Tuesday, April 12, 2022

New lithium technology can help the world go green — if it works

Reuters | April 7, 2022

(Image courtesy of Lilac Solutions).

Rio Tinto, General Motors and even the US Energy Department are investing heavily in a crop of newer technologies that could revolutionize the way lithium is produced for electric vehicle batteries.


Now those technologies just have to prove they work on a commercial scale.

If they do, miners will be able to boost global lithium production with a footprint far smaller than open-pit mines and evaporation ponds, which often are the size of multiple football fields and unpopular with local communities.

These so-called direct lithium extraction (DLE) technologies extract the white metal from brine using filters, membranes, ceramic beads or other equipment that can typically be housed in a small warehouse. But they often use lots of potable water and electricity, and none have worked at commercial scale.

Global automakers, mining companies and investors are pouring millions of dollars into DLE companies, betting they can supply the bulk of the lithium needed to power the electric vehicle revolution.

“It’s such a game changer. There’s huge opportunities,” US Energy Secretary Jennifer Granholm told an energy conference last month about DLE.

Granholm’s department has given Warren Buffett’s Berkshire Hathaway Inc a $15 million grant to test DLE technology at California’s Salton Sea, under which sit large geothermal lithium deposits, and is considering funding other DLE projects.

DLE technologies would challenge traditional miners such as Albemarle Corp, the world’s largest lithium producer, and prospective miners such as Lithium Americas Corp, ioneer Ltd and Piedmont Lithium Inc.

Albemarle is studying various DLE technologies but its executives have said DLE likely works best when engineered for a specific lithium deposit, which could curb enthusiasm.

Large water usage by several types of DLE technologies has raised eyebrows. The technology General Motors Co is relying on to supply a “sizeable amount” of its lithium from the Salton Sea region uses 10 tonnes of water for every tonne of lithium produced.

Privately held Lilac Solutions Inc, backed by BMW and Bill Gates’ Breakthrough Energy Ventures, developed that technology and said it could use a desalination plant to filter brackish water to avoid using potable water.

“If needed, we’re willing to make those capital investments to ensure we’re not jeopardizing anyone’s freshwater,” said Lilac CEO Dave Snydacker. “New technology is absolutely essential for society to obtain the volumes of lithium that are necessary for electric vehicles.”

Prominent short seller Hindenburg Research issued a 59-page report in February questioning whether the DLE technology from Standard Lithium Ltd even works, despite backing for its Arkansas project from chemical giants Koch Industries Inc and Lanxess AG.

“DLE is one of those technologies that’s been a hope and a prayer, Hail Mary for most, so that’s fertile ground for stock promoters,” said Nathan Anderson of Hindenburg.

Standard disputed the allegations in the report, which erased more than $300 million in Standard’s market value in one day and stoked fears about the DLE movement. The stock has partially recovered.
‘I’m a skeptic’

There are dozens of DLE-focused companies worldwide, some with their own technologies, some with brine-rich acreage and some with both.

“Direct lithium extraction is becoming a hot subject,” said Olivier Le Peuch, chief executive of Schlumberger Inc, which is developing DLE technology with Panasonic Corp. It hopes to supply Tesla’s Nevada Gigafactory, but has acknowledged it must find a way to produce the metal without potable water.

US and global ambitions to go green are at stake. At least 70% of the US lithium deposits are held in brine reserves, according to the Energy Department. Elsewhere, DLE offers a chance to produce lithium in areas where open-pit mines face strong opposition.

In Germany, Vulcan Energy Resources Ltd aims to use DLE the produce the metal for Renault SA and other automakers from Germany’s Black Forest.

“As the EV transition accelerates, we can grow with that market,” said Horst Kreuter, Vulcan’s CEO.

Privately held Luna Lithium Ltd plans to use DLE in Nevada, CEO Emily Hersh said. In Utah’s Great Salt Lake, Compass Minerals International Inc has been trying to chose a DLE technology for more than a year and hopes to make a decision this summer.

Galvanic Energy LLC aims to sell to sell the 100,000 brine-rich acres it controls in Arkansas if it finds a DLE technology that works.

“These companies promote and talk about what they can do, but I’m a skeptic until proven otherwise,” said Brent Wilson, a former Chesapeake Energy Corp geologist who formed Galvanic in 2018.

Rio Tinto Ltd paid $825 million last December for an Argentina DLE project, which it said “has the potential to significantly increase lithium recoveries as compared to solar evaporation ponds.”

Privately held Energy Exploration Technologies Inc, known as EnergyX, has developed a DLE technology that uses membranes to filter lithium, but in some cases, EnergyX’s DLE membrane technology may have to be paired with another DLE technology, said CEO Teague Egan.

“Our DLE membrane technology is very good, but DLE doesn’t have to mean one technology or another. I think that’s what people fail to see,” said Egan, who aims to take EnergyX public by mid-2023.

EnergyX recently sent a pilot version of its technology to Bolivia in the hopes of convincing La Paz to chose it to develop the Uyuni salt flat, one of the world’s largest lithium deposits.

Lilac, as well as several Chinese and Russian companies, are also competing for the Bolivian project, pointing to the rising global attention paid to the industry.

“DLE is not a magic wand, but it is a very valuable tool in the toolkit,” said Luna Lithium’s Hersh.

(By Ernest Scheyder and Victoria Waldersee; Editing by David Gregorio)


Direct lithium extraction technique for greener batteries gains traction

Special method for production gets cash injection from govt, vendors
Fri 8 Apr 2022 


New techniques for producing lithium could play a vital part in making batteries for applications ranging from smartphones to electric vehicles that are more environmentally friendly than current methods of extraction.

According to a Reuters report, car makers, mining companies and investors including the US Energy Department are pouring money into direct lithium extraction (DLE) technologies that hold out the promise of boosting global lithium production, which is mostly sourced from just a handful of countries today.

There are a number of DLE technologies which all revolve around extracting the metal from brine in various ways, such as using filters, membranes, or ceramic beads. These are touted as more sustainable solutions than existing ways of obtaining lithium, such as pumping lithium-containing saltwater from underground lakes to the surface in desert areas of Chile or Argentina, and extracting it through evaporation in large basins.

However, while DLE techniques do not require the use of enormous evaporation basins, some critics have argued that they still consume large volumes of water and electricity to produce the lithium.

For example, General Motors is aiming to use a DLE technique to supply a considerable amount of the lithium it needs from the Salton Sea region in southern California, which reportedly uses 10 tons of water for every ton of lithium produced.

But one company in Cornwall, UK, believes it has found a more environmentally responsible method of getting lithium from brine. Cornish Lithium said it aims to extract lithium from geothermal waters, and also power the extraction process with geothermal energy from the same source.

Cornish Lithium said it is planning to directly extract the lithium from the fluids in a processing unit that is expected to have a footprint the size of a supermarket or medium sized industrial unit.

The company said it has already received £9m ($11.7m) of a package of up to £18m ($23.5 million) from metals-focused investment company TechMet Limited to develop its technology, and has recently begun drilling a research borehole at Twelveheads, near Redruth.

Elsewhere, an Australian firm, Ekosolve Lithium Limited, announced this week that its DLE pilot plant has processed lithium brines from the Incahuasi Salar, a salt basin in the Catamarca region of north-western Argentina, and achieved a recovery of greater than 90 percent of the lithium present.

It claimed that 200 liters of brine was processed, with high-grade lithium chloride produced. This can then be converted to battery-grade lithium carbonate or used as feeder stock for other lithium compounds, according to the firm.

In Canada, E3 Metals recently announced it had received $1.1m of a $1.8m grant from the Alberta Innovates research agency following completion of its lab-based pilot DLE prototype that uses a proprietary ion-exchange process to extract lithium.

It now aims to build and operate a field pilot plant that will operate continuously within the Clearwater area to extract lithium directly from the brine produced from the Leduc Aquifer, in order to demonstrate that it can scale up to a projected commercial scale of 20,000 tons per year of lithium hydroxide monohydrate.


The National Renewable Energy Laboratory (NREL) in the US is also researching DLE methods, and said they could potentially deliver 10 times the current US lithium demand from the Salton Sea.

"Lithium-rich geothermal brines represent a vast, untapped resource that can potentially be developed into a robust domestic supply while adding to a well-paying workforce," said NREL senior geoscientist Ian Warren, in an announcement last year about its research into DLE.

"The increasing global demand and the need for a secure supply of lithium has created a deep interest - and urgency - in fully developing DLE that is considered environmentally safe," he added. ®


Ford inks Argentina lithium supply deal with Lake Resources
Reuters | April 11, 2022 | 

Kachi lithium brine project. Photo by Lake Resources.

Ford Motor Co said on Monday it has signed a preliminary deal to buy lithium from a Lake Resources NL facility in Argentina, marking the first time the automaker has publicly announced where it will procure the electric vehicle battery metal.


The deal is a major bet by Ford on direct lithium extraction (DLE), a relatively new breed of technologies that filter the metal from brines and use far less acreage than open-pit mines and evaporation ponds.


General Motors Co, BMW, Stellantis and other Ford rivals have inked supply deals of their own with companies planning to use DLE technology.

Ford aims to buy 25,000 tonnes annually of the white metal from Lake’s Kachi project in northern Argentina, which is being developed with privately held extraction startup Lilac Solutions Inc.

Lilac’s technology, like all DLE technologies, has yet to work commercially, though it has the support of Bill Gates’ Breakthrough Energy Ventures and other high-profile investors.


The agreement between Lake and Ford is nonbinding and would need to be finalized to include a specific delivery timetable.

Ford Chief Executive Jim Farley said in February that his company was working on deals to secure supply of key raw materials for batteries such as lithium, nickel, rare earths and copper.

“This is one of several agreements we’re exploring to help Ford secure raw materials to support our aggressive EV acceleration plan,” said Ford spokesperson Jennifer Flake.

Sydney-based Lake Resources is listed on the Australian Stock Exchange, which requires supply deals to be publicly disclosed.

The Kachi project, in northern Argentina near the Chilean border, is expected to cost about $540 million and open by 2024.

Lilac’s technology uses 10 tonnes of water for every tonne of lithium produced. Lilac has said it could use a desalination plant to filter brackish water to avoid using potable water.

(By Ernest Scheyder and Ben Klayman; Editing by Aurora Ellis)

No comments:

Post a Comment