Saturday, October 26, 2024

The evolution of green energy technology: Developing three-dimensional smart energy devices with radiant cooling and solar absorption




DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Advanced Materials Cover 

image: 

Advanced Materials Cover

view more 

Credit: Advanced Materials Cover

□ 


A research team led by Professor Bonghoon Kim from DGIST’s Department of Robotics and Mechatronics Engineering has developed a “3D Smart Energy Device” that features both reversible heating and cooling capabilities. The team collaborated with Professor Bongjae Lee from KAIST’s Department of Mechanical Engineering and Professor Heon Lee from Korea University’s Department of Materials Science and Engineering. Their innovative device was officially recognized for its excellence and practicality through its selection as the cover article of the international journal Advanced Materials.

 

□ Heating and cooling account for approximately 50% of the global energy consumption, contributing significantly to environmental problems such as global warming and air pollution. In response, solar absorption and radiative cooling devices, which harness the sun and outdoor air as heat and cold sources, are gaining attention as eco-friendly and sustainable solutions. While various devices have been developed, many are limited in function, focusing solely on heating or cooling, and large-scale systems lack adjustability.

 

□ To address these limitations, Prof. Kim’s team created a “3D Smart Energy Device” that integrates reversible heating and cooling functions in a single device. The device operates on a unique mechanism: when the 3D structure opens through a mechanical peeling process, the lower layer—made of silicone elastomer and silver—is exposed to generate radiative cooling. When the structure closes, the surface coated with black paint absorbs solar heat, thus producing heating.

 

□ The team tested the device on multiple substrates, including skin, glass, steel, aluminum, copper, and polyimide, and demonstrated that adjusting the angle of the 3D structure enabled control over its heating and cooling performance. This ability to modulate thermal properties offers an efficient and promising solution for reducing energy consumption in temperature-controlled buildings and electronic devices at both macro and micro scales.

 

□  “We are honored to have our research selected for the cover article of such a prestigious journal,” said Professor Bonghoon Kim. “We aim to ensure that these findings are applied in industrial and building settings to help reduce energy consumption.”

 

□ This research was supported by the “Global Bioconvergence Interfacing Leading Research Center (ERC)” and the “Nano and Materials Technology Development Project” of the National Research Foundation of Korea. The results were published in Advanced Materials, where they were featured as the cover article.

 

- Corresponding Author E-mail Address : bonghoonkim@dgist.ac.kr

Next-generation solar cells become more powerful with silver (Ag) doping technology!


Peer-Reviewed Publication

DGIST (Daegu Gyeongbuk Institute of Science and Technology)


 A team of senior researchers, including Kee-jeong Yang, Dae-hwan Kim, and Jin-gyu Kang from the Division of Energy & Environmental Technology, DGIST (President Kunwoo Lee), collaborated with Prof. Kim Jun-ho’s team from the Department of Physics, Incheon National University and Prof. Koo Sang-mo’s team from the Department of Electronic Materials Engineering to significantly improve the performance of kesterite (CZTSSe) thin-film solar cells in joint research. They developed a new method for doping silver (Ag) in solar cells to suppress defects that hinder cell performance and promote crystal growth, thereby dramatically increasing efficiency and paving the way for commercialization.

 

□ CZTSSe solar cells are composed of copper (Cu), zinc (Zn), tin (Sn), sulfur (S), and selenium (Se), and are gaining attention as a resource-abundant, low-cost, and eco-friendly solar cell technology. In particular, they have the advantage of being suitable for large-scale production and highly competitive in price because they use materials that are abundant in resources instead of the scarce metals used in conventional solar cells. However, conventional CZTSSe solar cells have low efficiency and high current losses due to electron-hole recombination, thus making them difficult to commercialize.

 

□ To address these issues, the research team employed a method of doping the solar cell precursor with Ag. Ag inhibits the loss of Sn and helps the materials mix better at low temperatures. This allows the crystals to grow larger and faster, reducing defects and improving the performance of the solar cell. In this study, they systematically analyzed how the placement of Ag at different locations in the precursor changes the defects and electron-hole recombination properties in the solar cell. The results indicate that Ag can significantly improve the performance of the solar cell by preventing Sn loss and maximizing the defect suppression effect.

 

□ Importantly, they also found that doping Ag in the wrong place actually interferes with the formation of Zn and Cu alloy, causing Zn to remain in the bulk and form defect clusters. This can lead to increased electron-hole recombination losses and degraded performance. From this, the research team offered an important insight: solar cell performance varies significantly depending on where Ag doping occurs.

 

□ Furthermore, the research team found that the liquid material formed by Ag doping promotes crystal growth, significantly improving the density and crystallinity of the absorber layer. This resulted in an improved energy band structure and fewer defects, ultimately allowing for smoother charge transport in the cell. These findings are expected to contribute significantly to the production of high-performance solar cells at low cost.

 

□ “In this study, we analyzed the effect of Ag doping, which had not been clearly identified before, process by process, and found that silver plays a role in suppressing tin loss and improving defects,” said Yang Kee-jeong, a senior researcher at the Division of Energy & Environmental Technology. “The results provide important insights into the design of silver-doped precursor structures to improve solar cell efficiency and are expected to contribute to the development of various solar cell technologies.”

 

□ The research was funded by the Ministry of Science and ICT’s Source Technology Development (Leapfrog Development of Carbon Neutral Technology) Program and the Future-Leading Specialization Research (Grand Challenge Research and Innovation Project (P-CoE)) Program. The paper was published online in the Energy & Environmental Energy (IF 32.4), a leading international journal in the field of energy.

 

- Corresponding Author E-mail Address : kjyang@dgist.ac.kr

No comments:

Post a Comment