Monday, April 08, 2024

 

Gendered recommendations in 19th century list of books for boys and girls set the stage for field of children’s literature today



CARNEGIE MELLON UNIVERSITY




Children’s literature became a distinct category during the Progressive Era in the United States, largely through the work of professional “book women” like children’s librarians, publishers, and teachers. In a chapter in a new book, researchers examine one of the first attempts to formalize a selection of existing literature into a canon of children’s books, the 1882 pamphlet Books for the Young by Caroline M. Hewins. They also analyze the books selected by Hewins, with a focus on books designated for boys only and for girls only.

The chapter, by researchers at Carnegie Mellon University, appears in Corpora and Rhetorically Informed Text Analysis: The Diverse Applications of DocuScope.

“Hewins’ booklist featured more than a thousand titles and is widely acknowledged by children’s literature scholars to be a major milestone in the formation of the field, but the actual texts are understudied,” explains Rebekah Fitzsimmons, assistant teaching professor of professional communication at Carnegie Mellon’s Heinz College, who coauthored the chapter.

“Our analysis found that Hewins assigned a narrower scope of text types to the category of books that girls will like, which sets a precedent for future gendering of readership for the field of children’s literature.”

Children’s literature seems omnipresent today, but this category of publishing did not exist until the turn of the 20th century, when Progressive Era social reform spurred advocates to establish a category of literature for children. Scholars now view the lists of recommended books written by these knowledgeable librarians (like Hewins) as foundational. But little attention has been paid to examining the stylistic and rhetorical elements of the books themselves.

In this chapter, Fitzsimmons and her coauthor examine what drew Hewins to select specific titles for the first edition of the list of books she compiled. Using DocuScope, a computer-based, rhetorically informed, dictionary-based tagging system created by faculty in Carnegie Mellon’s English department, the researchers identified patterns, including how Hewins selected books for gendered groups of readers (i.e., books designated as especially good for boys, especially good for girls, or appropriate for a general audience).

The books Hewins recommended for girls were largely place-based in spaces like home or school; were more likely to be written in the first or second person; and were more likely to be focused on negative emotions, acts, relationships, or values. In contrast, the books she recommended for boys were far more likely to be high in reasoning and confidence (a marker of nonfiction texts) and included settings beyond home and school.

In addition, Hewins’ recommendations shed light on the era’s ideas about which occupations and hobbies interested boys and girls. For example, she suggested books on manufacturing and the sciences for boys, and recommended books on household arts and amusements for girls.

“Given the importance of this list in children’s literature studies, our analysis reveals what a knowledgeable book expert of the 1880s considered gender-appropriate reading—including insights into how Victorian notions of binary gendered spheres intersected with ideas of gendered readership,” notes Gisele (Xinyu) Wu, who was a senior in the statistics department at Carnegie Mellon when she coauthored the chapter.

“But it also demonstrates that Hewins’ selection of books according to those cultural norms established standards about the kinds of books girls like or don’t like, and tells us how those choices continue to shape children’s literature today.”

Fitzsimmons plans to continue to work on this project with assistance from Carnegie Mellon’s statistics department’s capstone teams (which help demonstrate students’ mastery of subjects or fields of study), comparing lists from other librarians published in 1904 and 1940.

Relatedly, in a separate chapter in another book, Fitzsimmons examined Hewins’ 1882 canon-formation project and her pamphlet. She explored the language Hewins used to bolster the ethos of her pamphlet and to discuss books suitable for boys and girls, and her attempts to wrangle the emerging field of children’s literature into usable categories. She also parsed the political maneuvers of this canon-forming project meant to establish children’s literature as a respectable sub-field of literature, therefore creating an argument for valuing the expertise of children’s librarianship based on taste, discernment, broad knowledge and hands-on experience. This chapter appears in Children’s Literature and Childhood Discourses: Exploring Identity through Fiction.

 

Boreal forest and tundra regions worst hit over next 500 years of climate change, study shows


The boreal forest, covering much of Canada and Alaska, and the treeless shrublands to the north of the forest region, may be among the worst impacted by climate change over the next 500 years, according to a new study.


UNIVERSITY OF YORK





The boreal forest, covering much of Canada and Alaska, and the treeless shrublands to the north of the forest region, may be among the worst impacted by climate change over the next 500 years, according to a new study.

 

The study, led by researchers at the White Rose universities of York and Leeds, as well as Oxford and Montreal, and ETH, Switzerland, ran a widely-used climate model with different atmospheric concentrations of carbon dioxide to assess the impact climate change could have on the distribution of ecosystems across the planet up to the year 2500.

 

Most climate prediction models run to the year 2100, but researchers are keen to explore longer-term projections that give a global picture of how much humans, animals and plant-life may need to adapt to climate change beyond the next century, which is important as long-lived trees adapt at scales of centuries rather than decades.

 

Modelling climate change over a 500 year period shows that much of the boreal forest, the Earth’s northernmost forests and most significant provider of carbon storage and clean water, could be seriously impacted, along with tundra regions, treeless shrublands north of the boreal forest that play a significant role in regulating the Earth’s climate. 

 

Tundra regions have already seen new plants colonising lands that would have once been too cold for them to survive on, and as the planet continues to warm, its ability to cool tropical heat, pushing it back down to the equator is reduced.  

 

This means that if there is not a rapid halt in emitting greenhouse gases, large parts of some of the hottest countries on Earth will become too hot to be easily inhabited and considerable changes would have to be made to daily life to exist there.

 

The researchers highlight that although we are already starting to see animals and plants migrating as they try to adapt to changing climate conditions, this could intensify in the future.  As the study highlights, some species, like trees, migrate much slower than animals and humans can, and so some plants and animals will be lost altogether, threatening the survival of today’s ecosystems

 

Dr Christopher Lyon, from the University of York’s Department of Environment and Geography and Leverhulme Centre for Anthropocene Biodiversity, said: “We know now that some aspects of climate change are inevitable and so a level of adaptation is required, but how extensive these adaptations need to be is still in our hands. It is, therefore, useful to look beyond the UN’s 2030 and 2050 carbon emission targets, as well as the 2100 climate model predictions, as we know that climate change won’t stop there.

 

“By looking much further into the future - the future that our grandchildren will face - we can see that there is a significant difference between climate change rates, species migration rates, and their migration ability.  Trees, for example, will migrate much slower than birds and mammals, and boreal decline radically changes the ecosystems they’ve formed since the glaciers retreated about 12 000 years ago. 

 

“Those species that can’t adapt or move to more suitable locations will radically decline in number and range or even go extinct.”

 

The study highlights that current boreal regions are colder and less densely populated, but changing environments may mean more people migrate to these landscapes as they warm in the future, increasing the pressures on ecosystems and species.  

 

Migration on this scale also relies on political cooperation from countries around the world, and researchers point out that given current global conflicts and divisions, this could be one of the most significant barriers to successful climate adaptation. 

 

Dr Lyon said: “What’s most important, I think, is that the long-term projections highlight the scale of the change we, and especially our children and grandchildren face - even under the lower warming scenarios - and the need to start thinking very hard now about what it will take for all of us to live justly in those possible worlds.”

 

Dr Bethany Allen from ETH (Federal Institute of Technology) Zurich, added: "Our study indicates the longevity and severity of the impacts that human-induced climate change will have on the biosphere. The need to protect boreal forest and tundra biomes is particularly pressing, and our results demonstrate how large-scale geographic shifts in the areas occupied by these biomes might be necessary in order to preserve them over the next few hundred years."


The research is published in the journal Philosophical Transactions of the Royal Society B and funded in part by the White Rose Collaboration Fund and the Leverhulme Trust via the Leverhulme Centre for Anthropocene Biodiversity.

 

Climate change threatens Antarctic meteorites



ETH ZURICH

Blue ice area - Ellsworth Mountains, Antarctica 

IMAGE: 

FIELD GUIDE IN A BLUE ICE AREA DURING A MISSION TO TAKE ICE SAMPLES. PHOTO TAKEN DURING THE 2023-2024 FIELDWORK MISSION OF THE INSTITUTO ANTÁRTICO CHILENO (INACH) TO UNION GLACIER, ELLSWORTH MOUNTAINS, ANTARCTICA.

view more 

CREDIT: VERONICA TOLLENAAR, UNIVERSITÉ LIBRE DE BRUXELLES




Using artificial intelligence, satellite observations, and climate model projections, a team of researchers from Switzerland and Belgium calculate that for every tenth of a degree of increase in global air temperature, an average of nearly 9,000 meteorites disappear from the surface of the ice sheet. This loss has major implications, as meteorites are unique samples of extraterrestrial bodies that provide insights into the origin of life on Earth and the formation of the Moon.

Disappearing at an alarming rate

By 2050, about a quarter of the estimated of 300,000 - 800,000 meteorites in Antarctica will be lost due to glacial melt. By end of the century, researchers anticipate that number could rise approaching a loss of meteorites closer to three-quarters of the meteorites on the continent under a high-warming scenario.

Published in the journal Nature Climate Change, Harry Zekollari co-led the study while working under Professor Daniel Farinotti in the Laboratory of Hydraulics, Hydrology and Glaciology at the Department of Civil, Environmental and Geomatic Engineering at ETH Zurich. Zekollari and co-lead Veronica Tollenaar, Université Libre de Bruxelles, reveal in the study that ongoing warming results in the loss of about 5,000 meteorites a year, outpacing the collection efforts of Antarctic meteorites by a factor five.

Meteorites – time capsules of the universe

Zekollari, now an Associate Professor of Glaciology at Vrije Universiteit Brussel, calls for a major international effort to preserve the scientific value of meteorites, “We need to accelerate and intensify efforts to recover Antarctic meteorites. The loss of Antarctic meteorites is much like the loss of data that scientists glean from ice cores collected from vanishing glaciers – once they disappear, so do some of the secrets of the universe.”

Meteorites are fragments from space that provide unique information about our solar system. Antarctica is the most prolific place to find meteorites, and to date, about 60 percent of all meteorites ever found on Earth have been collected from the surface of the Antarctic ice sheet. The flow of the ice sheet concentrates meteorites in so-called “meteorite stranding zones”, where their dark crust allows them to be easily detected. In addition to intensifying recovery operations, there is potential to increase the efficiency of meteorite recovery missions in the short term. This potential relies mainly on data-driven analysis to identify unexplored meteorite stranding zones and mapping areas exposing blue ice where meteorites are often found.

Extraterrestrial heritage slipping away

Due to their dark colour, meteorites preferentially heat up with respect to the surrounding ice. As this heat transfers from the meteorites to the ice, it can warm up the ice, and eventually cause the ice to locally melt, leading to a sinking of meteorites underneath the surface of the ice sheet. Once the meteorites enter the ice sheet, even at shallow depths, they cannot be detected anymore, and they are thus lost for science.

As atmospheric temperatures increase, so does the surface temperature of the ice, intensifying the loss. "Even when temperatures of the ice are well below zero, the dark meteorites warm-up so much in the sun that they can melt the ice directly beneath the meteorite. Through this process, the warm meteorite creates a local depression in the ice and over time fully disappears under the surface,” says Tollenaar.

Scientists conclude that in the long-term, the only way to preserve most of the remaining unrecovered Antarctic meteorites is to rapidly reduce greenhouse gas emissions.

Antarctic meteorite (HUT 18036) partially in the ice, in contrast to most samples that are collected while lying on the surface. Meteorite collected by the Lost Meteorites of Antarctica project.

CREDIT

Katherine Joy, The University of Manchester, The Lost Meteorites of Antarctica project.

SPACE

 

How the moon turned itself inside out


University of Arizona scientists combined computer simulations and spacecraft data to solve a long-standing mystery surrounding the moon's "lopsided" geology


UNIVERSITY OF ARIZONA

Gravity data coinciding with vestiges of downwellings from lunar mantle overturn 

IMAGE: 

SCHEMATIC ILLUSTRATION WITH A GRAVITY GRADIENT MAP (BLUE HEXAGONAL PATTERN) OF THE LUNAR NEARSIDE AND A CROSS-SECTION SHOWING TWO ILMENITE-BEARING CUMULATE DOWNWELLINGS FROM LUNAR MANTLE OVERTURN.

view more 

CREDIT: ADRIEN BROQUET/UNIVERSITY OF ARIZONA & AUDREY LASBORDES



About 4.5 billion years ago, a small planet smashed into the young Earth, flinging molten rock into space. Slowly, the debris coalesced, cooled and solidified, forming our moon. This scenario of how the Earth's moon came to be is the one largely agreed upon by most scientists. But the details of how exactly that happened are "more of a choose-your-own adventure novel," according to researchers in the University of Arizona Lunar and Planetary Laboratory who published a paper in Nature Geoscience. The findings offer important insights into the evolution of the lunar interior, and potentially for planets such as the Earth or Mars.

Most of what is known about the origin of the moon comes from analyses of rock samples, collected by Apollo astronauts more than 50 years ago, combined with theoretical models. The samples of basaltic lava rocks brought back from the moon showed surprisingly high concentrations of titanium. Later satellite observations found that these titanium-rich volcanic rocks are primarily located on the moon's nearside, but how and why they got there has remained a mystery – until now.

Because the moon formed fast and hot, it was likely covered by a global magma ocean. As the molten rock gradually cooled and solidified, it formed the moon's mantle and the bright crust we see when we look up at a full moon at night. But deeper below the surface, the young moon was wildly out of equilibrium. Models suggest that the last dregs of the magma ocean crystallized into dense minerals including ilmenite, a mineral containing titanium and iron.

"Because these heavy minerals are denser than the mantle underneath, it creates a gravitational instability, and you would expect this layer to sink deeper into the moon's interior," said Weigang Liang, who led the research as part of his doctoral work at LPL.

Somehow, in the millennia that followed, that dense material did sink into the interior, mixed with the mantle, melted and returned to the surface as titanium-rich lava flows that we see on the surface today.

"Our moon literally turned itself inside out," said co-author and LPL associate professor Jeff Andrews-Hanna. "But there has been little physical evidence to shed light on the exact sequence of events during this critical phase of lunar history, and there is a lot of disagreement in the details of what went down – literally."

Did this material sink as it formed a little at a time, or all at once after the moon had fully solidified? Did it sink into the interior globally and then rise up on the near side, or did it migrate to the near side and then sink? Did it sink in one big blob, or several smaller blobs?   

"Without evidence, you can pick your favorite model. Each model holds profound implications for the geologic evolution of our moon," said co-lead author Adrien Broquet of the German Aerospace Center in Berlin, who did the work during his time as a postdoctoral research associate at LPL.

In a previous study, led by Nan Zhang at Peking University in Beijing, who is also a co-author on the latest paper, models predicted that the dense layer of titanium-rich material beneath the crust first migrated to the near side of the moon, possibly triggered by a giant impact on the far side, and then sunk into the interior in a network of sheetlike slabs, cascading into the lunar interior almost like waterfalls. But when that material sank, it left behind a small remnant in a geometric pattern of intersecting linear bodies of dense titanium-rich material beneath the crust.

"When we saw those model predictions, it was like a lightbulb went on," said Andrews-Hanna, "because we see the exact same pattern when we look at subtle variations in the moon’s gravity field, revealing a network of dense material lurking below the crust."

In the new study, the authors compared simulations of a sinking ilmenite-rich layer to a set of linear gravity anomalies detected by NASA's GRAIL mission, whose two spacecraft orbited the moon between 2011 and 2012, measuring tiny variations in its gravitational pull. These linear anomalies surround a vast dark region of the lunar near side covered by volcanic flows known as mare (Latin for "sea").

The authors found that the gravity signatures measured by the GRAIL mission are consistent with ilmenite layer simulations, and that the gravity field can be used to map out the distribution of the ilmenite remnants left after the sinking of the majority of the dense layer.

"Our analyses show that the models and data are telling one remarkably consistent story," Liang said. "Ilmenite materials migrated to the near side and sunk into the interior in sheetlike cascades, leaving behind a vestige that causes anomalies in the moon's gravity field, as seen by GRAIL."

The team's observations also constrain the timing of this event: The linear gravity anomalies are interrupted by the largest and oldest impact basins on the near side and therefore must have formed earlier. Based on these cross-cutting relationships, the authors suggest that the ilmenite-rich layer sank prior to 4.22 billion years ago, which is consistent with it contributing to later volcanism seen on the lunar surface.

"Analyzing these variations in the moon's gravity field allowed us to peek under the moon's surface and see what lies beneath," said Broquet, who worked with Liang to show that the anomalies in the moon’s gravitational field match what would be expected for the zones of dense titanium-rich material predicted by computer simulation models of lunar overturn.

Three views of the moon's nearside: the familiar sight from Earth (left), regions covered by titanium-rich volcanic flows (center) and polygonal pattern of gravity anomalies

More than 50 years ago, Apollo astronauts brought basaltic lava rocks back from the moon with surprisingly high concentrations of titanium. Later, satellite observations found that these titanium-rich volcanic rocks are primarily located on the moon's nearside - but how and why they got there has remained a mystery – until now.

CREDIT

NASA

Lopsided moon

While the detection of lunar gravity anomalies provides evidence for the sinking of a dense layer in the moon’s interior and allows for a more precise estimate of how and when this event occurred, what we see on the surface of the moon adds even more intrigue to the story, according to the research team.

"The moon is fundamentally lopsided in every respect," Andrews-Hanna said, explaining that the near side facing the Earth, and particularly the dark region known as Oceanus Procellarum region, is lower in elevation, has a thinner crust, is largely covered in lava flows, and has high concentrations of typically rare elements like titanium and thorium. The far side differs in each of these respects. Somehow, the overturn of the lunar mantle is thought to be related to the unique structure and history of the near side Procellarum region. But the details of that overturn have been a matter of considerable debate among scientists.

"Our work connects the dots between the geophysical evidence for the interior structure of the moon and computer models of its evolution," Liang added.

"For the first time we have physical evidence showing us what was happening in the moon’s interior during this critical stage in its evolution, and that's really exciting," Andrews-Hanna said. "It turns out that the moon’s earliest history is written below the surface, and it just took the right combination of models and data to unveil that story."

"The vestiges of early lunar evolution are present below the crust today, which is mesmerizing," Broquet said. "Future missions, such as with a seismic network, would allow a better investigation of the geometry of these structures."

Liang added: "When the Artemis astronauts eventually land on the moon to begin a new era of human exploration, we will have a very different understanding of our neighbor than we did when the Apollo astronauts first set foot on it."

​CSIRO telescope detects unprecedented behaviour from nearby magnetar



CSIRO AUSTRALIA

Magnetar animation 

VIDEO: 

ARTIST’S IMPRESSION OF A MAGNETAR WITH MAGNETIC FIELD AND POWERFUL JETS. 

view more 

CREDIT: CSIRO



Researchers using Murriyang, CSIRO’s Parkes radio telescope, have detected unusual radio pulses from a previously dormant star with a powerful magnetic field. 

​New results published today in Nature Astronomy describe radio signals from magnetar XTE J1810-197 behaving in complex ways.  

​Magnetars are a type of neutron star and the strongest magnets in the Universe. At roughly 8,000 light years away, this magnetar is also the closest known to Earth.  

​Most are known to emit polarised light, though the light this magnetar is emitting is circularly polarised, where the light appears to spiral as it moves through space. 

​Dr Marcus Lower, a postdoctoral fellow at Australia’s national science agency – CSIRO, led the latest research and said the results are unexpected and totally unprecedented. 

​"Unlike the radio signals we've seen from other magnetars, this one is emitting enormous amounts of rapidly changing circular polarisation. We had never seen anything like this before,” Dr Lower said. 

​Dr Manisha Caleb from the University of Sydney and co-author on the study said studying magnetars offers insights into the physics of intense magnetic fields and the environments these create.  

​"The signals emitted from this magnetar imply that interactions at the surface of the star are more complex than previous theoretical explanations.” 

​Detecting radio pulses from magnetars is already extremely rare: XTE J1810-197 is one of only a handful known to produce them.  

​While it’s not certain why this magnetar is behaving so differently, the team has an idea.  

​“Our results suggest there is a superheated plasma above the magnetar's magnetic pole, which is acting like a polarising filter,” Dr Lower said.  

​“How exactly the plasma is doing this is still to be determined.” 

​XTE J1810-197 was first observed to emit radio signals in 2003. Then it went silent for well over a decade. The signals were again detected by the University of Manchester's 76-m Lovell telescope at the Jodrell Bank Observatory in 2018 and quickly followed up by Murriyang, which has been crucial to observing the magnetar’s radio emissions ever since.  

​The 64-m diameter telescope on Wiradjuri Country is equipped with a cutting edge ultra-wide bandwidth receiver. The receiver was designed by CSIRO engineers who are world leaders in developing technologies for radio astronomy applications.  

​The receiver allows for more precise measurements of celestial objects, especially magnetars, as it is highly sensitive to changes in brightness and polarisation across a broad range of radio frequencies. 

​Studies of magnetars such as these provide insights into a range of extreme and unusual phenomena, such as plasma dynamics, bursts of X-rays and gamma-rays, and potentially fast radio bursts.  

​Lower, M. E., et al., Linear to circular conversion in the polarized radio emission of a magnetar, Nature Astronomy, vol. 8 (2024) 

​– ends –  

​CSIRO acknowledges the Wiradjuri People as the traditional custodians of the Parkes Observatory site where Murriyang, our Parkes radio telescope, is located. 

Images and b-roll video are available here.


CAPTION

Murriyang, CSIRO’s Parkes radio telescope beneath the Milky Way.  

CREDIT

Alex Cherney/CSIRO

Artist’s impression of a magnetar. 

CREDIT

Carl Knox, OzGrav/Swinburne University of Technology

Artist’s impression of a magnetar with magnetic field and powerful jets. 

CREDIT

CSIRO


JOURNAL

Scientists make largest and most precise 3D map of expanding universe


Ellie Crabbe
THE ARGUS
Sun, 7 April 2024 

Graphic by Lawrence Berkeley National Laboratory of the largest 3D map of our universe to date (Image: Lawrence Berkeley National Laboratory/PA)

Scientists have made the largest 3D map of the universe, measuring how fast it has expanded over billions of years by using the most precise measurements to date.

An international team, including researchers from Sussex university, used an instrument known as the Dark Energy Spectroscopic Instrument (Desi) to create the map.

Their aim was to measure the effects of dark energy, a mysterious force that is believed to be making the universe expand faster and faster.


The scientists said they were able to measure the expansion history of the universe spanning 11 billion years with a precision better than one per cent.

The map, comprising more than six million galaxies, is the largest 3D map of the cosmos constructed.

Dr Eva-Maria Mueller, Ernest Rutherford Fellow at the University of Sussex, who led part of the cosmological interpretation of the Desi data, said she could not initially believe the “fascinating” results.

READ MORE: Sussex university asking people to join its bee experiment

Dr Mueller said: “It was a moment I’d been eagerly anticipating since the start of my PhD.

“The findings were not just interesting – they were captivating, sparking fresh insights into the fundamental nature of our universe.

“It’s moments like these that remind me why I’m passionate about cosmology.”

The Desi instrument uses 5,000 tiny robots within a mountaintop telescope near Tucson, Arizona.

Scientists were able to map the cosmos as it was billions of years ago and traced its growth to what it is today, using light from distant objects in space which are only now reaching Desi.

Professor Carlos Frenk, of Durham University’s department of physics and a member of the Desi team, described the findings as “hugely exciting”.

He said: “Never before has mankind measured the basic properties of our universe with such precision.”

At present, Lambda CDM, a cosmological model that describes the structure and evolution of the universe, is seen by scientists as the leading framework determining how the universe is evolving.

It includes both a weakly interacting type of matter, known as cold dark matter (CDM), and dark energy – also referred to as Lambda.

According to the model, both matter and dark matter slow down the universe’s expansion, while dark energy speeds it up.


Starwatch: exploding nova promises rare sight in coming months


Stuart Clark
Sun, 7 April 2024 
Interactive

Get ready for a “new” star to appear in the night sky. Not really new of course, but a star that is now below the naked-eye visibility limit is gearing up for an outburst that will bring it within sight of the unaided eye for the first time since the 1940s.

Such a star is called a nova, Latin for “new”. The star, T Coronae Borealis, is actually composed of two stars: a red giant and a white dwarf. The white dwarf is a dense stellar core about the size of the Earth and its gravity is pulling gas off the red giant. This gas accumulates on the white dwarf’s surface before detonating in a thermonuclear explosion, causing the star to temporarily brighten. Eventually, it returns to normal and the cycle repeats.

In the case of T Coronae Borealis, historical observations show that it explodes approximately every 80 years. Astronomers expect it to blow any time between now and September. The chart shows the view looking east from London at about 22.00 BST this week, and marks the location to keep an eye on. When it erupts, the star is expected to reach the same brightness as Alphecca, the brightest star in its home constellation.