Thursday, November 03, 2022

A new tool for estimating people’s total exposure to potentially harmful chemicals is developed by Mount Sinai researchers

Peer-Reviewed Publication

THE MOUNT SINAI HOSPITAL / MOUNT SINAI SCHOOL OF MEDICINE

New York, NY (November 2, 2022) – A novel metric that estimates our “burden,” or cumulative exposure, to a family of thousands of synthetic chemicals that we encounter in everyday life with potentially adverse health impacts, has been created by a team of researchers at Mount Sinai.

In a paper published in Environmental Health Perspectives, the team reported that its sophisticated tool could have distinct advantages for epidemiologists and researchers who routinely measure exposure levels to this class of chemicals, known as PFAS (per- and polyfluoroalkyl substances), which have been associated with high cholesterol, liver damage, thyroid disease, and hormone disorders.

“There are few existing methods to quantify total exposure burden of individuals to mixtures of PFAS chemicals that are found in our everyday lives,” says lead author Shelley Liu, PhD, Assistant Professor in the Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai. “For the first time we’ve developed a PFAS burden calculator that takes into account patterns of exposure to many chemicals within the PFAS family, and not just individual chemical concentrations which current methods are focused on. As a result, this robust tool could be extremely useful for biomonitoring by regulatory agencies, and for disease and health risk assessment.”

PFAS is a class of more than 5,000 chemicals whose fluorine-carbon bond gives them the ability to repel oil and water. That construct has made them an integral part of a growing number of industrial applications and consumer products in recent decades, such as stain and water repellents, Teflon nonstick pans, paints, cleaners, and food packaging. Moreover, PFAS chemicals do not disintegrate in the environment or in our bodies. Instead, they accumulate in our surroundings and in our blood, kidneys, and liver, as underscored by a Centers for Disease Control and Prevention study in 2007 that found PFAS could be detected in the blood of 98 percent of the U.S. population.

Mount Sinai researchers used national biomonitoring data from the National Health and Nutrition Examination Survey to develop their exposure burden score using item response theory. Item response theory was developed in the educational testing literature to score standardized tests, and Mount Sinai researchers are the first to use it in environmental epidemiology to develop an exposure burden score, highlighted by this transdisciplinary investigation. Specifically, they used serum concentrations from eight common PFAS chemicals taken from adults and children. By combining a participant’s core biomarker concentrations with their much broader “exposure pattern,” that is, their relative exposure to other PFAS biomarkers within the entire chemical class, researchers were able to estimate a cumulative or summary PFAS exposure burden. This statistical methodology can be accessed by other researchers and epidemiologists by simply plugging their data sets into the PFAS burden calculator, which is available online.

The benefits are significant. “We found our method enables comparisons of exposure burden to chemical mixtures across studies even if they do not measure the same set of chemicals, which supports harmonization across studies and consortia,” explains Dr. Liu, whose research is heavily focused on environmental health through latent variable modeling and longitudinal data analysis. Moreover, the calculator offers a straightforward way to include exposure biomarkers with low detection frequencies, and to reduce exposure measurement errors by considering both a participant’s concentrations and their exposure patterns to estimate exposure burden to chemical mixtures.

“By capturing individual biomarker variability, we’re essentially holding the exposure metric constant so it can be used for a variety of applications,” says Dr. Liu. “These could include, for example, looking across populations to determine if there are differences in exposure burden across racial/ethnic or socioeconomic strata, or if exposure burdens are the same between people in the United States or Canada. Or looking across physiological systems and health outcomes—such as cardiometabolic, hormonal, and immune—to see which are most perturbed by exposure to PFAS chemicals. This range of applications takes us well beyond anything currently available to the field of population health.” 

Other co-authors in the study were from the Johns Hopkins Bloomberg School of Public Health, the Department of Psychology at Fordham University, and the Stroud Center at Columbia University. Dr. Liu’s research is supported by grants from the National Institute of Child Health and Human Development (K25HD104918) and National Institute of Environmental Health Sciences (R03ES033374).

 

About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time — discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report's Best Hospitals, receiving high "Honor Roll" status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Report’s “Best Children’s Hospitals” ranks Mount Sinai Kravis Children's Hospital among the country’s best in several pediatric specialties. The Icahn School of Medicine at Mount Sinai is one of three medical schools that have earned distinction by multiple indicators: It is consistently ranked in the top 20 by U.S. News & World Report's "Best Medical Schools," aligned with a U.S. News & World Report "Honor Roll" Hospital, and top 20 in the nation for National Institutes of Health funding and top 5 in the nation for numerous basic and clinical research areas. Newsweek’s “The World’s Best Smart Hospitals” ranks The Mount Sinai Hospital as No. 1 in New York and in the top five globally, and Mount Sinai Morningside in the top 20 globally.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.

No comments:

Post a Comment