Sunday, March 05, 2023

The Air Force's Modular Reactor Will Create Jet Fuel Out of Water and Air

Sébastien Roblin
Fri, March 3, 2023 

USAF's Reactor Creates Jet Fuel Out of Water, AirParsa Tavakoli / EyeEm - Getty Images

The New York-based startup Air Company has been awarded $65 million by an Air Force Defense Innovation Unit for a project known as SynCe to install a Carbon Conversion Reactor that promises to create synthetic jet fuel out of water and carbon dioxide in the air we breathe.

Sustainable aviation fuel (SAF) isn’t an entirely new thing—back in December 2006, a B-52 bomber flew for 7 hours on a 50/50 blend of traditional jet fuel and a synthetic fuel called Syntroleum produced using the Fischer-Tropsch process. According to the International Air Transport Association, by 2022, over 450,000 commercial flights by 50 airlines had used SAFs in part—though they tend to be 2 to 4 times more expensive than traditional fossil fuels.


But AirCompany argues its AirMade fuel differs from these predecessors in that it’s a ‘drop-in’ kerosene that doesn’t require blending with fossil fuels at all. Furthermore, the conversion reactor doesn’t require an exotic, specially sourced feedstock—it simply needs carbon dioxide, which can be obtained anywhere.

For a good measure, AirCompany claims its carbon-neutral fuel results in a reduction of about 94 to 97 percent greenhouse gas emissions (depending on the source of electricity)—the highest of any on the market the company alleges. According to a chart produced by Air Company, competing biofuels result in only a 60 to 80 percent reduction, and traditional Fischer-Tropsch based PTL-FT processes hit 90 percent. And those must be blended 50-50 with fossil fuels, or worse.

The Brooklyn-based startup was launched in 2019 by Harvard Business School alum Gregory Constantine and Dr. Stafford Sheehan. Their initial products include Air Vodka (“the world’s first carbon-negative spirit”), eau de parfume, and hand sanitizer.

The leap from 80-proof vodka to jet fuel may seem steep, but AirCompany’s AirMade fuel—currently being mass produced in Brooklyn—has already lined up buyers in civil aviation sector:

Virgin Atlantic has agreed to purchase 100 million gallons over 10 years


Jet Blue agreed to purchase 25 million gallons over 5 years


Boom Supersonic agreed to purchase 5 millions gallons annually for their Overture Test Flight Program

Last summer, Air Company, the Air Force Research Laboratory, and the Hsu Foundation collaborated to realize a test flight on an unmanned aircraft that ran on 100 percent AirMade fuel.

There is undoubtedly growing interest in advertising green travel in commercial aviation, and sustainable fuels may represent a more satisfying mechanism than carbon offsets.

Air Company’s collaboration with the military goes beyond adopting greener fuel to where it can be produced: a base with carbon capture and Air Company’s reactor could produce its own fuel without depending on external fuel supply lines, which are vulnerable to attack.

Air Company says the Army lost one soldier killed or wounded for every 24 fuel resupply convoys in Afghanistan. Many of the bloodiest and most decisive battles of World War II revolved around the defense of or denial of fuel logistics. The startup therefore claims its modular reactors could result in a “safer, more robust, and decentralized fuel supply chain” which could be set up “anywhere, globally.”

How It Works


Air Company’s reactor is an advancement over the Fischer-Tropsch process developed in 1925, which involved converting sold carbon monoxide (CO1) and hydrogen into a gas called syngas, which is then liquified using metal catalysts under high pressure at a temperature of 300 to 572 degrees Fahrenheit. This process had an efficiency ranging from 25 to 50 percent. During World War II, an increasingly fuel-starved Nazi Germany leveraged the technique to convert its abundant coal supply into fuel, generating 25 percent of fuel it used for ground vehicles.

Air Company’s reactor simplifies the process by skipping the solid-to-gas conversation, and instead runs on hydrogen and captured carbon dioxide. The CO2 is captured, typically from industrial sites, and cooled, pressurized, liquified, and poured into a storage tank. Presumably, capture devices will be supplied to operator facilities. Meanwhile, hydrogen gas is obtained on-site by electrolyzing water (H2O), separating the hydrogen (used by the reactor) from the oxygen, which is cleanly released.

In the subsequent conversion stage, a catalyzing puck is introduced to catalyze the mix of hydrogen and carbon dioxide, producing a reactor liquid made of alcohols, alkanes and water. These elements are then distilled and separated by leveraging their different boiling points, resulting in outputs of ethanol, methanol and paraffins, as well as water which can then be reused by the reactor.

The process has an energy efficiency of 50 percent. According to a company representative, 23.2 pounds of CO2 are used for every gallon of jet fuel produced.

Thinking Big


Of course, the big question—and challenge—underlying any Green technology is whether it can be implemented cost efficiently on a large scale. Air Company claims that utilizing its tech “across all potential verticals” could remove 4.6 billion ton of CO2 from the atmosphere annually, or 10.8 percent of global emissions.


As for cost efficiency, a company representative tells Popular Mechanics “…they’re on track to achieve cost parity with tradition fossil fuel-derived jet fuels as they use renewable energies like wind and solar for their energy input.” That parity is also facilitated by “pursuing an array of government incentives made available to fuel producers generating sustainable alternatives.”

Another challenge will be output volume, as military aircraft notoriously consume huge quantities of jet fuel. For example, an Air Force F-16C short-range jet fighter, for example, typically stores just over 1,000 gallons of internal fuel, which when loaded with weapons, often must be supplemented with external fuel tanks and in-flight refueling. The Air Force will need to figure out how large a physical footprint AirCompany’s technology would require to sustain, say, a flight of four F-16s each flying two sorties per day.

However, if Air Company’s venture proves scalable, it has obvious appeal to the Air Force which is seeking to achieve both its own carbon emission reductions goals, and execute its doctrine of Agile Combat Employment (ACE), in which in wartime combat aircraft are dispersed to numerous satellite bases to reduce their vulnerability to missile attacks. Being able to quickly deploy organic fuel-generating systems to dispersed, remote bases could ease the requisite logistics.

No comments:

Post a Comment