into the subject at the same time as they receive an antimalarial drug. The parasites quickly enter the liver where they develop and multiply for 6 days, and then emerge into the blood As soon as the parasites leave the liver, the drug kills them immediately. Thus, the immune system of the vaccinated subject is primed against many parasite proteins and becomes highly effective at killing malaria parasites in the liver to block infection and prevent disease.

"With this study, we have reached a new important milestone in the development of an effective malaria vaccine. With only three immunizations over four weeks, we achieved very good protection against malaria," explains Prof. Peter Kremsner, who has helped to advance the malaria research field at the DZIF since its inception. His team was able to develop a new immunization regimen that significantly reduces vaccine administration compared to previous studies. The number of visits required by a subject for complete immunization has been reduced from 13 to three. Importantly, the team showed that vaccination with parasites from Africa could protect against genetically diverse parasites from South America.

Proof of efficacy was provided using the controlled human malaria infection (challenge) regimen developed by the Tübingen and Sanaria teams. Here, the test subjects were infected with parasites after immunization. If immunization against the parasites was successful, the parasites would be specifically killed by the immune system. If the immune protection is incomplete and the parasites multiply, the test subjects are treated before any symptoms of disease appear. Ten of 13 subjects vaccinated in this study were completely immune to the infection.

"The vaccine produces a high level of different antibodies and immune cells in the body that can recognize both the injected parasites and antigens of the subsequent liver stage. These antibodies and immune cells contribute to the strong protective immunity" explains Dr. Rolf Fendel.

With an estimated 229 million infections and 409,000 deaths worldwide in 2019, malaria is one of the world's most important and dangerous infectious diseases. It is caused by parasites transmitted to humans through the bites of infected female mosquitoes. Children under the age of five are the most vulnerable group affected by malaria, accounting for 67 percent (274,000) of all malaria deaths worldwide in 2019.

###

About Sanaria Inc.

Sanaria is a biotechnology company based in Rockville, Maryland (USA) that is developing whole parasite PfSPZ vaccines to protect against malaria in collaboration with the University Hospital of Tübingen, Germany. Sanaria's vaccines have been shown to be highly protective against Plasmodium falciparum infections in humans. Sanaria's vaccines will be used to prevent malaria in individuals and in combination with other malaria control measures to stop malaria transmission and eliminate malaria.

About the DZIF

The German Center for Infection Research (DZIF) coordinates translational infection research in Germany and provides strategic direction. Its mission is to translate results from basic infectious disease research into clinical research and bring them to patients. 35 DZIF research institutions work together against the global threat of infectious diseases. The Tübingen site coordinates the research area Malaria with site spokesperson Prof. Peter Kremsner, and co-coordinators are active at the site for Gastrointestinal Infections, Hospital Germs and Antibiotic-Resistant Bacteria and New Antibiotics.

SMART evaluates impact of competition between autonomous vehicles and public transit

The study conducted in Singapore determined benefits of competition and the potential impact for future urban cities and transport systems

SINGAPORE-MIT ALLIANCE FOR RESEARCH AND TECHNOLOGY (SMART)

Research News

IMAGE

IMAGE: SPATIAL DISTRIBUTION CHANGES IN PT SUPPLY DURING THE COMPETITION: (LEFT) ROUTES WITH SUPPLY DECREASE; (RIGHT) ROUTES WITH SUPPLY INCREASE view more 

CREDIT: ZHEJING CAO AND BAICHUAN MO

Singapore, 5 May 2021 - The rapid advancement of Autonomous Vehicles (AV) technology in recent years has changed transport systems and consumer habits globally. As countries worldwide see a surge in AV usage, the rise of shared Autonomous Mobility on Demand (AMoD) service is likely to be next on the cards. Public Transit (PT), a critical component of urban transportation, will inevitably be impacted by the upcoming influx of AMoD and the question remains unanswered on whether AMoD would co-exist with or threaten the PT system.

Researchers at the Future Urban Mobility (FM) Interdisciplinary Research Group (IRG) at Singapore-MIT Alliance for Research and Technology (SMART), MIT's research enterprise in Singapore, and Massachusetts Institute of Technology (MIT), conducted a case study in the first-mile mobility market from origins to subway stations in Tampines, Singapore, to find out.

In a paper titled "Competition between Shared Autonomous Vehicles and Public Transit: A Case Study in Singapore" recently published in the prestigious journal Transportation Research Part C: Emerging Technologies, the first-of-its-kind study used Game Theory to analyse the competition between AMoD and PT.

The study was simulated and evaluated from a competitive perspective?where both AMoD and PT operators are profit-oriented with dynamically adjustable supply strategies. Using an agent-based simulation, the competition process and system performance were evaluated from the standpoints of four stakeholders--the AMoD operator, the PT operator, passengers, and the transport authority.

"The objective of our study is to envision cities of the future and to understand how competition between AMoD and PT will impact the evolution of transportation systems," says the corresponding author of the paper, SMART FM Lead Principal Investigator and Associate Professor at MIT Department of Urban Studies and Planning, Jinhua Zhao. "Our study found that competition between AMoD and PT can be favourable, leading to increased profits and system efficiency for both operators when compared to the status quo, while also benefiting the public and the transport authorities. However, the impact of the competition on passengers is uneven and authorities may be required to provide support for people who suffer from higher travel costs or longer travel times in terms of discounts or other feeder modes."

The research found that the competition between AMoD and PT would compel bus operators to reduce the frequency of inefficient routes and allow AMoDs to fill in the gaps in the service coverage. "Although the overall bus supply was reduced, the change was not uniform", says the first author of the paper, a PhD candidate at MIT, Baichuan Mo. "We found that PT services will be spatially concentrated to shorter routes that feed directly to the subway station, and temporally concentrated to peak hours. On average, this reduces travel time of passengers but increases travel costs. However, the generalised travel cost is reduced when incorporating the value of time." The study also found that providing subsidies to PT services would result in a relatively higher supply, profit, and market share for PT as compared to AMoD, and increased passenger generalised travel cost and total system passenger car equivalent (PCE), which is measured by the average vehicle load and the total vehicle kilometer traveled.

The findings suggest that PT should be allowed to optimise its supply strategies under specific operation goals and constraints to improve efficiency. On the other hand, AMoD operations should be regulated to reduce detrimental system impacts, including limiting the number of licenses, operation time, and service areas, resulting in AMoD operating in a manner more complementary to PT system.

"Our research shows that under the right conditions, an AMoD-PT integrated transport system can effectively co-exist and complement each other, benefiting all four stakeholders involved," says SMART FM alumni, Hongmou Zhang, a PhD graduate from MIT's Department of Urban Studies and Planning, and now Assistant Professor at Peking University School of Government. "Our findings will help the industry, policy makers and government bodies create future policies and plans to maximise the efficiency and sustainability of transportation systems, as well as protect the social welfare of residents as passengers."

The findings of this study is important for future mobility industries and relevant government bodies as it provides insight into possible evolutions and threats to urban transportation systems with the rise of AV and AMoD, and offers a predictive guide for future policy and regulation designs for a AMoD-PT integrated transport system. Policymakers should consider the uneven social costs such as increased travel costs or travel time, especially to vulnerable groups, by supporting and providing them with discounts or other feeder modes.

The research is carried out by SMART and supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) programme.


CAPTION

Impact of the competition between AMoD and PT on different stakeholders compared to the status quo scenario. The increase (purple) and decrease (green) of different indicators are shown by "+" and "?" respectively

CREDIT

Zhejing Cao and Baichuan Mo

About the Future Urban Mobility (FM) Interdisciplinary Research Group (IRG)

The Future Urban Mobility (FM) Interdisciplinary Research Group (IRG) is one of five IRGs in the Singapore-MIT Alliance for Research and Technology Centre (SMART). FM harnesses new technological and institutional innovations to create the next generation of urban mobility systems to increase accessibility, equity, safety and environmental performance for the citizens and businesses of Singapore and other metropolitan areas, worldwide. SMART-FM is supported by the National Research Foundation (NRF) Singapore and situated in the Campus for Research Excellence and Technological Enterprise (CREATE).

For more information, please log on to: https://fm.smart.mit.edu

About Singapore-MIT Alliance for Research and Technology (SMART)

Singapore-MIT Alliance for Research and Technology (SMART) is MIT's Research Enterprise in Singapore, established by the Massachusetts Institute of Technology (MIT) in partnership with the National Research Foundation of Singapore (NRF) since 2007. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise (CREATE) developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore. Cutting-edge research projects in areas of interest to both Singapore and MIT are undertaken at SMART. SMART currently comprises an Innovation Centre and five Interdisciplinary Research Groups (IRGs): Antimicrobial Resistance (AMR), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Future Urban Mobility (FM) and Low Energy Electronic Systems (LEES).

SMART research is funded by the National Research Foundation Singapore under the CREATE programme.

For more information, please visit http://smart.mit.edu


Thin, large-area device converts infrared light into images

UNIVERSITY OF CALIFORNIA - SAN DIEGO

Research News




VIDEO: THE INFRARED IMAGER PROVIDES A CLEAR PICTURE OF BLOOD VESSELS IN A PERSON'S HAND AND SEES THROUGH OPAQUE OBJECTS LIKE SILICON WAFERS. view more 

CREDIT: NING LI




Seeing through smog and fog. Mapping out a person's blood vessels while monitoring heart rate at the same time--without touching the person's skin. Seeing through silicon wafers to inspect the quality and composition of electronic boards. These are just some of the capabilities of a new infrared imager developed by a team of researchers led by electrical engineers at the University of California San Diego.

The imager detects a part of the infrared spectrum called shortwave infrared light (wavelengths from 1000 to 1400 nanometers), which is right outside of the visible spectrum (400 to 700 nanometers). Shortwave infrared imaging is not to be confused with thermal imaging, which detects much longer infrared wavelengths given off by the body.

The imager works by shining shortwave infrared light on an object or area of interest, and then converting the low energy infrared light that's reflected back to the device into shorter, higher-energy wavelengths that the human eye can see.

"It makes invisible light visible," said Tina Ng, a professor of electrical and computer engineering at the UC San Diego Jacobs School of Engineering.

While infrared imaging technology has been around for decades, most systems are expensive, bulky and complex, often requiring a separate camera and display. They are also typically made using inorganic semiconductors, which are costly, rigid and consist of toxic elements such as arsenic and lead.

The infrared imager that Ng's team developed overcomes these issues. It combines the sensors and the display into one thin device, making it compact and simple. It is built using organic semiconductors, so it is low cost, flexible and safe to use in biomedical applications. It also provides better image resolution than some of its inorganic counterparts.

The new imager, published recently in Advanced Functional Materials, offers additional advantages. It sees more of the shortwave infrared spectrum, from 1000 to 1400 nanometers--existing similar systems often only see below 1200 nanometers. It also has one of the largest display sizes of infrared imagers to date: 2 square centimeters in area. And because the imager is fabricated using thin film processes, it is easy and inexpensive to scale up to make even larger displays.



CAPTION

The new infrared imager is thin and compact with a large-area display.

CREDIT

Ning Li

Energizing infrared photons to visible photons

The imager is made up of multiple semiconducting layers, each hundreds of nanometers thin, stacked on top of one another. Three of these layers, each made of a different organic polymer, are the imager's key players: a photodetector layer, an organic light-emitting diode (OLED) display layer, and an electron-blocking layer in between.

The photodetector layer absorbs shortwave infrared light (low energy photons) and then generates an electric current. This current flows to the OLED display layer, where it gets converted into a visible image (high energy photons). An intermediate layer, called the electron-blocking layer, keeps the OLED display layer from losing any current. This is what enables the device to produce a clearer image.

This process of converting low energy photons to higher energy photos is known as upconversion. What's special here is that the upconversion process is electronic. "The advantage of this is it allows direct infrared-to-visible conversion in one thin and compact system," said first author Ning Li, a postdoctoral researcher in Ng's lab. "In a typical IR imaging system where upconversion is not electronic, you need a detector array to collect data, a computer to process that data, and a separate screen to display that data. This is why most existing systems are bulky and expensive."

Another special feature is that the imager is efficient at providing both optical and electronic readouts. "This makes it multifunctional," said Li. For example, when the researchers shined infrared light on the back of a subject's hand, the imager provided a picture of the subject's blood vessels while recording the subject's heart rate.

The researchers also used their infrared imager to see through smog and a silicon wafer. In one demonstration, they placed a photomask patterned with "EXIT" in a small chamber filled with smog. In another, they placed a photomask patterned with "UCSD" behind a silicon wafer. Infrared light penetrates through both smog and silicon, making it possible for the imager to see the letters in these demonstrations. This would be useful for applications such as helping autonomous cars see in bad weather and inspecting silicon chips for defects.

The researchers are now working on improving the imager's efficiency.

###

Paper title: "Organic Upconversion Imager with Dual Electronic and Optical Readouts for Shortwave Infrared Light Detection." Co-authors include Naresh Eedugurala and Jason D. Azoulay, University of Southern Mississippi; and Dong-Seok Leem, Samsung Electronics Co., Ltd.

This work was supported by the National Science Foundation (ECCS-1839361) and Samsung Advanced Institute of Technology. The work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) at UC San Diego, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542148).

Scroll'n'roll -- nanomaterials towards effective photocatalytic pollution treatment

INSTITUTE OF PHYSICAL CHEMISTRY OF THE POLISH ACADEMY OF SCIENCES

Research News

IMAGE

IMAGE: THANKS TO THE TECHNOLOGY DEVELOPED BY THE TEAM OF PROF. JUAN CARLOS COLMENARES, IT IS EASY TO CREATE MATERIALS THAT, UNDER THE SUNLIGHT, CAN EFFECTIVELY CAPTURE TOXIC COMPOUNDS FROM THE ENVIRONMENT AND... view more 

CREDIT: SOURCE: IPC PAS, GRZEGORZ KRZYZEWSKI

We live in times when among the most limited and precious resources on Earth are air and water. No matter the geographical location, the pollution spreads quickly, negatively affecting even the purest regions like Mount Everest. Thus, anthropogenic activity decreases the quality of the environment, making it harmful for flora and fauna. Current waste treatment methods are not sufficient, so novel and effective methods for maximizing pollutants removal are highly needed. One of the robust and prosperous solutions that make it possible to degrade various highly toxic chemicals from air and water is based on nanotechnology. Nanomaterials offer unique physicochemical properties, establishing them capable to catalytically detoxify harmful substances faster and more efficiently than within classical filtration-based approaches. Facing the global pollution challenges, an international team led by prof. Juan Carlos Colmenares from the Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS) opens new horizons on harmful chemical treatment. They have synthesized a novel nanomaterial that can be used for multiple toxic compounds degradation.

Periodic table in the air and water

Nowadays, air and water contamination is higher than ever before, pursuing the whole world for remedying their treatment. Industrial wastes are full of organic molecules that are harmful to all types of living organisms. Quite often, they persist and accumulate in the environment for a long time, and once they enter the body, they may cause severe serious problems. Some might have a lethal effect depending on their type, even after a short exposition of a low concentration. Even if some toxic compounds are not breathed in, the air is full of humidity that sooner or later gets to the water and soil. Air pollution becomes a water and soil problem, making it more challenging to treat effectively.

Small size - high hopes

Among many techniques used for efficient air and water purification, the environmental contamination scale requires novel solutions and applications based on nanotechnology. Nanomaterials offer a tremendous high surface area to volume ratio and surface activity, making them highly reactive towards many chemicals. While only some offer low cytotoxicity, their diversity is constantly growing, establishing them as ideal candidates for application in this particular field - environmental remediation.

Recently, researchers from IPC PAS led by prof. Juan Carlos Colmenares proposed using commercial chemically stable and low toxic compound - titanium dioxide (TiO2 P-25) and combining it with carbon-based compounds, specifically graphite oxide (rGO), for effective detoxification of various compounds in air and water. TiO2 works as a photocatalyst that can degrade a wide range of chemical pollutants, including organic compounds and even microbes, under UV light or even solar light. Moreover, its synthesis is cost-effective, and such material is inert towards decomposition after air exposition. Researchers proposed to modify the classical TiO2 nanoparticles, scrolling them like a croissant by ultrasounds into the nanometric rolls called nanotubes. The scrolling procedure leads to unique properties and improves the nanocomposite's photocatalytic properties, where the nanorolls work as a trap for some harmful compounds. That feature makes it an efficient adsorbent, where the treated molecules can get stuck between particular layers of the nanotubes. Moreover, the material was peeled onto the surface and then chemically modified into the novel titanate form covering the whole nanotubes uniformly.

"The developments in nanotechnology pronounced our capability to imagine and hence design novel nanomaterials. Our vision that became reality was to synthesize a nanocomposite that combines the unique properties of the thinner two-dimensional nanomaterial, graphene, with the high photoreactivity of titanium oxide nanotubes. The incorporation of reduced graphite oxide had a positive impact on the desired physicochemical properties as well as on both photocatalytic and adsorptive efficiency comparing to solely titanate nanotubes and the benchmark titanium oxides. This composite presented an elevated detoxification efficiency against the assumed as the "King" of Chemical Warfare agents, mustard gas. Going a step further, experiments revealed additionally that this composite can have alternative environmental remediation applications against a plethora of organic pollutants as well as to be utilized as catalyst for the upgrade of biomass derived platform compounds towards important green-oriented chemicals" - remarks the first author, dr. Dimitrios A. Giannakoudakis

The as-synthesized nanotube-shaped scrolled titanate nanosheets were immobilized onto the reduced graphite oxide (rGO) flakes forming a more efficient catalyst than sole TiO2 or carbon-rich rGO. Moreover, the coupling of titanates with rGO sheets improves the photoactivity of the composite. TiO2 works as a photocatalyst under ultraviolet light exposure. At the same time, titanate nanotubes coupled with rGO can absorb light also in the visible range. The coupling of these two components makes such a composite universal for air and water purification from various harmful chemicals under the solar irradiation.

In their work, the authors presented a modern synthetic approach to achieve the synthesis of the nanocomposite. They have also shown that the toxic vapors are detoxified onto the composite surface, forming less- or non-toxic molecules that can remain strongly adsorbed on the material's surface. That work was published in Chemical Engineering Journal (Elsevier), presenting spectacular efficiency in detoxification, making the composite a promising material for highly effective air and water pollution treatment.

Prof. Juan Carlos Colmenares claims, "We consider the ultrasonication pre-treatment before the hydrothermal treatment is crucial to the formation of our targeted homogeneous nanocomposite, consisting of the nanotube-shape scrolled trititanate nanosheets with well-dispersed and exfoliated rGO, as magnetic stirring (silent pre-treatment) is giving us an almost inactive photocatalyst. The superiority of our nanocomposite over the benchmark photocatalyst TiO2 P25 is arisen from the nanostructured nature and associated with the high amount of surface functional groups that act as catalytic centers and its developed porosity which together with its high level of reusability make it a perfect material for environmental remediation under solar irradiation. Our research efforts (under fruitful collaboration with Prof. Teresa J. Bandosz from the City College of New York, USA) the last years revealed that the utilization of ultrasound irradiation during the materials synthesis can lead to novel nanomaterials of unique physicochemical properties".

The development and application of nanomaterials like the presented nanocomposite for air and water remediation are gaining importance worldwide. Thanks to nanomaterials' unique properties and their coupling with conventional methods, we step closer towards efficient decontamination of the environment.

###

When algorithms go bad: How consumers respond

News from the Journal of Marketing

AMERICAN MARKETING ASSOCIATION

Research News

Researchers from University of Texas-Austin and Copenhagen Business School published a new paper in the Journal of Marketing that offers actionable guidance to managers on the deployment of algorithms in marketing contexts.

The study, forthcoming in the Journal of Marketing, is titled "When Algorithms Fail: Consumers' Responses to Brand Harm Crises Caused by Algorithm Errors" and is authored by Raji Srinivasan and Gulen Sarial-Abi.

Marketers increasingly rely on algorithms to make important decisions. A perfect example is the Facebook News Feed. You do not know why some of your posts show up on some people's News Feeds or not, but Facebook does. Or how about Amazon recommending books and products for you? All of these are driven by algorithms. Algorithms are software and are far from perfect. Like any software, they can fail, and some do fail spectacularly. Add in the glare of social media and a small glitch can quickly turn into a brand harm crisis, and a massive PR nightmare. Yet, we know little about consumers' responses to brands following such brand harm crises.

First, the research team finds that consumers penalize brands less when an algorithm (vs. human) causes an error that causes a brand harm crisis. In addition, consumers' perceptions of the algorithm's lower agency for the error and resultant lower responsibility for the harm caused mediate their less negative responses to a brand following such a crisis.

Second, when the algorithm is more humanized-- when it is anthropomorphized (e.g., Alexa, Siri) (vs. not) or machine learning (vs. not), it is used in a subjective (vs. objective) task, or an interactive (vs. non-interactive) task--consumers' responses to the brand are more negative following a brand harm crisis caused by an algorithm error. Srinivasan says that "Marketers must be aware that in contexts where the algorithm appears to be more human, it would be wise to have heightened vigilance in the deployment and monitoring of algorithms and provides resources for managing the aftermath of brand harm crises caused by algorithm errors."

This study also generates insights about how to manage the aftermath of brand harm crises caused by algorithm errors. Managers can highlight the role of the algorithm and the lack of agency of the algorithm for the error, which may reduce consumers' negative responses to the brand. However, highlighting the role of the algorithm will consumers' negative responses to the brand for an anthropomorphized algorithm, a machine learning algorithm, or if the algorithm error occurs in a subjective or in an interactive task, all of which tend to humanize the algorithm.

Finally, insights indicate that marketers should not publicize human supervision of algorithms (which may actually be effective in fixing the algorithm) in communications with customers following brand harm crises caused by algorithm errors. However, they should publicize the technological supervision of the algorithm when they use it. The reason? Consumers are less negative when there is technological supervision of the algorithm following a brand harm crisis.

"Overall, our findings suggest that people are more forgiving of algorithms used in algorithmic marketing when they fail than they are of humans. We see this as a silver lining to the growing usage of algorithms in marketing and their inevitable failures in practice," says Sarial-Abi.

Full article and author contact information available at: https://doi.org/10.1177/0022242921997082

###

About the Journal of Marketing

The Journal of Marketing develops and disseminates knowledge about real-world marketing questions useful to scholars, educators, managers, policy makers, consumers, and other societal stakeholders around the world. Published by the American Marketing Association since its founding in 1936, JM has played a significant role in shaping the content and boundaries of the marketing discipline. Christine Moorman (T. Austin Finch, Sr. Professor of Business Administration at the Fuqua School of Business, Duke University) serves as the current Editor in Chief.

https://ama.org/jm

About the American Marketing Association (AMA)

As the largest chapter-based marketing association in the world, the AMA is trusted by marketing and sales professionals to help them discover what is coming next in the industry. The AMA has a community of local chapters in more than 70 cities and 350 college campuses throughout North America. The AMA is home to award-winning content, PCM® professional certification, premiere academic journals, and industry-leading training events and conferences.

https://www.ama.org

Small things can have a effect on the prevention of biodiversity loss

UNIVERSITY OF HELSINKI

Research News

The population growth of an endangered butterfly species is greatest in habitats with microclimatic variability, demonstrates a study carried out collaboratively by the Faculty of Biological and Environmental Sciences and the Helsinki Institute of Life Science of the University of Helsinki as well as the Finnish Environment Institute.

Insects are often very restricted in their capacity for movement. In many species, specific stages of life are spent entirely immobile, making them dependent on the temperature and moisture conditions of their immediate surroundings. In the Åland Islands on the southwest coast of Finland, Glanville fritillary butterflies (Melitaea cinxia) spend roughly 10 months of the year in the larval stage. In the middle of summer, the newly hatched larvae eat, as a group, the host plant, on whose leaf the female happened to lay the eggs. Prior research has shown that plants can wither entirely in dry summers, with prolonged dry periods sealing the fate of butterfly larvae. In such cases, only those larvae survive whose eggs have been laid on a plant growing in an exceptionally moist spot.

"We investigated how varying microclimates affect larval growth and survival in the spring after the overwintering. We found that warm and sunny days in March woke up the larvae and made them look for food. However, very little food was to be found, since the few warm days in early spring were followed by a cool April, with the growing season of the larval host plants only beginning in earnest in May," says doctoral researcher Susu Rytteri from the University of Helsinki's Research Centre for Ecological Change. She defended her thesis at the end March 2021.

It was observed that, in sunny and warm microclimates, larvae grew faster but also perished in large numbers because of lack of food. In cooler and shadier microclimates, larval growth was slow, a boost to the sufficiency of food: food plants had the time to grow in sync with the nutritional requirements of the larvae. Comprehensive survey data from the Åland Islands also demonstrated that Glanville fritillary populations grew the most in meadows where their larvae inhabited varying microclimates.

"The growth of butterfly populations increased when larval groups were located in particularly warm spots on sunny southward slopes. At the same time, the larvae also benefited from cooler and shaded microclimates. Due to the unpredictability and variability of weather conditions, the optimal egg-laying strategy for insects would appear to be laying eggs in varying microclimates which have the capacity to protect their immobile offspring from unfavourable conditions. The problem is that habitats have declined in number and become increasingly uniform. Consequently, varying microclimates are not necessarily on offer," Rytteri says.

More microclimatic variability in yards and gardens

Promoting microclimatic variability in your backyard helps insects and other animals. The sunniest spot in the yard can be turned into an even warmer place for sunbathing by, for example, constructing a section of stone wall that stores heat and offers protective crevices for small creatures. An oasis in the shade can be built in the coolest location in the yard by planting lush plants that thrive away from the sun and by adding a water element that is not only pleasing to the human eye but also serves as a watering place for animals during dry spells.

"Butterflies benefit from diverse plants, and in butterfly gardens, the goal should be floral splendour stretching from early spring long into the autumn. Many garden plants are good melliferous plants, that is, plants rich in pollen and nectar, but wild meadow plants shouldn't be overlooked either. Trees, bushes, rocks and knolls form variable microclimates and offer protection from unfavourable weather conditions," Rytteri points out.