Tuesday, August 02, 2022

How color in photos can make food look tastier

Study finds saturation in images is key to marketing menu items

Peer-Reviewed Publication

OHIO STATE UNIVERSITY

Color saturation makes food look tastier and fresher 

IMAGE: THE PHOTO ON THE LEFT OF A POKE BOWL DOESN'T LOOK AS FRESH AND TASTY TO VIEWERS AS THE ONE ON THE RIGHT. view more 

CREDIT: OHIO STATE UNIVERSITY

COLUMBUS, Ohio – An appealing photo of a pizza or other menu item can help a restaurant increase sales – especially if the right filter is used, a new study suggests.

Photos high in color saturation make food look fresher and tastier to viewers, which increases their willingness to order the menu items, researchers found.

Color saturation refers to the intensity of the color in the image – the vividness and richness of the reds and greens and blues.

But how well color saturation works to make food appealing depends on the visual distance of the food in the photo – and even on whether consumers plan to dine alone or with others.

In the cutthroat restaurant business, these results provide a simple method to increase sales, said Stephanie Liu, lead author of the study and associate professor of hospitality management at The Ohio State University.

“On Instagram, it means using the ‘X-Pro II’ filter on your food photos rather than the ‘Earlybird’ filter,” Liu said. “It is not difficult and doesn’t cost a dime, so it is an easy win for restaurant marketers.”

The study was published online recently in the Journal of Business Research.

The researchers did two online studies.

In one study, 267 participants were asked to imagine themselves browsing through options on an online food ordering platform.

They were shown photos of a poke bowl, a Hawaiian dish featuring chunks of raw, marinated fish, vegetables and sauce over rice.  They were from a fictitious restaurant named Poke Kitchen.

Study participants were randomly assigned to view one of the four different photos with either high or low color saturation and either close or farther away visual distance.

The photos with high color saturation were edited with professional graphic design software to be 130% more saturated than the low-saturation photos. The up-close photos were 130% larger in radius and appeared nearer to the observer than the more distant photo.

Participants were asked to rate how fresh the food in each photo looked, how tasty it looked and how likely they would be to purchase it.

The food in the more highly saturated photos looked fresher and tastier to participants, and that led them to be more likely to purchase the food, results showed.

But color saturation had a stronger effect when the food appeared more distant in the photos, Liu said.

“When the food is shown close up, it is already easy for the viewers to imagine how fresh and tasty the food would be,” she said. “Color saturation is not as necessary.”

The second study involved 222 online participants.  In this case, the participants were asked to imagine they were browsing Instagram and came across images of pizza from a fictitious restaurant near their home named Pizza City. They were shown photos either high or low in color saturation.

People in the study were also told they would either be eating alone or with family that night and were again asked to rate the pizza on perceived freshness and tastiness and on whether they would likely purchase the menu item.

As in the previous study, the food in the color-saturated photo was always seen as fresher and tastier and one that people would be more likely to buy.  But that effect was stronger for people who were told they would be eating alone and weaker for those who would be eating with family.

“When people are eating with others, the social experience is a big part of what people look forward to,” Liu said.

“But when they anticipate eating alone, they focus more on the food itself. They want the food to be fresher and tastier and that’s why color saturation is more important in this context.”

These findings are more important now than ever before, with people ordering online and looking at photos to help them decide what to eat, Liu said.

“Restaurants have to post pictures of their food on social media and online ordering platforms,” she said.

“They should be paying as much attention, or maybe more, to the photos they post as they do to the text. Color saturation is one key element they need to focus on.”

Co-authors on the study were Laurie Luorong Wu of Temple University, Xi Yu of the City University of Macau and Huiling Huang of the University of Macau in China. Xi Yu and Huiling Huang are recent doctoral graduates of the hospitality management program at Ohio State.

Investment urgently needed in new technology to mitigate CO2 emissions at airports, Cranfield University report reveals

Reports and Proceedings

CRANFIELD UNIVERSITY

  • Multi-million-pound investment needed in technologies such as direct air capture
  • Some airports could become green energy ‘power stations’ to fuel the aircraft they serve
  • Carbon capture technology should be integrated alongside other transport policies as part of Government’s Net Zero 2050 roadmap

Multi-million-pound investment is urgently needed in technologies including direct air capture (DAC) if the UK is to make ‘green’ airports a reality in the future, research by Cranfield University has revealed.

In the first study of its kind focusing primarily on emissions from the operational aspects of airports, researchers looked at how carbon capture, utilisation and sequestration (CCUS) technologies could be deployed across the sector to help some airports effectively become green energy ‘power stations’ to fuel the aircraft they serve for achieving the true net zero target.

DAC works by capturing CO2 in the air and then either sequestrating it or using it to manufacture carbon neutral fuel.

The report – which was compiled for the world’s leading specialist in air transport technology, SITA, – examined 2019 emissions and other information from London Luton Airport (LTN), Aberdeen Airport (ABZ), Indira Gandhi International Airport in India (DEL) and San Francisco International Airport (SFO).

Direct Air Capture, green hydrogen and SAF (sustainable aviation fuel)

The researchers said that a combination of integrating renewable green hydrogen technology (generated by renewable energy or low carbon power) with DAC and sustainable aviation fuel, (SAF) would help in the UK’s Net Zero ambitions. The report added that as part of the Government’s Net Zero 2050 roadmap, CCUS should be included alongside other air transport energy policies.

Dr Chikage Miyoshi, a co-author of the report from Cranfield University and lead for the university’s new Sustainable Aviation Systems Laboratory, said: “Carbon abatement measures have the potential to revolutionise the concept of aerospace sustainability, particularly through CCUS at airports.

“The case airports involved in this report recorded CO2 emissions in the range of 50 to 100 kilo tonnes of CO2 per annum. This indicates the potential of direct air capture in an airport environment.

“A combination of integrating renewable green hydrogen technology with DAC and SAF could be the ideal solution for achieving true net zero.

“This all requires long-term investment and strong leadership alongside an integrated energy policy and incentive scheme to facilitate such changes. In the long-run, we could see some airports act as power stations to fuel sustainable air transport operations.”

CCUS has both engineering and nature-based solutions

Six different types of CCUS engineering-based solutions were examined as part of the report. These can be combined with nature-based solutions for mitigating CO2 emissions, including tree planting and wetland restoration.

“Although the land required for DAC is relatively small” said Dr Miyoshi, “the initial investment is large. However, when we compute the operating cost to abate CO2 per passenger, it represents value for money.

“There are various sources of emissions at an airport ranging from electrical generation through to ground operations. Emissions from passenger surface access (the way customers reach the airport) are the second largest emissions source after aircraft emissions.

“Based on current technology, it is estimated that for CCUS engineering measures at Luton Airport, up to 0.04-2.5 km2 would be required. Some aspects could be introduced by airports working with local power stations.”

London Luton Airport Head of Sustainability, David Vazquez, said: “This collaboration provides timely, valuable insight into carbon capture and storage technologies and innovations, some of which we will explore further as we develop our evolving net zero roadmap.

“Although we recognise there will be some emissions that we cannot reduce in the short-term, London Luton Airport is committed to achieving carbon neutrality in 2023 and net zero for airport operations by 2040. This study is an example of the way in which LLA is working with the wider industry to look at the potential of emerging carbon capture technologies”.

Dr. Carlos Kaduoka, Head of Airport Business Strategy, SITA, said: “SITA is committed to reducing its climate impact and building a more sustainable air transport industry.

“Contributing to the research by Cranfield University is one example of our collaborative industry approach to exploring new ways to help decarbonize the industry and reach net-zero emissions.”

The report – The viability of Carbon Capture at Airports using Innovative Approaches – will be published at the end of August on the Cranfield University website.

Weed zapping

Do electrocution treatments have a place in weed control?

Peer-Reviewed Publication

CAMBRIDGE UNIVERSITY PRESS

Researchers from the University of Missouri recently conducted two field studies to explore the effectiveness of electricity in weed control. They used a tractor attachment called The Weed Zapper™ to electrocute eight types of weeds common in soybean crops, including herbicide-resistant waterhemp.

The first study showed that control was more effective in the later stages of weed growth and was most closely related to plant height and the moisture in the plant at the time of electrocution. Once the weeds had set seed, the treatments reduced viability by 54 to 80 percent across the weed species evaluated. A second study showed electrocution reduced late-season, herbicide-resistant waterhemp plants by 51 to 97 percent.

At some stages of growth, the soybean crops exhibited yield losses of 11 to 26 percent following electrocution treatments – though researchers say those results likely represent a worse-case scenario. In late-season treatments, for example, the clear height differential between waterhemp and the soybean canopy means the electrocution device can treat the weed without sustained contact with the crop.

The net takeaway: When used as part of an integrated control program, electrocution can eliminate many late-season, herbicide-resistant weed escapes in soybean crops and reduce the number and viability of weed seeds that return to the soil seedbank. 

Want to know more? Read the article “The Impact of Electrocution Treatments on Weed Control and Weed Seed Viability in Soybean featured in the latest edition of the journal Weed Technology.

Fiddler crab eye view inspires Gwangju Institute of Science and Technology researchers to develop novel artificial vision

The researchers develop an amphibious artificial vision system with a panoramic field-of-view based on the Fiddler crab’s eye structure

Peer-Reviewed Publication

GIST (GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY)

Novel amphibious panoramic artificial vision inspired by fiddler crab eye. 

IMAGE: RESEARCHERS FROM GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY IN KOREA HAVE DEVELOPED, IN A NEW STUDY, AN ARTIFICIAL VISION SYSTEM MODELED AFTER THE FIDDLER CRAB EYE STRUCTURE, WHICH IS SUITABLE FOR BOTH LAND AND UNDERWATER ENVIRONMENTS, AND PROVIDES A PANORAMIC IMAGING ABILITY. view more 

CREDIT: PROF. YOUNG MIN SONG FROM GIST, KOREA

Artificial vision systems find a wide range of applications, including self-driving cars, object detection, crop monitoring, and smart cameras. Such vision is often inspired by the vision of biological organisms. For instance, human and insect vision have inspired terrestrial artificial vision, while fish eyes have led to aquatic artificial vision. While the progress is remarkable, current artificial visions suffer from some limitations: they are not suitable for imaging both land and underwater environments, and are limited to a hemispherical (180°) field-of-view (FOV).

To overcome these issues, a group of researchers from Korea and USA, including Professor Young Min Song from Gwangju Institute of Science and Technology in Korea, have now designed a novel artificial vision system with an omnidirectional imaging ability, which can work in both aquatic and terrestrial environments. Their study was made available online on 12 July 2022 and published in Nature Electronics on 11 July 2022.

“Research in bio-inspired vision often results in a novel development that did not exist before. This, in turn, enables a deeper understanding of nature and ensure that the developed imaging device is both structurally and functionally effective,” says Prof. Song, explaining his motivation behind the study.

The inspiration for the system came from the fiddler crab (Uca arcuata), a semiterrestrial crab species with amphibious imaging ability and a 360° FOV. These remarkable features result from the ellipsoidal eye stalk of the fiddler crab’s compound eyes, enabling panoramic imaging, and flat corneas with a graded refractive index profile, allowing for amphibious imaging.

Accordingly, the researchers developed a vision system consisting of an array of flat micro-lenses with a graded refractive index profile that was integrated into a flexible comb-shaped silicon photodiode array and then mounted onto a spherical structure. The graded refractive index and the flat surface of the micro-lens were optimized to offset the defocusing effects due to changes in the external environment. Put simply, light rays traveling in different mediums (corresponding to different refractive indices) were made to focus at the same spot.

To test the capabilities of their system, the team performed optical simulations and imaging demonstrations in air and water. Amphibious imaging was performed by immersing the device halfway in water. To their delight, the images produced by the system were clear and free of distortions. The team further showed that the system had a panoramic visual field, 300o horizontally and 160o vertically, in both air and water. Additionally, the spherical mount was only 2 cm in diameter, making the system compact and portable.

“Our vision system could pave the way for 360° omnidirectional cameras with applications in virtual or augmented reality or an all-weather vision for autonomous vehicles,” speculates Prof. Song excitedly.

And it might be soon!

***

Reference

DOI: https://doi.org/10.1038/s41928-022-00789-9

Authors: Mincheol Lee1,2, Gil Ju Lee3,4, Hyuk Jae Jang3, Eehyung Joh1,2, Hyojin Cho1,2, Min Seok Kim3, Hyun Myung Kim3, Kyeong Muk Kang3, Joong Hoon Lee3, Myungbin Kim1,2, Hongwoo Jang5, Ji-Eun Yeo3, Frédo Durand6, Nanshu Lu5,7,9,10,11, Dae-Hyeong Kim1,2,8, and Young Min Song3

Affiliations:        

1Center for Nanoparticle Research, Institute for Basic Science (IBS)

2School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University

3School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology

4Department of Electronics Engineering, Pusan National University

5Texas Materials Institute, University of Texas at Austin

6Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

7Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin

8Department of Materials Science and Engineering, Seoul National University

9Department of Electrical and Computer Engineering, The University of Texas at Austin

10Department of Biomedical Engineering, The University of Texas at Austin, Austin

11Department of Mechanical Engineering, The University of Texas at Austin

 

About the Gwangju Institute of Science and Technology (GIST)

The Gwangju Institute of Science and Technology (GIST) is a research-oriented university situated in Gwangju, South Korea. Founded in 1993, GIST has become one of the most prestigious schools in South Korea. The university aims to create a strong research environment to spur advancements in science and technology and to promote collaboration between international and domestic research programs. With its motto of “A Proud Creator of Future Science and Technology,” GIST has consistently received one of the highest university rankings in Korea.

Website: http://www.gist.ac.kr/

 

About the authors

Young Min Song is currently a Professor in the School of Electrical Engineering and Computer Science at Gwangju Institute of Science and Technology (GIST), Korea. He received his Ph.D. in Information and Communications from GIST in 2011. From 2011 to 2013, he was a postdoctoral research associate in the Department of Materials Science and Engineering at the University of Illinois at Urbana-Champaign (UIUC), USA. Over the decades, he has predominantly focused his efforts on developing bio-inspired optics and photonics. His group is developing advanced optoelectronic sensors and systems, multifunctional nanophotonics, and optical healthcare systems.

Dae-Hyeong Kim obtained Ph. D. degree in Materials Science and Engineering from University of Illinois at Urbana Champaign (UIUC) in 2009. He was a post-doctoral research associate at UIUC from 2009 to 2011. He joined Seoul National University in 2011 and is currently a Professor in the School of Chemical and Biological Engineering at Seoul National University. Since 2017, he has also served as an associate director of Center for Nanoparticle Research at Institute for Basic Science (IBS). He has been focusing on the research of nanomaterials and deformable devices and their application to bio-integrated and bio-inspired electronics.

Mincheol Lee is a post-doctoral research associate at Seoul National University. He received his Ph. D. degree in the School of Chemical & Biological Engineering from Seoul National University in 2021. He has been focusing on the research of stretchable electronics based on ultrathin semiconductor films and their application to wearable, implantable, and bio-inspired electronics.

Gil Ju Lee is currently serving as an Assistant Professor in the Department of Electronics Engineering at Pusan National University since 2021. He has intensely focused on the research of advanced photonics and optics for next-generation optoelectronics and optical systems. Before coming to Pusan National University, he completed his Postdoctoral training and doctoral course at Gwangju Institute of Science and Technology (GIST).

Hyuk Jae Jang received his B.S. from Department of Physical and Semiconductor Science at Dongguk University and is a Ph. D. candidate under the guidance of Prof. Young Min Song in GIST. His current research interests focus on bio-inspired nano-optics and imaging device systems.

RESEARCH NEWS - Turning Fish Waste into Quality Carbon-based Nanomaterial

: August 1, 2022


Thanks to their low toxicity, chemical stability, and remarkable electrical and optical properties, carbon-based nanomaterials are finding more and more applications across electronics, energy conversion and storage, catalysis, and biomedicine. Carbon nano-onions (CNOs) are certainly no exception. First reported in 1980, CNOs are nanostructures composed of concentric shells of fullerenes, resembling cages within cages. They offer multiple attractive qualities such as a high surface area and large electrical and thermal conductivities.

Unfortunately, the conventional methods for producing CNOs have some serious drawbacks. Some require harsh synthesis conditions, such as high temperatures or vacuum, while others demand a lot of time and energy. Some techniques can circumvent these limitations, but instead call for complex catalysts, expensive carbon sources, or dangerous acidic or basic conditions. This greatly limits the potential of CNOs.

Fortunately, not all hope is lost. In a recent study published in Green Chemistry (available online on April 25, 2022, and published in issue 10 on May 21, 2022), a team of scientists from Nagoya Institute of Technology in Japan found a simple and convenient way to turn fish waste into extremely high-quality CNOs. The team, which included Assistant Professor Yunzi Xin, Master's student Kai Odachi, and Associate Professor Takashi Shirai, developed a synthesis route in which fish scales extracted from fish waste after cleaning are converted into CNOs in mere seconds through microwave pyrolysis.

But how can fish scales be converted into CNOs so easily? While the exact reason is not altogether clear, the team believes that it has to do with the collagen contained in fish scales, which can absorb enough microwave radiation to produce a fast rise in temperature. This leads to thermal decomposition or "pyrolysis," which produces certain gases that support the assembly of CNOs. What is remarkable about this approach is that it needs no complex catalysts, nor harsh conditions, nor prolonged wait times; the fish scales can be converted into CNOs in less than 10 seconds!

Moreover, this synthesis process yields CNOs with very high crystallinity. This is remarkably difficult to achieve in processes that use biomass waste as a starting material. Additionally, during synthesis, the surface of the CNOs is selectively and thoroughly functionalized with (−COOH) and (−OH) groups. This is in stark contrast to the surface of CNOs prepared with conventional methods, which is typically bare and has to be functionalized through additional steps.

This "automatic" functionalization has important implications for applications of CNOs. When the CNO surface is not functionalized, the nanostructures tend to stick together owing to an attractive interaction known as pi−pi stacking. This makes it difficult to disperse them in solvents, which is necessary in any application requiring solution-based processes. However, since the proposed synthesis process produces functionalized CNOs, it allows for an excellent dispersibility in various solvents.

Yet another advantage associated with functionalization and the high crystallinity, is that of exceptional optical properties. Dr. Shirai explains: "The CNOs exhibit ultra-bright visible-light emission with an efficiency (or quantum yield) of 40%. This value, which has never been achieved before, is about 10 times higher than that of previously reported CNOs synthesized via conventional methods."

To showcase some of the many practical applications of their CNOs, the team demonstrated their use in LEDs and blue-light-emitting thin films. The CNOs produced a highly stable emission, both inside solid devices and when dispersed in various solvents, including water, ethanol, and isopropanol. "The stable optical properties could enable us to fabricate large-area emissive flexible films and LED devices," speculates Dr. Shirai. "These findings will open up new avenues for the development of next-generation displays and solid-state lighting."

Furthermore, the proposed synthesis technique is environmentally friendly and provides a straightforward way to convert fish waste into infinitely more useful materials. The team believes their work would contribute to the fulfillment of several of UN's Sustainable Development Goals. Additionally, if CNOs make their way into next-generation LED lighting and QLED displays, they could greatly help reduce their manufacturing costs.

Let us hope the efforts of these scientists tip the scales in favor of CNOs for more practical applications!

image.jpg

Figure 1. Converting fish scales into high-quality nanomaterials.
(Left) Scheme depicting the synthesis of carbon nano-onions via the microwave pyrolysis of fish scales. The top inset shows the rise in temperature of the fish scales due to microwave absorption over a period of 10 seconds, as well as a proposed formation mechanism for the carbon nano-onions.
(Right) transmission electron microscopy images showing the morphology of the synthesized carbon nano-onions and photographs of CNO dispersion in ethanol, an emissive flexible film, and an LED containing CNO.
Image credit: Takashi Shirai from NITech, Japan.

Reference

Title of original paper

Fabrication of ultra-bright carbon nano-onions via a one-step microwave pyrolysis of fish scale waste in seconds

Journal

Green Chemistry


DOI

10.1039/d1gc04785j

About Associate Professor Takashi Shirai

Dr. Takashi Shirai is an Associate Professor at Nagoya Institute of Technology (NITech), Japan at the Department of Life Science and Applied Chemistry and Advanced Ceramics Research Laboratory. He works in the field of functional materials synthesis, surface chemistry, and ceramics engineering. His expertise lies in the surface and interface engineering and characterizations of nanostructures and inorganic and composite materials. He has published more than 180 scientific papers in reputed journals, book chapters, and conference proceedings and 50 patents to his credit. He has received 11 awards from the Ceramics Society of Japan, The Society of Powder Technology, and The Association of Powder Process Industry and Engineering, among others.

Contact

Links : Shirai Group Energy Materials Lab.


3D printing process created by Rutgers researchers is faster and more precise than conventional methods

Known as Multiplexed Fused Filament Fabrication, the technique “could be a game changer for the 3D-printing industry,” says lead author of study

Peer-Reviewed Publication

RUTGERS UNIVERSITY

Rutgers engineers have created a way to 3D print large and complex parts at a fraction of the cost of current methods.

They detail their work in the journal Additive Manufacturing.

“We have more tests to run to understand the strength and geometric potential of the parts we can make, but as long as those elements are there, we believe this could be a game changer for the industry,” said Jeremy Cleeman, a graduate student researcher at the Rutgers School of Engineering and the lead author of the study.

The new approach, called Multiplexed Fused Filament Fabrication (MF3), uses a single gantry, the sliding structure on a 3D printer, to print individual or multiple parts simultaneously. By programming their prototype to move in efficient patterns, and by using a series of small nozzles  rather than a single large nozzle, as is common in conventional printing  to deposit molten material, the researchers were able to increase printing resolution and size as well as significantly decrease printing time.

“MF3 will change how thermo-plastic printing is done,” said Cleeman, noting his team has applied for a U.S. patent for their technology.

The 3D-printing industry has struggled with what is known as the throughput-resolution tradeoff  the speed at which 3D printers deposit material versus the resolution of the finished product. Larger-diameter nozzles are faster than smaller ones but generate more ridges and contours that must be smoothed out later, adding significant post-production costs.

By contrast, smaller nozzles deposit material with greater resolution, but current methods with conventional software are too slow to be cost effective.

At the heart of MF3’s innovation is its software. To program a 3D printer, engineers use a software tool called a slicer  computer code that maps an object into the virtual “slices,” or layers, that will be printed. Rutgers researchers wrote slicer software that optimized the gantry arm’s movement and determined when the nozzles should be turned on and off to achieve the highest efficiency. MF3’s new “toolpath strategy” makes it possible to “concurrently print multiple, geometrically distinct, non-contiguous parts of varying sizes” using a single printer, the researchers wrote in their study.

Cleeman said he sees numerous benefits to this technology. For one, the hardware used in MF3 can be purchased off the shelf and doesn’t need to be customized, making potential adoption easier.

Additionally, because the nozzles can be turned on and off independently, an MF3 printer has built-in resiliency, making it less prone to costly downtime, Cleeman said. For instance, when a nozzle fails in a conventional printer, the printing process must be halted. In MF3 printing, the work of a malfunctioning nozzle can be assumed by another nozzle on the same arm.

As 3D printing increases in popularity – for manufacturing and particularly for the prototyping of new products – resolving the throughput-resolution trade-off is essential, said Cleeman, adding that MF3 is a major contribution to this effort.

New molecule developed at Hebrew U. may prevent age-related diseases and increase life expectancy and wellness

With a constant renewal of cell vitality in diseased tissues, this new drug will hopefully lead to the treatment or prevention of diseases, such as Alzheimer’s and Parkinson’s

Peer-Reviewed Publication

THE HEBREW UNIVERSITY OF JERUSALEM

While breakthroughs in the world of medicine and technology account for the global increase in life expectancy, improvements in quality of life for the elderly population lag far behind.  Longevity without a decline in health is one of the major challenges that faces the world of medicine. A new study led by Professors Einav Gross and Shmuel Ben-Sasson of the Faculty of Medicine at the Hebrew University of Jerusalem (HU) has identified a group of molecules that enable cells to repair damaged components, making it possible for those tissues to retain proper function. The efficacy of the molecules was demonstrated on a model-organism.  The research team examined the effect of various therapies on longevity and quality of life, and successfully proved they can protect the organism’s and human cells from damage. Their findings were published in Autophagy.

Currently, a major factor in aging tissues is the reduced effectiveness of the cell’s quality-control mechanism, which leads to the accumulation of defective mitochondria. As Gross explained, “mitochondria, the cell’s ‘power plants,’ are responsible for energy production. They can be compared to tiny electric batteries that help cells function properly.  Although these ‘batteries’ wear out constantly, our cells have a sophisticated mechanism that removes defective mitochondria and replaces them with new ones.” However, this mechanism declines with age, leading to cell dysfunction and deterioration in tissue activity.

 

This degenerative process lies at the heart of many age-related diseases, such as Alzheimer’s disease, Parkinson’s disease, heart failure and sarcopenia, which are on the rise.  Gross and Ben-Sasson’s study may have far-reaching practical applications since their new technology, developed at Hebrew U., helped create innovative compounds to treat diseases that are currently incurable.  The study also showed that these molecules can be used preventively. “In the future, we hope we will be able to significantly delay the development of many age-related diseases and improve people’ quality of life,” shared Ben-Sasson.  Further, these compounds are user-friendly and can be taken orally.  

To advance their important research and translate it into medical treatment for a variety of patients, the research team, together with Yissum, Hebrew University’s tech transfer company, established Vitalunga, a startup that is currently developing this drug.  “Ben-Sasson’s and Gross’s findings have significant value for the global aging population,” noted Itzik Goldwaser, CEO of Yissum. “As Vitalunga advances towards pre-clinical studies, they’re closer than ever to minimizing the unbearable burden that aging-related diseases, such as Alzheimer’s and Parkinson’s, has on individuals, their families and our health care systems.”

Scientists reveal distribution of dark matter around galaxies 12 billion years ago–further back in time than ever before

Peer-Reviewed Publication

NAGOYA UNIVERSITY

CMB 

IMAGE: THE RADIATION RESIDUE FROM THE BIG BANG, DISTORTED BY DARK MATTER 12 BILLION YEARS AGO. view more 

CREDIT: REIKO MATSUSHITA

A collaboration led by scientists at Nagoya University in Japan has investigated the nature of dark matter surrounding galaxies seen as they were 12 billion years ago, billions of years further back in time than ever before. Their findings, published in Physical Review Letters, offer the tantalizing possibility that the fundamental rules of cosmology may differ when examining the early history of our universe. 

Seeing something that happened such a long time ago is difficult. Because of the finite speed of light, we see distant galaxies not as they are today, but as they were billions of years ago. But even more challenging is observing dark matter, which does not emit light.  

Consider a distant source galaxy, even further away than the galaxy whose dark matter one wants to investigate. The gravitational pull of the foreground galaxy, including its dark matter, distorts the surrounding space and time, as predicted by Einstein’s theory of general relativity. As the light from the source galaxy travels through this distortion, it bends, changing the apparent shape of the galaxy. The greater the amount of dark matter, the greater the distortion. Thus, scientists can measure the amount of dark matter around the foreground galaxy (the “lens” galaxy) from the distortion.    

However, beyond a certain point scientists encounter a problem. The galaxies in the deepest reaches of the universe are incredibly faint. As a result, the further away from Earth we look, the less effective this technique becomes. The lensing distortion is subtle and difficult to detect in most cases, so many background galaxies are necessary to detect the signal.  

Most previous studies have remained stuck at the same limits. Unable to detect enough distant source galaxies to measure the distortion, they could only analyze dark matter from no more than 8-10 billion years ago. These limitations left open the question of the distribution of dark matter between this time and 13.7 billion years ago, around the beginning of our universe. 

To overcome these challenges and observe dark matter from the furthest reaches of the universe, a research team led by Hironao Miyatake from Nagoya University, in collaboration with the University of Tokyo, the National Astronomical Observatory of Japan, and Princeton University, used a different source of background light, the microwaves released from the Big Bang itself.  

First, using data from the observations of the Subaru Hyper Suprime-Cam Survey (HSC), the team identified 1.5 million lens galaxies using visible light, selected to be seen 12 billion years ago.  

Next, to overcome the lack of galaxy light even further away, they employed microwaves from the cosmic microwave background (CMB), the radiation residue from the Big Bang. Using microwaves observed by the European Space Agency’s Planck satellite, the team measured how the dark matter around the lens galaxies distorted the microwaves.   

“Look at dark matter around distant galaxies?” asked Professor Masami Ouchi of the University of Tokyo, who made many of the observations. “It was a crazy idea. No one realized we could do this. But after I gave a talk about a large distant galaxy sample, Hironao came to me and said it may be possible to look at dark matter around these galaxies with the CMB.”  

“Most researchers use source galaxies to measure dark matter distribution from the present to eight billion years ago”, added Assistant Professor Yuichi Harikane of the Institute for Cosmic Ray Research, University of Tokyo. “However, we could look further back into the past because we used the more distant CMB to measure dark matter. For the first time, we were measuring dark matter from almost the earliest moments of the universe.” 

After a preliminary analysis, the researchers soon realized that they had a large enough sample to detect the distribution of dark matter. Combining the large distant galaxy sample and the lensing distortions in CMB, they detected dark matter even further back in time, from 12 billion years ago. This is only 1.7 billion years after the beginning of the universe, and thus these galaxies are seen soon after they first formed. 

“I was happy that we opened a new window into that era,” Miyatake said. "12 billion years ago, things were very different. You see more galaxies that are in the process of formation than at the present; the first galaxy clusters are starting to form as well.” Galaxy clusters comprise 100-1000 galaxies bound by gravity with large amounts of dark matter. 

“This result gives a very consistent picture of galaxies and their evolution, as well as the dark matter in and around galaxies, and how this picture evolves with time,” said Neta Bahcall,  Eugene Higgins Professor of Astronomy, professor of astrophysical sciences, and director of undergraduate studies at Princeton University. 

One of the most exciting findings of the researchers was related to the clumpiness of dark matter. According to the standard theory of cosmology, the Lambda-CDM model, subtle fluctuations in the CMB form pools of densely packed matter by attracting surrounding matter through gravity. This creates inhomogeneous clumps that form stars and galaxies in these dense regions. The group’s findings suggest that their clumpiness measurement was lower than predicted by the Lambda-CDM model.  

Miyatake is enthusiastic about the possibilities. “Our finding is still uncertain”, he said. “But if it is true, it would suggest that the entire model is flawed as you go further back in time. This is exciting because if the result holds after the uncertainties are reduced, it could suggest an improvement of the model that may provide insight into the nature of dark matter itself.” 

“At this point, we will try to get better data to see if the Lambda-CDM model is actually able to explain the observations that we have in the universe,” said Andrés Plazas Malagón, associate research scholar at Princeton University. “And the consequence may be that we need to revisit the assumptions that went into this model.” 

“One of the strengths of looking at the universe using large-scale surveys, such as the ones used in this research, is that you can study everything that you see in the resulting images, from nearby asteroids in our solar system to the most distant galaxies from the early universe. You can use the same data to explore a lot of new questions,” said Michael Strauss, professor and chair of the Department of Astrophysical Sciences at Princeton University. 

This study used data available from existing telescopes, including Planck and Subaru. The group has only reviewed a third of the Subaru Hyper Suprime-Cam Survey data. The next step will be to analyze the entire data set, which should allow for a more precise measurement of the dark matter distribution. In the future, the team expects to use an advanced data set like the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) to explore more of the earliest parts of space. “LSST will allow us to observe half the sky,” Harikane said. “I don’t see any reason we couldn’t see the dark matter distribution 13 billion years ago next.”  

New dog food? Study shows Fido's gut bacteria could turn over within a week

Peer-Reviewed Publication

UNIVERSITY OF ILLINOIS COLLEGE OF AGRICULTURAL, CONSUMER AND ENVIRONMENTAL SCIENCES

URBANA, Ill. – When a dog starts a new diet, the community of microbes in its gut changes. Wallflower bacteria multiply to dominate the scene, with the old guard slinking off in defeat. As microbial species jostle for control, their metabolic byproducts, many of which are critical for Fido’s overall health, change as well.

The dynamic dance between nutrients, microbes, and their chemical products is well documented in dogs and other mammals, but until now, scientists were only guessing at the timeframe for microbial turnover. A new study from University of Illinois animal scientists documents the change takes place in less than a week.

“As long as I've been doing animal nutrition research, we’ve argued over how long we need to feed a new diet before collecting samples, when everything's stabilized,” says Kelly Swanson, Kraft Heinz Company Endowed Professor in Human Nutrition in the Department of Animal Sciences and the Division of Nutritional Sciences at U of I and co-author of the new study. “No one has ever tested it definitively.”

It turns out microbes stabilize very quickly. They begin making entirely new chemical products within two days after dogs start a new diet. And it only takes six days for microbial communities to shift and stabilize.

“Metabolites change really quickly, within a couple days. Bacteria responsively metabolize and deal with the substrates they're given in the new diet. Then it takes a few more days to sort out the microbial pecking order, if you will,” Swanson says. “Our data show everything stabilizes by day six, so animal nutrition researchers could confidently sample and find a stable microbiome within 10 days.”

Swanson’s team fed dogs a common dry kibble diet for two weeks before abruptly switching to new diets for an additional 14 days. Half the dogs ate a high-fat, high-protein canned diet and the other half ate a high-fiber kibble. Meanwhile, researchers collected poop two days after the diet change and every four days after that. Because science demands replication, the researchers did it all twice, switching dogs to the opposite experimental diet the second time around.

The team extracted microbial metabolites from each fecal sample, those chemical products of microbial metabolism that can impact a dog’s overall health. They also identified bacterial species in the fecal samples to show how the microbial community changed over time. Finally, they correlated metabolites with bacterial species, something that hasn’t been done before for most bacteria.

“Oftentimes, we feed a diet and collect the feces, but there's kind of a black box in terms of what’s going on in the gut. We know what some bacterial species metabolize, but definitely a lot of it is unknown,” Swanson says. “Our correlations are the starting point to connect some of the dots, but more targeted research still has to be done.”

The primary goal was to track microbial changes over time, but the research also corroborated previous findings indicating greater health benefits of a high-fiber diet over a high-fat, high-protein diet for dogs. Those findings weren’t a surprise, but the fact that the two diet extremes reached an equilibrium on the same timeframe was unexpected. For both diets, the team detected metabolite changes on day two and bacterial community changes by day six.

Swanson says broad strokes of the study may be applicable to other mammalian microbiome systems, especially those like pets and livestock that eat the same controlled diet every day. For example, the speed at which the gut microbiome responds and stabilizes after a nutritional change may be universal. And although particular bacterial species and strains may differ among dogs, people, and other mammals, metabolite/species correlations may be similar across hosts.

Is there a takeaway for dog owners? Swanson says although his study tested a very abrupt diet change, his results support the common guidance to shift to a new dog food brand gradually.

“People usually suggest moving pets over to a new diet over a seven-day period. Our study suggests the microbes can completely change over in that timeframe,” he says. “When you switch diets, the body has to adjust, but the microbes have to change as well. If they’re not in a happy situation, you end up with loose stools or flatulence. So it’s probably good to do it a bit more gradually at home than we did in the lab.”

This study was done in partnership with NomNomNow, Inc. a direct-to-consumer producer of fresh pet food and health products. Nom Nom has an extensive pet health and microbiome database, which allows them to engage in a variety of microbiome-focused studies in the pet population.

“We’re really excited about the outcomes of this trial,” says Ryan Honaker, Nom Nom’s Director of Microbiology. “Understanding the microbiome is central to our efforts in improving pet health, and this study brings us another step closer uncovering how the canine gut actually responds to a new diet.”

The article, “Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs,” is published in Animal Microbiome [DOI: 10.1186/s42523-022-00194-9]. Authors include Kelly Swanson, Ching-Yen Lin, Jha Aashish, Patricia Oba, Sofia Yotis, Justin Shmalberg, and Ryan Honaker. The study was funded by USDA’s National Institute of Food and Agriculture and NomNomNow, Inc.

The Department of Animal Sciences and the Division of Nutritional Sciences are in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois Urbana-Champaign.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy