Saturday, November 05, 2022

Plant fibers for sustainable devices

Research into thermal properties of cellulose nanofibers yields surprising results

Peer-Reviewed Publication

UNIVERSITY OF TOKYO

Flow focusing and CNF 

IMAGE: THE APPARATUS TO CREATE THERMALLY CONDUCTING CNF USING DISORGANIZED CNF, WATER AND HYDROCHLORIC ACID (LEFT). A GRAPH SHOWING HOW THERMAL CONDUCTIVITY OF THE SAMPLE CHANGES WITH ITS DIAMETER. (RIGHT). view more 

CREDIT: ©2022 SHIOMI ET AL.

Plant-derived materials such as cellulose often exhibit thermally insulating properties. A new material made from nanoscale cellulose fibers shows the reverse, high thermal conductivity. This makes it useful in areas previously dominated by synthetic polymer materials. Materials based on cellulose have environmental benefits over polymers, so research on this could lead to greener technological applications where thermal conductivity is needed.

Cellulose is a key structural component of plant cell walls and is the reason why trees can grow to such heights. But the secret of its material strength actually lies in its overlapping nanoscopic fibers. In recent years, many commercial products have used cellulose nanofiber (CNF) materials because their strength and durability make them a good replacement for polymer-based materials such as plastics that can be detrimental to the environment. But now and for the first time, a research team led by Professor Junichiro Shiomi from the University of Tokyo’s Graduate School of Engineering has investigated previously unknown thermal properties of CNF, and their findings show these materials could be even more useful still.

“If you see plant-derived materials such as cellulose or woody biomass used in applications, it’s typically mechanical or thermally insulating properties that are being employed,” said Shiomi. “When we explored the thermal properties of a yarn made from CNF, however, we found that they show a different kind of thermal behavior, thermal conduction, and it’s very significant, around 100 times higher than that of typical woody biomass or cellulose paper.”

The reason yarn made from CNF can conduct heat so well is due to the way it’s made. Cellulose fibers in nature are very disorganized, but a process called the flow-focusing method combines cellulose fibers, orientating them in the same way, to create CNF. It’s this tightly bound and aligned bundle of rod-shaped fibers that allows heat to transfer along the bundle, whereas in a more chaotic structure it would dissipate heat more readily.

“Our main challenge was how to measure the thermal conductivity of such small physical samples and with great accuracy,” said Shiomi. “For this, we turned to a technique called T-type thermal conductivity measurement. It allowed us to measure the thermal conductivity of the rod-shaped CNF yarn samples which are only micrometers (a micrometer equaling one-thousandth of a millimeter) in diameter. But the next step for us is to perform accurate thermal tests on two-dimensional textilelike samples.”

Shiomi and his team hope that their investigation and future explorations into the use of CNF as a thermally conductive material could give engineers an alternative to some environmentally damaging polymers. In applications where heat transfer is important, such as certain electronic or computational components, it could greatly reduce the consequences of discarded electronic equipment, or e-waste, thanks to the biodegradable nature of CNF and other plant-based materials.

An artist’s interpretation of the way natural cellulose fibers are combined to form the CNF yarn, and a magnified section showing the nanoscopic rod-shaped filaments within the yarn bundle.

CREDIT

©2022 Junichiro Shiomi

Journal article: Guantong Wang, Masaki Kudo, Kazuho Daicho, Sivasankaran Harish, Bin Xu, Cheng Shao, Yaerim Lee, Yuxuan Liao, Naoto Matsushima, Takashi Kodama, Fredrik Lundell, L. Daniel Söderberg, Tsuguyuki Saito, Junichiro Shiomi. Enhanced High Thermal Conductivity Cellulose Filaments via Hydrodynamic Focusing”, Nano Letters, DOI: 10.1021/acs.nanolett.2c02057

Funding: This work was partially supported by JSPS KAKENHI (Grant No. 19K21928 and 22H04950) and JST CREST (JPMJCR21O2).

Useful links:
Graduate School of Engineering - https://www.t.u-tokyo.ac.jp/en/soe
Institute of Engineering Innovation - https://www.sogo.t.u-tokyo.ac.jp/en/
Department of Mechanical Engineering - http://www2.mech.t.u-tokyo.ac.jp/eng/

Research contact:
Professor Junichiro Shiomi
Graduate School of Engineering, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
shiomi@photon.t.u-tokyo.ac.jp

Press contact:
Mr. Rohan Mehra
Public Relations Group, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

No comments:

Post a Comment