Saturday, December 17, 2022

The 5 biggest scientific breakthroughs of 2022: Fusion energy, ‘life after death’, and more

Scientific Breakthroughs of the Year: 
From a breakthrough in nuclear fission energy technology to pigs being "revived" after their death, here are some of the biggest scientific breakthroughs that happened in 2022.

Written by Sethu Pradeep
New Delhi | Updated: December 17, 2022 
Scientific Discoveries of 2022: The year 2022 bore witness to many impressive scientific breakthroughs including the simulation of a wormhole to an artificial mouse embryo that developed a brain. 
(Image credit: Indian Express)

A major US breakthrough in nuclear fusion technology gave us a glimpse of a future where a renewable, clean and near-limitless source of energy might just be possible. This breakthrough capped off an exciting year for science, which bore witness to many scientific developments that promise to alter the course of humanity and our understanding of the universe. Here, we have put together five of the most significant scientific developments that happened this year.

Fusion energy breakthrough promises future of clean energy

Scientists announced on Tuesday (December 13) that researchers at the Lawrence National Laboratory in California conducted a nuclear fission reaction that produced more energy than what was used to ignite it. This marks a major breakthrough for the field. Nearly all the energy on the planet comes from nuclear fusion energy. Many of the energy sources that we know, from the food we eat to the fossil fuels that we burn, can be traced back to nuclear fission reactions that happen in the Sun. But we are still years, and maybe decades away, from mastering the process ourselves.

The conventional nuclear electric plants that we know and nuclear weapons derive their energy from a nuclear fission process, where the nucleus of an atom, usually Uranium, is split into two different nuclei, generating large amounts of energy.

Also read |Why fusion could be a clean-energy breakthrough

In an almost contrary process, nuclear fusion is when two nuclei fuse together to form a single heavier nucleus. When this happens, the mass of the new heavier nucleus is less than the sum of the individual nuclei combined, meaning that a little bit of mass is lost. E=MC^2, Einstein’s most famous equation, explains how this mass is converted into a large amount of energy.

While both fission and fusion reactions release large amounts of energy, the latter produces substantially more energy than the former. For example, the nuclear fusion of two nuclei of a heavier hydrogen isotope will produce four times as much energy as the fission of a uranium atom.

If nuclear fission energy were to be commercialised, it would offer a clean and renewable source of energy that will help fight climate change, while also not producing the panoply of radioactive waste products that fission energy reactors are known for. The technology still has a long way to go before becoming a viable energy alternative, as fusion reactions currently being tested barely last a few minutes, due to the difficulty in maintaining the conditions required for the reactions to happen.
Large hadron collider gets back into action, producing almost immediate results

After a hiatus of over three years for maintenance and upgrades, the world’s largest particle accelerator, the large hadron collider (LHC), got back into action in April this year. This marked the beginning of the third run of LHC, when scientists will collect data from an unparalleled number of particle collisions happening at unprecedented energy levels.

The LHC did not take long after starting up again to deliver impressive new science. In July this year, CERN (European Organization for Nuclear Research) announced the discovery of three new exotic particles—a new pentaquark and a pair of new tetraquarks— using the particle accelerator.

Also read |“Everyone wants to look for a signal that goes beyond the standard physics model”: Scientist at Large Hadron Collider

“The newly-discovered pentaquark is still a baryon, but with the three quarks, it has an extra pair consisting of a quark and an anti-quark. The two tetraquarks are within the family of mesons, but instead of having pairs of quarks and anti-quarks, it has two pairs of quarks. These states were predicted in the nominal quark model introduced in the sixties, but these states were not found until now,” said Nicola Neri, a senior member of the LHCb (LHC beauty) experiment, to indianexpress.com at the time.

During its third run, the unrivalled number of collisions in LHC will allow physicists from around the world to study the Higgs boson particle in great detail, while also putting the “Standard model of particle physics” through its most rigorous tests yet.

“Baby wormhole” simulated in a quantum computer


Since they were first proposed by Albert Einstein and Nathan Rosen in 1935, wormholes have remained in the realm of speculative science fiction. Wormholes, or Einstein-Rosen bridges, are theoretical structures that can be considered a tunnel with two ends at different points in space-time. This tunnel could be connecting two points at large or small distances, or two different points in time.

Now, scientists have brought wormholes out of the worlds of “Interstellar” and “Star Trek” and have brought it into this world that we live in. Well, sort of. Researchers at the California Institute of Technology (CalTech) created two simulated black holes in a quantum computer and transmitted a message between them, essentially creating a tunnel in space-time.

While the researchers did not create a rupture in space and time in physical space, it appeared a traversable wormhole was formed based on quantum information “teleported” using quantum codes on the quantum computer.

“There’s a difference between something possible in principle and possible in reality. So don’t hold your breath about sending your dog through the wormhole. But you have to start somewhere. And I think it’s exciting that we can get our hands on this at all,” said Fermilab physicist and study co-author Joseph Lykken to Reuters, at the time.

While it may be a long time before we can send a person, or indeed, their dog, through a wormhole, this research still represents an important breakthrough. Scientists have long pursued a better understanding of these wormholes, and the new research will help them make progress towards that goal.

“Reversing death” by reviving pig cells


From the Greek mythological figure Achilles to the Hindu mythological figure Hiranyakashipu, who was killed by Narasimha, the quest for immortality is a tale as old as time. But new research published in the journal Nature this August by Yale scientists plays with that notion of immortality.

The New York Times reported how scientists pumped a custom-made solution called OrganEx into dead pigs’ bodies using a device similar to the heart-lung machines used in hospitals. As the machine began circulating the solution into the cadavers’ veins and arteries, its brain, heart, liver and kidney cells began functioning again. Also, the cadavers never got stiff, unlike typical dead bodies.

Even though the seemingly dead cells seemed revived, the pigs were not conscious. While this experiment was far off from immortality and actually reversing death, it opens up important questions about the scientific division between life and death.

One of the main goals of the researchers is to increase the supply of human organs for transplant in the future by letting doctors obtain viable organs long after a patient has died. They also hope this technology could be used to prevent severe damage to organs like the heart after a major heart attack or the brain after a stroke.

The OrganEx solution used by researchers consisted of nutrients, anti-inflammatory medications, drugs to prevent cell death, and interestingly, nerve blockers—substances that dampen the activity of neurons and prevent the possibility of the pigs regaining consciousness.

But what if the solution did not contain nerve blockers? Would the brains of the pigs be revived, essentially reanimating them from death? Well, these are questions that the researchers are still yet to answer. But any research in this direction will be burdened by many ethical considerations, apart from the scientific challenges.

Synthetic mouse embryo develops a beating heart


In another scientific breakthrough that will have you questioning what life means, the University of Cambridge and Caltech created an artificial embryo without using any sperm or egg cells. The embryo created using mouse stem cells developed a brain, a beating heart, and the foundations for all the other organs in the body, according to the University of Cambridge.

The stem cells are the body’s master cells and can develop into almost any of the many cell types in the body. The researchers mimicked the natural processes that happen at conception and guided three types of stem cells found in early mammalian development till they began interacting. They established a unique environment for their interactions and got the stem cells to talk to each other.

Due to this, the stem cells organised themselves into structures and progressed through developmental stages until the embryos had beating hearts and the foundations of the brain, along with the yolk sac from which embryos get nutrients in the first weeks. Unlike other synthetic embryos developed in the past, the researchers’ embryos reached the point where the entire brain began to develop.

“Our mouse embryo model develops not only a brain, but also a beating heart, all the components that make up the body. It’s unbelievable that we’ve got this far. This has been the dream of our community for years, and a major focus of our work for a decade, and finally we’ve done it,” said Magdalena Zernicka-Goetz, corresponding author of a research article published in the journal Nature.

This research was carried out on mice, but the researchers hope the technology can be used to develop certain human organ types. This research helps them understand the crucial organ development processes that could not be done with real human embryos. The “14-day rule” in the United Kingdom and other countries prevents scientists from studying human embryos in laboratory conditions.

But further investigating this science could potentially lead to a future where individual human organs can be grown in laboratory settings using stem cells, so that they can be transplanted to a human patient.

No comments:

Post a Comment