Friday, February 09, 2024

 

An innovative approach to shield against foodborne illness


The project, led by University of Missouri researchers, is supported by a $5 million grant from the National Science Foundation’s Convergence Accelerator Program.

Grant and Award Announcement

UNIVERSITY OF MISSOURI-COLUMBIA




COLUMBIA, Mo. — Like a silent saboteur, foodborne pathogens can sneak up and ruin your next meal. One of the biggest culprits is salmonella, a type of bacteria found in many foods that causes more than 1.3 million cases of foodborne illnesses annually according to the Centers for Disease Control and Prevention.

Despite nationwide efforts, salmonella’s infection rates have remained nearly unchanged for the past 30 years. Now, MU is part of an interdisciplinary effort determined to change that after recently receiving a three-year, $5 million grant from the National Science Foundation’s Convergence Accelerator program.

The 19-member team of investigators — with expertise in engineering, poultry and food science, public health and supply chain management — is developing new technology to rapidly detect and mitigate salmonella and other foodborne pathogens throughout the entire poultry supply chain.

Rapid results

One in every 25 packages of chicken found on store shelves is contaminated with salmonella, according to the U.S. Food and Drug Administration. Because chicken is a major source of illnesses from salmonella, the researchers decided to begin their efforts by focusing on helping the poultry industry.

The team’s goal is to significantly reduce the risk of foodborne illness in people, said Mahmoud Almasri, lead principal investigator (PI) and an associate professor of electrical engineering and computer science in the MU College of Engineering.

“Real-time data collected from multiple portable sensors will be added to a transformative sensor-enabled decision support system (SENS-D), allowing us to produce results in one hour or less,” Almasri said. “Our rapid results will enable both the supply chain and health partners to make data-driven decisions to enhance food safety, equity and security by providing evidence-based solutions.”

While the current gold standard of testing for foodborne pathogens takes at least 24 hours to produce results, the researchers’ forward-thinking approach could one day revolutionize the poultry industry and influence policy, said Kate Trout, co-PI and an assistant professor of health sciences in the MU College of Health Sciences.

“These pathogens grow very quicky, so a lot can happen to a food product in just 24 hours,” Trout said. “We think our sensors, combined with our decision support system, could change the way that the entire poultry industry and health stakeholders make decisions to ensure a safer food supply for everyone.”

For instance, this research is vital for helping ensure food safety between the packing plant and a store shelf.

“Our project could help increase the understanding of the impact of time and temperature during distribution and transit,” said Tim Safranski, co-PI and a professor of animal sciences in the MU College of Agriculture, Food and Natural Resources and a state swine extension specialist with MU Extension.

The team will also use advanced statistical and machine learning techniques to improve risk mitigation.

“One strength of our project is using advanced analytics and artificial intelligence (AI) to develop innovative descriptive, predictive and prescriptive capabilities for a safe, efficient, equitable and resilient food supply chain,” said Haitao Li, co-PI and a professor and chair of supply chain and analytics department at the University of Missouri-St. Louis.

While the sensors are currently in protype development, the team is already exploring how the new technology might work for detecting other foodborne pathogens besides salmonella.

"We hope our technology can go beyond poultry and be adapted to detect and reduce the risk of other foodborne pathogens to benefit society as a whole,” said Amit Morey, co-PI and an associate professor of poultry science at Auburn University.

When the technology is ready for real-world use, the team will work with MU Extension to help industry partners in Missouri and beyond understand how to use the new tools through various workforce education and training initiatives.

“We know that just developing a new technology and putting it out in the world doesn’t make a large impact unless we teach people in the industry how to use these new AI and detection technologies,” Trout said. “We’re fortunate to have such a strong state extension program to be able to implement that component of the program.”

The team also includes researchers at University of Notre Dame and Lincoln University.

Read more from the National Science Foundation.


Cleaned surfaces may be germ-free, but they’re not bare


Peer-Reviewed Publication

AMERICAN CHEMICAL SOCIETY





Since the outbreak of COVID-19, surfaces in public spaces are cleaned more often. While disinfectant solutions eliminate germs, they don’t leave behind a truly bare surface. They deposit a thin film that doesn’t get wiped up, even after giving the surface a good polish. Researchers reporting in ACS ES&T Air show that residues left by commercial cleaning products contain a wider range of compounds that could impact indoor air quality than previously thought.

Residues on indoor surfaces — like those deposited during cooking or cleaning — may contain compounds that are potentially harmful if absorbed through the skin or if they become airborne and are inhaled. To investigate the impact on indoor air quality, scientists study the gunk that builds up with laboratory models of surfaces. In the models, researchers start with the assumption that a thin film exists on any “clean” surface, but the source and actual makeup of these films is unknown. Because the chemical compositions of commercial cleaning products are different from the products used to prep surfaces in the lab, Rachel O’Brien and colleagues hypothesized that commercial sanitizers could be a missing source for the films. So, they decided to characterize films left behind on recently cleaned surfaces.

Using a surface-indoor solvent extractor, the researchers directly collected films from cleaned surfaces in a controlled lab setting and on regularly washed surfaces in university buildings. This method allowed them to pick up and measure a wide array of compounds, including substances that barely evaporate. In contrast, only semivolatile organic compounds (SVOCs) are picked up by wiping a surface film with a solvent-damp cloth, the typical method used to analyze films. The team’s analyses of the residue samples by mass spectrometry found that:

  • Films from commercial cleaning products were different on the model lab surfaces and university building surfaces and more complex than previously thought.
  • While the composition of the films was different, they all contained SVOCs that can become airborne and impact indoor air quality.
  • This method confirmed the presence of lower volatility surfactants, the primary components of soaps, in residues thought to be from the cleaning solutions. However, surfactants’ effects on surface films have not yet been defined.

As a result of these findings, the researchers say that more compounds could be deposited on cleaned surfaces than had previously been identified. They add that future indoor film studies should use surfaces prepared with commercial cleaning products to more accurately identify how the residues impact indoor air quality. And given the extent and regularity of cleaning done in public spaces and people’s homes, more research is needed to determine the effects of lower volatility compounds on film growth and behavior.

The authors acknowledge funding from the Alfred P. Sloan Foundation.

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: Twitter | Facebook | LinkedIn | Instagram

No comments:

Post a Comment