Saturday, July 20, 2024

SPACE


New dawn for space storm alerts could help shield Earth's tech



ROYAL ASTRONOMICAL SOCIETY
CME stock image 

IMAGE: 

A CORONAL MASS EJECTION IS SEEN ERUPTING FROM THE SUN IN JUNE 2015.

view more 

CREDIT: NASA GODDARD SPACE FLIGHT CENTER






New dawn for space storm alerts could help shield Earth's tech

Royal Astronomical Society press release

RAS PR 24/22 (NAM 8)

For immediate release

 

Space storms could soon be forecasted with greater accuracy than ever before thanks to a big leap forward in our understanding of exactly when a violent solar eruption may hit Earth.

Scientists say it is now possible to predict the precise speed a coronal mass ejection (CME) is travelling at and when it will smash into our planet – even before it has fully erupted from the Sun.

CMEs are bursts of gas and magnetic fields spewed into space from the solar atmosphere.

They can cause geomagnetic storms that have the potential to wreak havoc with terrestrial technology in Earth's orbit and on its surface, which is why experts across the globe are striving to improve space weather forecasts.

Advancements such as this one could make a huge difference in helping to protect infrastructure that is vital to our everyday lives, according to researchers at Aberystwyth University, who will present their findings today at the Royal Astronomical Society's National Astronomy Meeting in Hull.

They made their discovery after studying specific areas on the Sun called 'Active Regions', which have strong magnetic fields where CMEs are born. The researchers monitored how these areas changed in the periods before, during and after an eruption.

A vital aspect which they looked at was the "critical height" of the Active Regions, which is the height at which the magnetic field becomes unstable and can lead to a CME.

"By measuring how the strength of the magnetic field decreases with height, we can determine this critical height," said lead researcher Harshita Gandhi, a solar physicist at Aberystwyth University.

"This data can then be used along with a geometric model which is used to track the true speed of CMEs in three dimensions, rather than just two, which is essential for precise predictions."

She added: "Our findings reveal a strong relationship between the critical height at CME onset and the true CME speed.

"This insight allows us to predict the CME's speed and, consequently, its arrival time on Earth, even before the CME has fully erupted."

When these CMEs hit the Earth they can trigger a geomagnetic storm which is capable of producing stunning aurorae, often referred to in the northern hemisphere as the Northern Lights.

But the storms also have the potential to disrupt vital systems we rely on daily, including satellites, power grids, and communication networks, which is why scientists worldwide are working hard to improve our ability to better predict when CMEs will hit Earth.

This requires knowing a more accurate speed of the CME shortly after it erupts from the Sun to better provide advance warnings of when it will reach our planet.

Accurate speed predictions enable better estimates of when a CME will reach Earth, providing crucial advance warnings.

"Understanding and using the critical height in our forecasts improves our ability to warn about incoming CMEs, helping to protect the technology that our modern lives depend on," Gandhi said.

"Our research not only enhances our understanding of the Sun's explosive behaviour but also significantly improves our ability to forecast space weather events.

"This means better preparation and protection for the technological systems we rely on every day."


Active Region eruption (VIDEO)

ROYAL ASTRONOMICAL SOCIETY

CME headed for Earth (VIDEO)


Images and captions

CME stock image

Caption: A coronal mass ejection is seen erupted from the Sun in June 2015.

Credit: NASA Goddard Space Flight Center

 

Active Region eruption

Caption: This clip shows the before, during and post eruption state of the Active Region AR11158, with the top left panel showing the AR in 171 wavelength, the top right panel a cutout of HMI magnetogram and the bottom panel a running difference movie.

Credit: Jhelioviewer

 

CME headed for Earth

Caption: This clip shows a coronal mass ejection which erupted from AR11158 on its way to Earth, moving outwards in LASCO c2 and c3 field of view.

Credit: Jhelioviewer

 

CME stages

Caption: The different stages of a coronal mass ejection, from onset (left), to post-eruption (middle) and travel towards objects like Earth in our solar system (right).

Credit: Temmer et al. 2021

 

Magnetic field

Caption: Magnetic field lines at different heights above the photosphere extrapolated using Greens function approach as seen from top to bottom.

Credit: Harshita Gandhi

 

Critical height

Caption: Left - shows a PIL averaged decay index profile versus height above the photosphere in Mm at the time of CME eruption with critical height as 61.47 Mm. Right - shows critical height over time for AR11158 with red and black dotted lines indicating CME onset and C2 time.

Credit: Harshita Gandhi

 

Notes for editors

The NAM 2024 conference is principally sponsored by the Royal Astronomical Society, the Science and Technology Facilities Council and the University of Hull.

 

About the Royal Astronomical Society

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science.

The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Keep up with the RAS on XFacebookLinkedIn and YouTube.

 

About the Science and Technology Facilities Council

The Science and Technology Facilities Council (STFC) is part of UK Research and Innovation – the UK body which works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish.

STFC funds and supports research in particle and nuclear physics, astronomy, gravitational research and astrophysics, and space science and also operates a network of five national laboratories, including the Rutherford Appleton Laboratory and the Daresbury Laboratory, as well as supporting UK research at a number of international research facilities including CERN, FERMILAB, the ESO telescopes in Chile and many more.

STFC's Astronomy and Space Science programme provides support for a wide range of facilities, research groups and individuals in order to investigate some of the highest priority questions in astrophysics, cosmology and solar system science.

STFC's astronomy and space science programme is delivered through grant funding for research activities, and also through support of technical activities at STFC's UK Astronomy Technology Centre and RAL Space at the Rutherford Appleton Laboratory. STFC also supports UK astronomy through the international European Southern Observatory and the Square Kilometre Array Organisation.

Visit https://stfc.ukri.org/ for more information. Follow STFC on Twitter: @STFC_Matters


Washington DC among US cities most vulnerable to space weather, scientists say



ROYAL ASTRONOMICAL SOCIETY
Locations vulnerable to space weather 

IMAGE: 

THE TRANSFORMERS THAT ARE MOST ‘CONNECTED’ TO THE NETWORK THROUGHOUT THE STORM AND THEREFORE MAY BE LOCATIONS OF VULNERABILITY WHEN IT COMES TO SPACE WEATHER.

view more 

CREDIT: BRITISH GEOLOGICAL SURVEY





 

Several cities in the United States - including the nation's capital - have power grids particularly vulnerable to the threat of space weather – but experts are still trying to understand why.

Researchers at the British Geological Survey (BGS) found that certain regions of the US are more at risk from geomagnetic storms, which occur when the Sun spits out solar flares and coronal mass ejections (CMEs).

These are bursts of gas and magnetic fields which erupt into space from the solar atmosphere.

They can cause geomagnetic storms that have the potential to damage infrastructure both in Earth's orbit and on its surface, ranging from satellites to underground pipelines.

Two of the cities with power grids found to be most vulnerable to the effects of such space weather are Washington DC and Milwaukee, according to Dr Lauren Orr of the BGS, who is presenting her findings at this week's National Astronomy Meeting at the University of Hull.

"We have identified certain regions of the US (Washington DC area and Milwaukee) which are repeatedly appearing as 'highly connected' in our network, hence are possibly regions particularly vulnerable to the effects of space weather and may benefit from further monitoring," she said.

Dr Orr added that there were "many reasons" the cities may be more at risk to the impact of geomagnetic storms, including "electrical conductivity of the ground, the physical construction of the power grid in those areas, or the location of the auroral currents in the sky".

However, she cautioned that further work was needed to investigate what about these areas makes them so-called 'supernodes' in the network.

Severe space weather is of growing concern to scientists across the globe and is now considered to be as likely to occur as a pandemic, with an impact that is equivalent to extreme temperatures or flooding.

Geomagnetically induced currents (GICs) are one such hazard which can cause damage to power lines and transformers. In the past, widespread blackouts have been reported as a result of transformer damage during geomagnetic storms.

"Network science is now a common tool to quantify the resilience and robustness of power grids to both deliberate attacks and those caused by random failures or natural disasters," Dr Orr explained.

A network is made up of nodes and edges which could be anything from computers linked via the internet, to friends on Facebook, or transformers linked via cables.

"Having previously had great success using network science to uncover patterns within the auroral electrojet we would again combine the fields of network science and space weather to capture the network response to GICs," Dr Orr said.

"By applying known reliability parameters to the GIC network we can identify areas or transformers at high risk."

This is important, she added, because "these areas could be modified during a geomagnetic storm to prevent transformers burning out and to limit damage to the wider power grid".

The work has been carried out in collaboration with Professor Sandra Chapman, of the University of Warwick, and Dr Ryan McGranaghan, of NASA's Jet Propulsion Laboratory in California.

Images and captions

Locations vulnerable to space weather

Caption: The transformers that are most ‘connected’ to the network throughout the storm and therefore may be locations of vulnerability when it comes to space weather.

Credit: British Geological Survey

 

Storm GIC

Caption: A snapshot of the geomagnetically induced current (GIC) network during an intense solar storm in September 2017.

Credit: British Geological Survey

 

Notes for editors

The NAM 2024 conference is principally sponsored by the Royal Astronomical Society, the Science and Technology Facilities Council and the University of Hull.

 

About the Royal Astronomical Society

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science.

The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Keep up with the RAS on XFacebookLinkedIn and YouTube.

A snapshot of the geomagnetically induced current (GIC) network during an intense solar storm in September 2017.

CREDIT

British Geological Survey

About the Science and Technology Facilities Council

The Science and Technology Facilities Council (STFC) is part of UK Research and Innovation – the UK body which works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish.

STFC funds and supports research in particle and nuclear physics, astronomy, gravitational research and astrophysics, and space science and also operates a network of five national laboratories, including the Rutherford Appleton Laboratory and the Daresbury Laboratory, as well as supporting UK research at a number of international research facilities including CERN, FERMILAB, the ESO telescopes in Chile and many more.

STFC's Astronomy and Space Science programme provides support for a wide range of facilities, research groups and individuals in order to investigate some of the highest priority questions in astrophysics, cosmology and solar system science.

STFC's astronomy and space science programme is delivered through grant funding for research activities, and also through support of technical activities at STFC's UK Astronomy Technology Centre and RAL Space at the Rutherford Appleton Laboratory. STFC also supports UK astronomy through the international European Southern Observatory and the Square Kilometre Array Organisation.

Visit https://stfc.ukri.org/ for more information. Follow STFC on Twitter: @STFC_Matters

 

About the University of Hull's E.A. Milne Centre

The E.A. Milne Centre for Astrophysics at the University of Hull brings together experts who study the evolution of structure in the Universe ranging from stars through to galaxies and galaxy clusters, right up to the largest structures in the cosmos.

The centre employs observations, theory and computational methods in collaboration with international partners. Postgraduate and undergraduate students work alongside staff to understand the wonders of the Universe. Through a series of outreach activities, the centre also aims to share its passion for astronomy and astrophysics with the region and beyond.



No comments:

Post a Comment