Wednesday, November 01, 2023

  

New jet stream discovered in Jupiter's upper atmosphere


The University of the Basque Country's Planetary Sciences Group is leading the discovery made by an international team and based on the analysis of observations obtained by the James Webb Space Telescope


Peer-Reviewed Publication

UNIVERSITY OF THE BASQUE COUNTRY

Jupiter by the JWST 

IMAGE: 

2022.

view more 

CREDIT: NASA/ESA/CSA AND JUPITER EARLY RELEASE SCIENCE TEAM. PROCESSED: JUDY SCHMIDT (PLANETARY SOCIETY) AND RICARDO HUESO (UPV/EHU).



High-speed jet streams are a common feature in the atmospheres of many planets. On the Earth, jet streams form at various latitudes and meander around the planet, changing latitude and reaching speeds approaching 400 km/h at an altitude of over 10 km above the surface. On the giant planets Jupiter and Saturn, jet streams are one of the main features of the atmosphere; they are perfectly aligned with the parallels, and are known as zonal jets. On Jupiter these jets alternate in direction at different latitudes reaching maximum speeds close to 500 km/h.High-speed jet streams are a common feature in the atmospheres of many planets. On the Earth, jet streams form at various latitudes and meander around the planet, changing latitude and reaching speeds approaching 400 km/h at an altitude of over 10 km above the surface. On the giant planets Jupiter and Saturn, jet streams are one of the main features of the atmosphere; they are perfectly aligned with the parallels, and are known as zonal jets. On Jupiter these jets alternate in direction at different latitudes reaching maximum speeds close to 500 km/h.

On 27 July 2022, the James Webb Space Telescope (JWST) observed the atmosphere of Jupiter as part of an international "Early Science" programme in which researchers from the Planetary Sciences Group of the University of the Basque Country (UPV/EHU) are participating.

Because Jupiter is a very bright target for the JWST (whose light-collecting area is 6.3 times bigger than that of the Hubble Space Telescope), the images were acquired at wavelengths in which most of the light is absorbed by gases in the atmosphere. So the observations focused on the wavelengths in which Jupiter is darkest. This also meant that at many of these wavelengths Jupiter had never been observed with the quality needed to resolve the details of the weather systems in its atmosphere. Thanks to the JWST's features, a three-dimensional view of Jupiter's weather systems could be obtained: higher clouds appear bright in these images, and deeper clouds appear as dark regions. The JWST observations were also designed to obtain a measurement of the movements of the atmosphere by taking two sets of images separated by a full rotation of the planet, thus enabling a detailed study to be made of the cloud movements.

A new jet stream on the planet's equator

The JWST images showed that the movements that occur in the clouds covering the equator are very different from those observed in the lower clouds. These clouds are so faint that no details can be seen in them in observations obtained from the Earth or even by different space missions. However, the detailed JWST images show that at the level of these clouds, winds reach speeds of 500 km/h, while in the lower clouds, located 30 km below, they only reach 250 km/hr.   

 

A universal phenomenon in Gas Giants

The study published in Nature Astronomy compares this new Jupiter jet with the structure of the equatorial jet stream of the gas giant Saturn, where in 2009 the UPV/EHU’s Planetary Sciences Group found a wind structure very similar to the one now revealed on Jupiter, and discovered on Saturn thanks to observations made by NASA's Cassini space probe [2-3]. On both planets, there is a fast, narrow equatorial jet at an altitude of about 200 mbar tracked by the rapid movement of equatorial clouds. On both Jupiter and Saturn, the elevated equatorial jets may be related to global temperature variations occurring in the atmospheres of these planets on a cyclical basis every few years, but which were thought to be limited in altitude at stratospheric levels to altitudes of 30-150 km above the level of the new equatorial jet stream. If the new Jupiter jet is related to these temperature oscillations in the upper atmosphere, then the equatorial jet stream should have a variable intensity on both Jupiter and Saturn, and also at much deeper levels than can be explained by existing atmospheric models. These intriguing phenomena occur near the tropopause of Jupiter and Saturn, precisely where the atmospheric dynamics change due to the fading effect of the Coriolis forces, and where the thermal properties of the atmosphere change dramatically. Future JWST observations of both Jupiter and Saturn may shed new light on these phenomena.

 

Bibliographical reference

[1] Hueso et al. An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST, Nature Astronomy (2023)

DOI: 10.1038/s41550-023-02099-2

https://www.nature.com/articles/s41550-023-02099-2
 

The Crab Nebula seen in new light by NASA's Webb


Exquisite, never-before-seen details help unravel the supernova remnant’s puzzling history.


Reports and Proceedings

NASA/GODDARD SPACE FLIGHT CENTER

The Crab Nebula Seen in New Light by NASA’s Webb 

IMAGE: 

THIS IMAGE BY NASA’S JAMES WEBB SPACE TELESCOPE’S NIRCAM (NEAR-INFRARED CAMERA) AND MIRI (MID-INFRARED INSTRUMENT) REVEALS NEW DETAILS IN INFRARED LIGHT. THE SUPERNOVA REMNANT IS COMPRISED OF SEVERAL DIFFERENT COMPONENTS, INCLUDING DOUBLY IONIZED SULFUR (REPRESENTED IN RED-ORANGE), IONIZED IRON (BLUE), DUST (YELLOW-WHITE AND GREEN), AND SYNCHROTRON EMISSION (WHITE). IN THIS IMAGE, COLORS WERE ASSIGNED TO DIFFERENT FILTERS FROM WEBB’S NIRCAM AND MIRI: BLUE (F162M), LIGHT BLUE (F480M), CYAN (F560W), GREEN (F1130W), ORANGE (F1800W), AND RED (F2100W).

 

view more 

CREDIT: IMAGE: NASA, ESA, CSA, STSCI, T. TEMIM (PRINCETON UNIVERSITY).



NASA’s James Webb Space Telescope has gazed at the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. Since the recording of this energetic event in 1054 CE by 11th-century astronomers, the Crab Nebula has continued to draw attention and additional study as scientists seek to understand the conditions, behavior, and after-effects of supernovae through thorough study of the Crab, a relatively nearby example.

Using Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument), a team led by Tea Temim at Princeton University is searching for answers about the Crab Nebula’s origins.

“Webb’s sensitivity and spatial resolution allow us to accurately determine the composition of the ejected material, particularly the content of iron and nickel, which may reveal what type of explosion produced the Crab Nebula,” explained Temim.

At first glance, the general shape of the supernova remnant is similar to the optical wavelength image released in 2005 from NASA’s Hubble Space Telescope: In Webb’s infrared observation, a crisp, cage-like structure of fluffy gaseous filaments are shown in red-orange. However, in the central regions, emission from dust grains (yellow-white and green) is mapped out by Webb for the first time.

Additional aspects of the inner workings of the Crab Nebula become more prominent and are seen in greater detail in the infrared light captured by Webb. In particular, Webb highlights what is known as synchrotron radiation: emission produced from charged particles, like electrons, moving around magnetic field lines at relativistic speeds. The radiation appears here as milky smoke-like material throughout the majority of the Crab Nebula’s interior.

This feature is a product of the nebula’s pulsar, a rapidly rotating neutron star. The pulsar’s strong magnetic field accelerates particles to extremely high speeds and causes them to emit radiation as they wind around magnetic field lines. Though emitted across the electromagnetic spectrum, the synchrotron radiation is seen in unprecedented detail with Webb’s NIRCam instrument.

To locate the Crab Nebula’s pulsar heart, trace the wisps that follow a circular ripple-like pattern in the middle to the bright white dot in the center. Farther out from the core, follow the thin white ribbons of the radiation. The curvy wisps are closely grouped together, outlining the structure of the pulsar’s magnetic field, which sculpts and shapes the nebula.

At center left and right, the white material curves sharply inward from the filamentary dust cage’s edges and goes toward the neutron star’s location, as if the waist of the nebula is pinched. This abrupt slimming may be caused by the confinement of the supernova wind’s expansion by a belt of dense gas.

The wind produced by the pulsar heart continues to push the shell of gas and dust outward at a rapid pace. Among the remnant’s interior, yellow-white and green mottled filaments form large-scale loop-like structures, which represent areas where dust grains reside.

The search for answers about the Crab Nebula’s past continues as astronomers further analyze the Webb data and consult previous observations of the remnant taken by other telescopes. Scientists will have newer Hubble data to review within the next year or so from the telescope’s reimaging of the supernova remnant. This will mark Hubble’s first look at emission lines from the Crab Nebula in over 20 years, and will enable astronomers to more accurately compare Webb and Hubble’s findings.

Learn More: Crab Nebula

Want to learn more? Through NASA’s Universe of Learning, part of NASA’s Science Activation program, explore images of the Crab Nebula from other telescopes, a 3D visualization, data sonification, and hands-on activities. These resources and more information about supernova remnants and star lifecycles can be found at NASA’s Universe of Learning.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and Jet Propulsion Laboratory.

 

No comments:

Post a Comment