Sunday, December 11, 2022

Predicting future landscape of a river

A eco-morphodynamic modelling was performed to predict the future landscape evolution of an actual sandy, monsoon-driven river

Reports and Proceedings

NATIONAL RESEARCH COUNCIL OF SCIENCE & TECHNOLOGY

Vegetation dynamics in 2016 

IMAGE: VEGETATION DYNAMICS IN 2016 view more 

CREDIT: KOREA INSTITUTE OF CIVIL ENGINEERING AND BUILDING TECHNOLOGY

Climate change is changing the environmental condition of rivers; hence, it is no longer possible to manage modern rivers with methods that have been practiced under the past environmental conditions.

A joint research team, Korea Institute of Civil Engineering and Building Technology(KICT) and Deltares of the Netherlands, conducted a research on prediction of the future changes in river landscapes using an eco-morphodynamic model applied to an actual river. According to the study result, the vegetation cover increases continuously until 2031, and the area covered by willow trees occupies up to 20% of the river area. Using this modeling, efficiency in river management can be achieved by planning management practices in advance.

Eco-morphodynamic model developed by Deltares is a model that combines a vegetation model with Delft3D software, which is widely used in the field of river hydraulics. The Delft3D computes flow velocity, water depth and elevation of a riverbed. Then the vegetation model simulate the germination, settlement, growth and mortality of vegetation based on the Delft3D computation. Simultaneously, vegetation properties are converted to flow resistance and fed back into Delft3D.

KICT and Deltares applied the eco-morphodynamic model to Naeseongcheon Stream in Korea which belongs to a temperate monsoon climate region with large seasonal hydrological fluctuations. Most of the Naeseongcheon Stream has characteristics as a natural river. As its riverbed is mainly composed of sand, the movement due to hydrological fluctuations and consequently, the vegetation dynamics are active.

KICT has been conducting long-term monitoring including LiDAR and hydrological surveys and vegetation map production since 2012, before significant vegetation establishment in Naeseongcheon Stream began. These monitoring data were used to build and verify the eco-morphodynamic modelling. The modelling area is approximately 5 km long curved reach, located in the middle-lower section of the Naeseongcheon Stream. The width is approximately 300 m, and the grid of the model was constructed considering the actual vegetation distribution which had occurred narrowly along the shoreline.

After conducting a modelling for the past data(2012-2019 period), the results were compared with the observed data. Compared with the ratio of coverage of tree species in the land cover map made with aerial photos, the area fraction of willow trees in the model result had similar coverage ratio (In 2014, actual : 2.02%, model : 2.21%). In 2016, the model adequately reproduced the actual situation by simulating the survival and growth of vegetation in the spring and the mortality of vegetation after the flood.

Considering climate change scenario, the joint research team has performed a long-term modelling from 2012 to 2031. The vegetation cover continued to increase until 2031, and the area of trees reached 20% in 2031.

This eco-morphodynamic model, jointly performed by KICT and Deltares, is a fully coupled model that links the hydrology-vegetation-morphololgy and able to reproduce the actual phenomenon better than other models. It has the advantage of increasing the model's reliability through application and verification in the actual river with abundant observed data. With this model, we can predict future changes in river landscape as well as ecosystem diversity and potential flood risks due to vegetation development.

Dr. Lee said “This eco-morphodynamic model is able to aid decision making for implementing appropriate river and vegetation management by simulating the landscape of future rivers according to climate change, though it needs continuous improvement to reflect the complexity of real rivers.”

 

###

 

The Korea Institute of Civil Engineering and Building Technology (KICT) is a government sponsored research institute established to contribute to the development of Korea’s construction industry and national economic growth by developing source and practical technology in the fields of construction and national land management.

Low nutritional quality in vegetarian meat substitutes

Peer-Reviewed Publication

CHALMERS UNIVERSITY OF TECHNOLOGY

Dr Cecilia Mayer Labba 

IMAGE: CAPTIONS: DR CECILIA MAYER LABBA, THE DEPARTMENT OF BIOLOGY AND BIOLOGICAL ENGINEERING, CHALMERS UNIVERSITY OF TECHNOLOGY. view more 

CREDIT: CREDIT: MARTINA BUTORAC/CHALMERS

The availability of foods based on plant proteins to substitute for meat has increased dramatically as more people choose a plant-based diet. At the same time, there are many challenges regarding the nutritional value of these products. A study from Chalmers University of Technology in Sweden now shows that many of the meat substitutes sold in Sweden claim a high content of iron – but in a form that cannot be absorbed by the body.

A diet largely made up of plant-based foods such as root vegetables, pulses, fruit and vegetables generally has a low climate impact and is also associated with health benefits such as a reduced risk of age-related diabetes and cardiovascular disease, as has been shown in several large studies. But there have been far fewer studies of how people’s health is affected by eating products based on what are known as textured* plant proteins.

In the new study from Chalmers, a research team in the Division of Food and Nutrition Science analysed 44 different meat substitutes sold in Sweden. The products are mainly manufactured from soy and pea protein, but also include the fermented soy product tempeh and mycoproteins, that is, proteins from fungi.

Among these products, we saw a wide variation in nutritional content and how sustainable they can be from a health perspective. In general, the estimated absorption of iron and zinc from the products was extremely low. This is because these meat substitutes contained high levels of phytates, antinutrients that inhibit the absorption of minerals in the body,’ says Cecilia Mayer Labba, the study’s lead author, who recently defended her thesis on the nutritional limitations of switching from animal protein to plant-based protein.

The body misses out on necessary minerals

Phytates are found naturally in beans and cereals – they accumulate when proteins are extracted for use in meat substitutes. In the gastrointestinal tract, where mineral absorption takes place, phytates form insoluble compounds with essential dietary minerals, especially non-heme iron (iron found in plant foods) and zinc, which means that they cannot be absorbed in the intestine.

‘Both iron and zinc also accumulate in protein extraction. This is why high levels are listed among the product’s ingredients, but the minerals are bound to phytates and cannot be absorbed and used by the body,’ says Cecilia Mayer Labba.

Iron deficiency among women is a widespread, global problem. In Europe, 10 to 32 per cent of women of childbearing age are affected** and almost one in three teenage girls at secondary school in Sweden***. Women are also the group in society most likely to have switched to a plant-based diet and to eat the least amount of red meat, which is the main source of iron that can be easily absorbed in the digestive tract.

‘It is clear that when it comes to minerals in meat substitutes, the amount that is available for absorption by the body is a very important consideration. You cannot just look at the list of ingredients. Some of the products we studied are fortified with iron but it is still inhibited by phytates. We believe that making nutrition claims on only those nutrients that can be absorbed by the body could create incentives for the industry to improve those products,’ says Ann-Sofie Sandberg, Professor of Food and Nutrition Science at Chalmers and co-author of the study.

The food industry needs new methods

Tempeh, made from fermented soybeans, differed from the other meat substitutes in the amount of iron available for absorption by the body. This was expected, as the fermentation of tempeh uses microorganisms that break down phytates. Mycoproteins stood out for their high zinc content, without containing any known absorption inhibitors. However, according to the researchers, it is still unclear how well our intestines can break down the cell walls of mycoprotein and how this in turn affects the absorption of nutrients.

‘Plant-based food is important for the transition to sustainable food production, and there is huge development potential for plant-based meat substitutes. The industry needs to think about the nutritional value of these products and to utilise and optimise known process techniques such as fermentation, but also develop new methods to increase the absorption of various important nutrients,’ says Cecilia Mayer Labba.

 

Production of plant proteins

  • Most existing plant-based protein products on the market are based on protein extracted from a cultivated plant, such as soybeans, and separated from the plant’s other components.
  • The protein is then subjected to high pressure and temperature, which restructures the proteins, known as *texturization, so that a product can be achieved that is meatier and chewier in combination with other ingredients.
  • Chalmers’ study shows that the nutritional value of meat substitutes available today is often deficient depending on the choice of raw material (often imported soy) and processing conditions (content of anti-nutrients), and on additives (fat quality and salt).
  • A meal containing 150 grams of meat substitutes contributes up to 60 per cent of the maximum recommended daily intake of salt, which according to the Nordic Nutrition Recommendations is 6 grams. 

 

* The protein is restructured by high pressure and temperature.

** Milman, Taylor, Merkel and Brannon: Iron status in pregnant women and women of reproductive age in Europe. Am J Clin Nutr 2017; 106 (Suppl): 1655S-62S.

*** Riksmaten Adolescents Survey 2016-2017, Swedish National Food Agency (Livsmedelsverket) report series no. 23, 2018. Swedish National Food Agency (Livsmedelsverket) 2018.

 

Read the full article in Nutrients:

Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market

 

The authors of the study are Cecilia Mayer Labba, Hannah Steinhausen, Linnéa Almius, Knud Erik Bach Knudsen and Ann-Sofie Sandberg. The researchers are active at Chalmers University of Technology and Aarhus University.

The study was funded by the Bertebos Foundation, the Swedish Research Council Formas and the region of Västra Götaland.

 

For more information, contact:

Dr Cecilia Mayer Labba, The Department of Biology and Biological Engineering, Chalmers University of Technology, cecilia.mayer.labba@chalmers.se  +46 (0)31 772 38 11

Professor Ann-Sofie Sandberg, The Department of Biology and Biological Engineering, Chalmers University of Technology, ann-sofie.sandberg@chalmers.se +46 (0)31 772 38 26 

  

Professor Ann-Sofie Sandberg, The Department of Biology and Biological Engineering, Chalmers University of Technology.

CREDIT

Credit: Chalmers

Captions: Dr Cecilia Mayer Labba, The Department of Biology and Biological Engineering, Chalmers University of Technology. Credit: Martina Butorac/Chalmers

Professor Ann-Sofie Sandberg, The Department of Biology and Biological Engineering, Chalmers University of Technology. Credit: Chalmers

Photo of vegetarian meat. Credit: Unsplash

 

Quantum clocks in the real world - AQuRA-consortium brings together European universities, industry partners and EU metrology institutes

Grant and Award Announcement

UNIVERSITEIT VAN AMSTERDAM

Modern atomic quantum clocks are the most precise and accurate scientific instruments ever created. Currently, these so-called optical atomic clocks are mostly found in physics laboratories, often filling an entire laboratory. The AQuRA-consortium brings together European universities, industry partners and EU metrology institutes in an effort to make quantum clocks more robust and compact. This will allow real-world applications like significantly improved and faster telecommunication networks, or underground exploration using fluctuations in gravity. The consortium led by the University of Amsterdam received a €7.5 million European Commission Horizon grant to achieve their goals over the next three and a half years.

Ready for technology

All of these applications would benefit from even more precise timekeeping. Devices for this do exist: modern optical atomic clocks are the successors of the ‘regular’ atomic clocks that have been used for all sorts of applications for decades. Unfortunately, these optical atomic clocks – the name comes from the fact that the atoms in the atomic clock emit light in the optical spectrum – use advanced quantum technology and currently mainly exist as huge and complex installations in physics laboratories.

Florian Schreck, who leads the new consortium, explains: “The European Union measures the state of development of technological applications in terms of the so-called technological readiness level, or TRL. For example, TRL-1 means that basic principles that might lead to an application have been observed, while the highest level, TRL-9, means that products are built and work in a real-world environment. With AQuRA, we aim to bring optical atomic clocks to the TRL-7 level: the level where the first prototype clocks work in a real-world environment.’

This would be a major improvement over the current state of the art. The iqClock consortium, AQuRA’s predecessor, managed to bring optical atomic clocks to level TRL-5, where the technology mostly still works in a controlled laboratory environment. Schreck: “In practice, our goal is to build a clock that would only go wrong by about five seconds over the entire age of the universe – but in such a way that you can take this clock for a bumpy ride aboard a truck, after which it still works perfectly.”

From the lab to the real world

Such an endeavour requires a collaboration between physicists, industry partners and experts in metrology – the science of measurement. Schreck, from the University of Amsterdam, and his collaborators found eight more partners from six different European countries who now together form AQuRA, short for Advanced Quantum Clock for Real-World Application. Together, the partners will build new clocks, test them in the field, strengthen supply chains for the different components – briefly: make the technologies that now exist in the lab ready for production and applications.

Schreck: “Atoms are the best time-keeping devices that we have. Every atom of a certain type is exactly the same, and as a result, time measurements using light emitted by atoms can be made extremely precise. The funny thing is that to control the smallest things we know of – atoms – we need the biggest machines that one can still build in a university physics lab. Hopefully four years from now, this contrast will be smaller. You won’t be able to buy an optical atomic pocket watch yet, but you may encounter extremely precise quantum clocks the size of a small cupboard out there in the real world.”

The AQuRA-consortium consists of the University of Amsterdam (the Netherlands), Menlo Systems GmbH (Germany), NKT Photonics A/S (Denmark), iXblue (France), Centre National de la Recherche Scientifique (France), Uniwersytet Mikolaja Kopernika w Toruniu (Poland), QuiX Quantum BV (the Netherlands), Vexlum Oy (Finland) and Physikalisch-Technische Bundesanstalt (Germany). The consortium is funded by a HORIZON Innovation Action grant from the European Commision.

More information is available on the AQuRA website: www.aquraclock.eu.

Animal herbivores hamper nitrogen fixation in tropical forests

Peer-Reviewed Publication

UNIVERSITY OF LEEDS

Reforestation projects could be made more effective with the findings of new research into the constraints on nitrogen fixation among plants.  

Some trees, such as those from the Fabaceae or legume family, form a symbiotic relationship with bacteria, enabling them to them take in nitrogen from the air. For most plants, nitrogen comes from the soil but some soils, particularly those in newly reforested or disturbed tropical forests, can be low on nitrogen - and this limits tree growth.   

Nitrogen is a key nutrient needed for photosynthesis.  

Using a process known as nitrogen fixation, some plants have adapted to take-up nitrogen from the air using the services of friendly bacteria. This enables trees to grow in habitats where nitrogen levels are low. And there are other benefits.   

Higher levels of nitrogen can result in higher levels of photosynthesis and removal of carbon dioxide, a potent greenhouse gas, from the atmosphere, helping to offset some of the carbon emissions from human activity.   

Nitrogen fixation also raises the nitrogen levels in the soil, encouraging non-fixing species to survive. But this apparent win-win situation has drawbacks.  

An international team of scientists, led by Will Barker, a doctoral researcher from the School of Geography at the University of Leeds in the UK, found that trees with the ability to fix nitrogen attracted insects and other animals that would eat their leaves, a process known as herbivory.   

In a scientific paper published in the journal Nature, the researchers report that in a tropical forest in Panama, the nitrogen-fixing trees experienced 26% more herbivory than non-fixing trees.  

They found that by being consumed, the nitrogen-fixing trees experienced lower growth and lower rates of survival when compared to non-fixing trees. This would have an impact on the amount of new nitrogen getting into the forest soils and would constrain the role that trees were able to play in taking carbon dioxide out of the environment.  

Mr Barker said: “These findings give us new insights into the function of different types of trees in tropical forests and could help inform efforts to reforest tropical regions that have been degraded for logging and agriculture.   

“For example, people reforesting sites may consider including a diverse mix of nitrogen-fixing and non-fixing trees so that they have enough to ensure nitrogen fixers can bring in new nitrogen, even when there will be constraints by herbivory.   

“They also would not want to plant all nitrogen-fixing trees, however, because then those regenerating forests may disproportionately attract animal pests that could wipe out the nitrogen-fixing trees.” 

Dr Sarah Batterman, Associate Professor in the School of Geography at Leeds, who supervised the research, said: “These findings are significant because for decades people have been interested in how abiotic factors like the availability of soil nitrogen or phosphorus or temperature constrain symbiotic nitrogen fixation.   

“We’ve found that interactions with animals through herbivory on leaf tissue may be critical for determining how fertile tropical forest soils are in terms of nitrogen.   

“We expect the patterns that we found in Panama will hold across a wide variety of ecosystems. We look forward to exploring that further in the future.”  

The paper – Widespread herbivory cost in tropical nitrogen-fixing tree species – is published in Nature (https://www.nature.com/articles/s41586-022-05502-6)   

Other institutions taking part in the research were: Yale School of the Environment; Smithsonian Tropical Research Institute, Panama; Department of Integrative Biology, University of Texas; Cary Institute of Ecosystem Studies, New York.  

Funders included the Natural Environment Research Council and the Leverhulme Trust, both in the UK.

END 

Researchers harvest electricity from wood soaking in water

Peer-Reviewed Publication

KTH, ROYAL INSTITUTE OF TECHNOLOGY

Harvesting electricity from drying out wet wood 

IMAGE: IN NATURE WHEN WOOD DRIES OUT FROM BEING SOAKED, IT GIVES OFF AN ELECTRICAL CHARGE. RESEARCHERS AT KTH IN SWEDEN SHOWED THAT IF THE WOOD'S COMPOSITION IS NANOENGINEERED THE RIGHT WAY, THE PHENOMENON CAN BE TURNED INTO A POWER SOURCE. view more 

CREDIT: DAVID CALLAHAN/KTH ROYAL INSTITUTE OF TECHNOLOGY

Water and wood may one day be all that’s needed to provide electrical power for a household. At a time when energy is a critical issue for many millions of people worldwide, scientists in Sweden have managed to generate electricity with the help of these two renewable resources.

The method reported in the scientific journal Advanced Functional Materials by researchers at KTH Royal Institute of Technology focuses on what naturally happens after wood is placed in water, and the water evaporates. Transpiration, a process in which water moves through a plant, is constantly occurring in nature. And it produces small amounts of electricity, known as bioelectricity.

Yuanyuan Li, assistant professor at the Division of Biocomposites at KTH, says that with some nanoengineering of wood—and pH tuning—small but promising amounts of electricity can now be harvested.

"At the moment we can run small devices such as an LED lamp or a calculator,” Li says. “If we wanted to power a laptop, we would need about one square meter of wood about one centimeter thick, and about 2 liters of water.”

“For a normal household we’d need far more material and water than that, so more research is needed."

By altering the nanoscale composition of wood, the researchers improved its properties in terms of surface area, porosity (or density), surface charge, how readily water can pass through the material and the water solution itself—all of which are factors that influence electricity generation in wood.

"We compared the porous structure in regular wood with the material we improved with regard to surface, porosity, surface charge and water transportation. Our measurements showed electricity generation that’s 10 times higher than with natural wood," Li says.

She says that further tuning the pH difference between wood and water, due to an ion concentration gradient, achieves a potential of up to 1 volt and a remarkable power output of 1.35 microwatts per square centimeter.

Li says that to date, the wood manages to deliver high voltage for about 2-3 hours, before it begins to wane. So far the wood has managed 10 cycles with water, without a decline in the material’s performance, she says.

"The great advantage of this technology is that the wood can readily be used for other purposes once it’s depleted as an energy source, such as transparent paper, wood-based foam and different biocomposites."

Highly porous nanoengineered wood for hydroelectricity harvesting was prepared through a one-step chemical treatment by immersing native wood (NW) into a water/NaOH mixture for 48 h at −6 °C.


Fjords, small in size and number, are significant carbon reservoirs

New study shows fjords are small-but-mighty planetary ‘thermostats’ that play an important role in the global carbon cycle


Peer-Reviewed Publication

UNIVERSITY OF SOUTH FLORIDA

Doubtful Sound.jpg 

IMAGE: DOUBTFUL SOUND, NEW ZEALAND, WHICH XINGQIAN CUI VISITED IN 2016, WAS APPARENTLY SO-NAMED BECAUSE ITS DISCOVERER, CAPTAIN JAMES COOK, DECIDED IF HE AND THE CREW VENTURED INTO THE FJORD DURING A VOYAGE IN 1770, IT WOULD BE “DOUBTFUL” THAT THEY WOULD BE ABLE TO SAIL BACK OUT OF THE FJORD AGAINST THE WESTERLY WIND. view more 

CREDIT: UNIVERSITY OF SOUTH FLORIDA

TAMPA, Fla. (Dec. 8, 2022) – If you’re worried about escalating human-induced climate change, consider adding fjords to your thank-you list during this season of gratitude.

Fjords are long, deep arms of the sea carved by glaciers that are surrounded by breathtaking cliffs. More than just a pretty face on the planet, fjords comprise a mere 0.1 percent of the surface area of the ocean yet store a whopping 11-12 percent of the carbon stored in the ocean. In other words, they sock away 18 million tons of carbon during interglacial periods, like the one we’re in now, even though they take up the space equivalent of a speck of zest on an orange.

“Fjords punch far above their weight in their ability to pull out a lot of carbon from the atmosphere and store it in the mud,” said Brad Rosenheim, geological oceanography professor and paleoclimate expert at the USF College of Marine Science, who explained that scientists only learned of this small-but-mighty role recently.

In 2015, an ocean geochemist and professor at the University of Florida, Thomas Bianchi, pioneered a Nature Geosciences study, with his graduate student at the time, Richard Smith (now at Global Aquatic Research LLC), that first opened scientists’ eyes to the powerful role that fjords play in global carbon storage, he said.

But nothing stays the same forever. A vexing question became an itch that marine scientists couldn’t scratch for years after Bianchi’s seminal study:

Are fjords the carbon storage gift that keeps on giving, or is their ability to store carbon-rich sediments deep in their bellies temporary? What will happen during the next glacial period to that locked-away warehouse of carbon when it is again exposed to oxygen as the ice returns and the waters recede?

Answering the question would require an understanding of how reactive the carbon in fjord sediments is compared to the carbon buried in other ocean reservoirs, such as at the bottom of the middle of the ocean far away from the coast, Rosenheim said. It turns out that a unique instrument Rosenheim developed, the Ramped Pyrox C-14 System, which he affectionately calls the “dirt burner,” was instrumental in solving the mystery.

The work, published recently in Science Advances, unearths a new understanding of the role of fjords in the global carbon cycle. The bottom line: they act as both carbon sink and source.

The research, which included Rosenheim and Bianchi as coauthors, was led by Xingqian Cui, now a professor at Shanghai Jiao Tong University in China. Cui had visited Rosenheim’s lab several years ago when he was a doctoral student at the University of Florida working under the tutelage of Bianchi.

“In this study we showed that the carbon buried in fjords is more thermally labile than that in global sediments,” Cui said.

The team collected sediment samples from 25 fjords around the world, placed them in Rosenheim’s dirt burner, gradually increased the temperature, recorded when and how fast the organic matter broke down, and turned that into a “reaction energy” equivalent. In short, the fjord sediments were highly reactive.

What that reactivity means is that the rock-star ability of fjords to sock away the carbon is transitory, not permanent. Fjords are carbon sinks during interglacial periods and become carbon sources during glacial periods.

Akin to the thermostat in your home, fjords help regulate temperature. They counterbalance the cooling of the planet in glacial periods by adding roughly 50 parts per million of carbon dioxide back to the atmosphere, said Cui.

One key takeaway from this work is the need to focus on these smaller parts of the carbon cycle system, such as mangroves, which also store a lot of carbon, said Rosenheim.

“Fjords take up a small amount of space, but they play a significant role in modulating temperature swings from glacial to interglacial periods,” said Rosenheim. “Human-caused warming of the planet interrupts this heartbeat of natural glacial-interglacial cycles whereby our understanding of fjords and other hot spots of carbon storage becomes critical.”

For a long time, fjords were overlooked merely because of their size relative to the vast ocean basin, he said – proving once again that size doesn’t matter.

About the University of South Florida

The University of South Florida, a high-impact global research university dedicated to student success, generates an annual economic impact of more than $6 billion. Over the past 10 years, no other public university in the country has risen faster in U.S. News and World Report’s national university rankings than USF. Serving more than 50,000 students on campuses in Tampa, St. Petersburg and Sarasota-Manatee, USF is designated as a Preeminent State Research University by the Florida Board of Governors, placing it in the most elite category among the state’s 12 public universities. USF has earned widespread national recognition for its success graduating under-represented minority and limited-income students at rates equal to or higher than white and higher income students. USF is a member of the American Athletic Conference. Learn more at www.usf.edu.

Arsenic-contaminated water associated with antibiotic resistance in children, study finds

In rural Bangladesh, areas with high levels of arsenic contamination in drinking water have a higher prevalence of antibiotic-resistant Escherichia coli

Peer-Reviewed Publication

PLOS

Arsenic-contaminated water associated with antibiotic resistance in children, study finds 

IMAGE: WOMAN AND CHILDREN IN BANGLADESH ARE COLLECTING WATER FROM AN ARSENIC CONTAMINATED TUBE WELL FOR DRINKING AND OTHER HOUSEHOLD PURPOSES. view more 

CREDIT: GOLAM MOSTAFA QUADREY (CC-BY 4.0, HTTPS://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)

In rural Bangladesh, areas with high levels of arsenic contamination in drinking water, compared to areas with less contamination, have a higher prevalence of antibiotic-resistant Escherichia coli in both water and child stool samples, according to a new study publishing December 8, 2022 in PLOS Pathogens by Mohammad Aminul Islam of Washington State University, and colleagues.

Antibiotic resistance is one of the leading causes of death and hospitalization worldwide. While the major drivers of antibiotic resistance are the overuse and misuse of antibiotics, natural elements such as heavy metals can also promote antibiotic resistance.

In the new study, researchers collected water and stool samples from both mothers and young children of 100 families in two rural subdistricts in Bangladesh. Families in the Hajiganj subdistrict use drinking water from shallow tube wells, which have a high concentration of arsenic, while Matlab families collect their drinking water from arsenic-free deep tube wells.  

The median arsenic concentration in the 50 water samples from Hajiganj was 481 μg/L while the median arsenic concentration in the 50 water samples from Matlab was 0 μg/L. Overall, 84% of all water and stool samples across both sites were found to be positive for E. coli. Prevalence of antibiotic resistant E. coli was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p<0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p<0.05), but not among mothers. Moreover, a higher proportion of E. coli from Hajiganj were resistant to multiple antibiotics, including penicillin, cephalosporin, and chloramphenicol.

“The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure,” the authors say.

Dr. Islam adds, “Heavy metals such as arsenic are more stable than antibiotics in the environment, and they continue to exert selective pressure on bacteria over a more extended period driving the evolution and expansion of antimicrobial resistance in the community. The extent to which this phenomenon drives the observed higher rates of antimicrobial resistance, as opposed to other confounders, would benefit from further study; nevertheless, it is critical to contain this environmental driver of antimicrobial resistance along with responsible antimicrobial usage in medicine and agriculture.”

############

In your coverage, please use this URL to provide access to the freely available article in PLOS Pathogenshttp://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1010952

Citation: Amin MB, Talukdar PK, Asaduzzaman M, Roy S, Flatgard BM, Islam MR, et al. (2022) Effects of chronic exposure to arsenic on the fecal carriage of antibiotic-resistant Escherichia coli among people in rural Bangladesh. PLoS Pathog 18(12): e1010952. https://doi.org/10.1371/journal.ppat.1010952

Author Countries: Bangladesh, Norway, Switzerland, USA

Funding: The study was supported by a REACH catalyst grant, United Kingdom to icddr,b (icddr,b Grant No. GR-01507) in which MAI was the Project Lead, and Paul G. Allen School for Global Health, Washington State University (Startup grant: PG00005723 to MAI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Deepmind’s AlphaCode AI system performs competitively in programming competitions

Peer-Reviewed Publication

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE (AAAS)

AlphaCode – a new Artificial Intelligence (AI) system for developing computer code developed by DeepMind – can achieve average human-level performance in solving programming contests, researchers report. The development of an AI-assisted coding platform capable of creating coding programs in response to a high-level description of the problem the code needs to solve could significantly impact programmers’ productivity; it could even change the culture of programming by shifting human work to formulating problems for the AI to solve. To date, humans have been required to code solutions to novel programming problems. Although some recent neural network models have shown impressive code-generation abilities, they still perform poorly on more complex programming tasks that require critical thinking and problem-solving skills, such as the competitive programming challenges human programmers often take part in. Here, researchers from DeepMind present AlphaCode, an AI-assisted coding system that can achieve approximately human-level performance when solving problems from the Codeforces platform, which regularly hosts international coding competitions. Using self-supervised learning and an encoder-decoder transformer architecture, AlphaCode solved previously unseen, natural language problems by iteratively predicting segments of code based on the previous segment and generating millions of potential candidate solutions. These candidate solutions were then filtered and clustered by validating that they functionally passed simple test cases, resulting in a maximum of 10 possible solutions, all generated without any built-in knowledge about the structure of computer code. AlphaCode performed roughly at the level of a median human competitor when evaluated using Codeforces’ problems. It achieved an overall average ranking within the top 54.3% of human participants when limited to 10 submitted solutions per problem, although 66% of solved problems were solved with the first submission. “Ultimately, AlphaCode performs remarkably well on previously unseen coding challenges, regardless of the degree to which it ‘truly’ understands the task,” writes J. Zico Kolter in a Perspective that highlights the strengths and weaknesses of AlphaCode.

Thank you, Tony!

An interview with Anthony Fauci


Reports and Proceedings

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE (AAAS)

“You don’t want to be being disparaging of anyone, but you’ve got to come back and push back against things that are not true.” This is the approach of Anthony Fauci, who helped lead the United States’ COVID-19 response. Fauci recently announced that he would end his time in the federal government in December 2022. Before that, he sat down with Holden Thorp, Editor-in-Chief of the Science Family of Journals, to talk about science denialism, misinformation that comes from within the scientific community, and the importance of communicating science as a process. The editorial highlighting this interview also touches on Fauci’s plans for the future and the two efforts he wants to use the benefit of his experience to do, going forward. The full transcript of the interview, which is filled with valuable insights into science policy and communication, will be posted on the Science Editor’s Blog at embargo-lift time: https://www.science.org/content/blog-post/physician-makes-his-final-rounds-public-servant. A PDF version of the blog is also available.