Tuesday, October 27, 2020

Drug resistance linked to antibiotic use and patient transfers in hospitals

Analysing the connection between antibiotic use, patient transfers and the emergence of drug-resistant microbes may help hospitals select the best preventive strategies

ELIFE

Research News

Understanding the role of antibiotic use patterns and patient transfers in the emergence of drug-resistant microbes is essential to crafting effective prevention strategies, suggests a study published today in eLife.

Antimicrobial resistance is a growing global health threat, but preventing it takes smart choices at the local level. The current findings, originally posted on bioRxiv*, provide insights on how antibiotic use patterns and patient transfers in hospitals drive the emergence of resistance, and suggest a new approach for tailoring prevention strategies to an individual hospital or ward.

"Hospitals continue to be important hotspots for antimicrobial resistance because of the confluence of frequent antibiotic use, fragile patients and the potential for highly resistant pathogens to spread through hospital wards when patients are transferred," explains lead author Julie Shapiro, Postdoctoral Fellow at the CIRI, Centre International de Recherche en Infectiologie, University of Lyon, France.

To help hospitals assess the best strategies for preventing the emergence of resistance, Shapiro and her colleagues employed a technique typically used in ecology to study the effect of antibiotic use and patient transfers on infections. They developed a computer model based on a year's worth of data around seven species of infection-causing bacteria, including drug-resistant strains, in 357 hospital wards in France.

"We found that the volume of antibiotic use at the hospital-ward level had a stronger influence on the incidence of more resistant pathogens, while patient transfers had the most influence on hospital-endemic microbes and those resistant to the last-line antibiotics carbapenems," Shapiro says.

They also found that the use of the penicillin antibiotic, piperacillin-tazobactam, was the strongest predictor of the emergence of bacteria that are resistant to the standard treatments for life-threatening blood infections. If this is confirmed in further studies, the authors suggest that the strategy of using piperacillin-tazobactam instead of carbapenems to prevent antimicrobial resistance may need to be reconsidered.

In fact, the study showed that the effects of antibiotic prescription and patient transfer patterns on the emergence of drug resistance varied among different microbes and types of infections, suggesting that a more individualised approach to preventing resistance is necessary.

"Our work highlights the need to tailor strategies against microbial resistance to specific pathogens," concludes senior author Jean-Philippe Rasigade, Associate Professor of Microbiology at the Hospices Civils de Lyon university hospital. "Applying the modelling techniques we used here to other healthcare settings could help inform local and regional antibiotic stewardship and infection control strategies."

###

Reference

The paper 'Metapopulation ecology links antibiotic resistance, consumption, and patient transfers in a network of hospital wards' can be freely accessed online at https://doi.org/10.7554/eLife.54795.
Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

*This study was originally posted on the preprint server bioRxiv, at https://www.biorxiv.org/content/10.1101/771790v1.

Media contact

Emily Packer,
Media Relations Manager
eLife
e.packer@elifesciences.org 01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Ecology and Microbiology and Infectious Disease, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Ecology research published in eLife, visit https://elifesciences.org/subjects/ecology.

No comments:

Post a Comment