Tuesday, July 21, 2020


Better wastewater treatment? It's a wrap

Rice's trap-and-zap strategy for antibiotic resistant bugs becomes wrap, trap and zap
RICE UNIVERSITY

HOUSTON - (July 20, 2020) - A shield of graphene helps particles destroy antibiotic-resistant bacteria and free-floating antibiotic resistance genes in wastewater treatment plants.
Think of the new strategy developed at Rice University as "wrap, trap and zap."
The labs of Rice environmental scientist Pedro Alvarez and Yalei Zhang, a professor of environmental engineering at Tongji University, Shanghai, introduced microspheres wrapped in graphene oxide in the Elsevier journal Water Research.
Alvarez and his partners in the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) have worked toward quenching antibiotic-resistant "superbugs" since first finding them in wastewater treatment plants in 2013.
"Superbugs are known to breed in wastewater treatment plants and release extracellular antibiotic resistance genes (ARGs) when they are killed as the effluent is disinfected," Alvarez said. "These ARGs are then discharged and may transform indigenous bacteria in the receiving environment, which become resistome reservoirs.
"Our innovation would minimize the discharge of extracellular ARGs, and thus mitigate dissemination of antibiotic resistance from wastewater treatment plants," he said.
The Rice lab showed its spheres -- cores of bismuth, oxygen and carbon wrapped with nitrogen-doped graphene oxide -- inactivated multidrug-resistant Escherichia coli bacteria and degraded plasmid-encoded antibiotic-resistant genes in secondary wastewater effluent.
The graphene-wrapped spheres kill nasties in effluent by producing three times the amount of reactive oxygen species (ROS) as compared to the spheres alone.
The spheres themselves are photocatalysts that produce ROS when exposed to light. Lab tests showed that wrapping the spheres minimized the ability of ROS scavengers to curtail their ability to disinfect the solution.
The researchers said nitrogen-doping the shells increases their ability to capture bacteria, giving the catalytic spheres more time to kill them. The enhanced particles then immediately capture and degrade the resistant genes released by the dead bacteria before they contaminate the effluent.
"Wrapping improved bacterial affinity for the microspheres through enhanced hydrophobic interaction between the bacterial surface and the shell," said co-lead author Pingfeng Yu, a postdoctoral research associate at Rice's Brown School of Engineering. "This mitigated ROS dilution and scavenging by background constituents and facilitated immediate capture and degradation of the released ARGs."
Because the wrapped spheres are large enough to be filtered out of the disinfected effluent, they can be reused, Yu said. Tests showed the photocatalytic activity of the spheres was relatively stable, with no significant decrease in activity after 10 cycles. That was significantly better than the cycle lifetime of the same spheres minus the wrap.
###
Deyi Li of Tongji University, Shanghai, is co-lead author of the paper. Co-authors are Xuefei Zhou and Zhang of Tongji and Jae-Hong Kim, the Henry P. Becton Sr. Professor and Chair of Chemical and Environmental Engineering at Yale University. Alvarez is the George R. Brown Professor of Civil and Environmental Engineering, a professor of chemistry, of materials science and nanoengineering and of chemical and biomoleculary engineering and director of NEWT.
The National Science Foundation, the National Natural Science Foundation of China and the National Key R&D Program of China supported the research.
Links:
Rice Department of Civil and Environmental Engineering: https://cee.rice.edu
George R. Brown School of Engineering: https://engineering.rice.edu
Related materials:
Images for download:
CAPTION: Improved bacterial affinity and reactive oxygen species generation enhances antibacterial inactivation in wastewater by graphene oxide-wrapped nanospheres developed by scientists at Rice University and Tongji University, Shanghai. Antibiotic resistance genes (eARG) released by inactivated antibiotic resistant bacteria (ARB) in the vicinity of photocatalytic sites on the spheres facilitates their degradation. (Credit: Alvarez Research Group/Rice University)
CAPTION: A scanning electron microscope image shows a graphene oxide shell around the layered nanoplates that make up the core of a particle that traps and zaps antibiotic-resistant bacteria and the resistance genes they release. The wrapped spheres developed at Rice and Tongji universities proved three times better able to disinfect secondary effluent from wastewater plants than the spheres without the nitrogen-doped graphene oxide. (Credit: Deyi Li/Tongji University)
CAPTION: An electron microscope image shows E. coli bacteria trapped by wrapped microspheres developed at Rice and Tongji universities. The spheres were created to disinfect secondary effluent from wastewater treatment plants, a breeding ground for antibiotic resistant bacteria and antibiotic resistance genes. (Credit: Deyi Li/Tongji University)
This news release can be found online at news.rice.edu.
Follow Rice News and Media Relations via Twitter @RiceUNews.
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

New model connects respiratory droplet physics with spread of Covid-19

UNIVERSITY OF CALIFORNIA - SAN DIEGO


IMAGE
IMAGE: A DROPLET SUSPENDED IN AN ACOUSTIC LEVITATOR view more 
CREDIT: ABHISHEK SAHA, UC SAN DIEGO

Respiratory droplets from a cough or sneeze travel farther and last longer in humid, cold climates than in hot, dry ones, according to a study on droplet physics by an international team of engineers. The researchers incorporated this understanding of the impact of environmental factors on droplet spread into a new mathematical model that can be used to predict the early spread of respiratory viruses including COVID-19, and the role of respiratory droplets in that spread.
The team developed this new model to better understand the role that droplet clouds play in the spread of respiratory viruses. Their model is the first to be based on a fundamental approach taken to study chemical reactions called collision rate theory, which looks at the interaction and collision rates of a droplet cloud exhaled by an infected person with healthy people. Their work connects population-scale human interaction with their micro-scale droplet physics results on how far and fast droplets spread, and how long they last.
Their results were published June 30 in the journal Physics of Fluids.
"The basic fundamental form of a chemical reaction is two molecules are colliding. How frequently they're colliding will give you how fast the reaction progresses," said Abhishek Saha, a professor of mechanical engineering at the University of California San Diego, and one of the authors of the paper. "It's exactly the same here; how frequently healthy people are coming in contact with an infected droplet cloud can be a measure of how fast the disease can spread."
They found that, depending on weather conditions, some respiratory droplets travel between 8 feet and 13 feet away from their source before evaporating, without even accounting for wind. This means that without masks, six feet of social distance may not be enough to keep one person's exhalated particles from reaching someone else.
"Droplet physics are significantly dependent on weather," said Saha. "If you're in a colder, humid climate, droplets from a sneeze or cough are going to last longer and spread farther than if you're in a hot dry climate, where they'll get evaporated faster. We incorporated these parameters into our model of infection spread; they aren't included in existing models as far as we can tell."
The researchers hope that their more detailed model for rate of infection spread and droplet spread will help inform public health policies at a more local level, and can be used in the future to better understand the role of environmental factors in virus spread.


Experimental setup showing the acoustic levitation of a droplet illuminated by a cold LED source. A diffuser plate is used for uniform imaging of the droplet. A CCD camera fitted with the zoom lens assembly is used for illumination. The schematic is not to scale.
They found that at 35C (95F) and 40 percent relative humidity, a droplet can travel about 8 feet. However, at 5C (41F) and 80 percent humidity, a droplet can travel up to 12 feet. The team also found that droplets in the range of 14-48 microns possess higher risk as they take longer to evaporate and travel greater distances. Smaller droplets, on the other hand, evaporate within a fraction of a second, while droplets larger than 100 microns quickly settle to the ground due to weight.
This is further evidence of the importance of wearing masks, which would trap particles in this critical range.
The team of engineers from the UC San Diego Jacobs School of Engineering, University of Toronto and Indian Institute of Science are all experts in the aerodynamics and physics of droplets for applications including propulsion systems, combustion or thermal sprays. They turned their attention and expertise to droplets released when people sneeze, cough or talk when it became clear that COVID-19 is spread through these respiratory droplets. They applied existing models for chemical reactions and physics principles to droplets of a salt water solution--saliva is high in sodium chloride--which they studied in an ultrasonic levitator to determine the size, spread, and lifespan of these particles in various environmental conditions.
Many current pandemic models use fitting parameters to be able to apply the data to an entire population. The new model aims to change that.
"Our model is completely based on "first principles" by connecting physical laws that are well understood, so there is next to no fitting involved," said Swetaprovo Chaudhuri, professor at University of Toronto and a co-author. "Of course, we make idealized assumptions, and there are variabilities in some parameters, but as we improve each of the submodels with specific experiments and including the present best practices in epidemiology, maybe a first principles pandemic model with high predictive capability could be possible."



There are limitations to this new model, but the team is already working to increase the model's versatility.
"Our next step is to relax a few simplifications and to generalize the model by including different modes of transmission," said Saptarshi Basu, professor at the Indian Institute of Science and a co-author. "A set of experiments are also underway to investigate the respiratory droplets that settle on commonly touched surfaces."
###

Florida harmful algal blooms produce multiple toxins detrimental to human health

Cyanobacterial blooms released downstream from Lake Okeechobee coincided with red tides placing Florida's west coast in a toxic vice
BRAIN CHEMISTRY LABS
IMAGE
IMAGE: DR.JAMES METCALF AT THE BRAIN CHEMISTRY LABS, JACKSON HOLE, ANALYZING FLORIDA CYANOBACTERIAL SAMPLES. view more 
CREDIT: PAUL ALAN COX
(JACKSON, Wyo. - July 20, 2020) - In 2018, cyanobacteria from nutrient-rich waters in Lake Okeechobee were released down the Caloosahatchee river at the same time that red tides were gathering along the Florida west coast, potentially exposing coastal residents to a mixture of toxins. In 2018, releases of cyanobacterial-laden freshwater from Lake Okeechobee transported a large bloom of Microcystis cyanobacteria down the Caloosahatchee. Analysis of water samples showed high concentrations of microcystin-LR, sufficient to result in adverse human and animal health effects if ingested, based on the known toxicity of this cyanotoxin.
The microcystin liver toxin was being produced by Microcystis, while at the same time, potent neurotoxins called brevetoxin were released from the marine dinoflagellate Karenia brevis in the Gulf of Mexico. In addition, BMAA, a neurotoxin suspected of being linked to neurodegenerative diseases such as ALS and Alzheimer's disease, was detected in samples of cyanobacteria, dinoflagellates, and diatoms along the Caloosahatchee and west coast. Furthermore, cyanobacterial mats collected on the west coast in 2019 also showed high concentrations of BMAA to be present. Together, these new findings highlight the potential for multiple, potentially toxic blooms to co-exist with unknown implications for human and animal health.
"We have been monitoring Florida waters for cyanobacterial toxins since the 2016 emergency release of Lake Okeechobee water down the St. Lucie River and the Caloosahatchee," Dr. James Metcalf, first author and Senior Research Scientist at the Brain Chemistry Labs in Jackson Hole reported. "We are concerned that cyanobacterial releases from Lake Okeechobee down these two rivers continue to occur."
Red tides have historically resulted in fish kills and seasonal respiratory irritation along the west coast of Florida, but this new discovery of multiple sources of cyanobacterial toxins occurring at the same time as red tides, requires further investigation says scientists.
"Together with our colleagues at the Miami Brain Endowment Bank, we have found that chronic dietary exposure of laboratory animals to the cyanobacterial toxin BMAA triggers early Alzheimer's and ALS neuropathology," explains Dr. Paul Alan Cox, Director of the Brain Chemistry Labs, " but we cannot predict the health impacts of chronic exposures to multiple toxins at the same time."
###
This new research, coauthored with investigators at the Sanibel-Captiva Conservation Foundation and the Calusa Waterkeeper in Fort Myers, FL appeared this week in Neurotoxicity Research, as "Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments" (https://doi.org/10.1007/s12640-020-00248-3)
About Brain Chemistry Labs: Brain Chemistry Labs is an independent non-profit research institute based in Jackson Hole, Wyoming. With five PhDs currently on staff, the Brain Chemistry Labs anchors a consortium of 50 leading scientists from 28 institutions representing 12 different disciplines. For more information about Brain Chemistry Labs, go to https://brainchemistrylabs.org/

High school athletes require longer recovery following concussions

Epidemiologic findings from a high school population
HENRY FORD HEALTH SYSTEM
IMAGE
IMAGE: HIGH SCHOOL ATHLETES REQUIRE LONGER RECOVERY FOLLOWING CONCUSSIONS. view more 
CREDIT: GETTY IMAGES
DETROIT - Young athletes are sidelined for at least one month after suffering a concussion, according to a Henry Ford Hospital study that provides new perspective on concussions and brain injuries.
The study's results were published ahead of the Michigan High School Athletic Association's recent announcement that the fall high school sports season will begin as traditionally scheduled, with football practices starting on Aug. 10.
The findings published by Orthopedics, a nationally recognized, peer-reviewed journal for orthopedic surgeons, are from a study conducted between September 2013 and December 2016. The study focused on 357 high school adolescents who sustained one or more concussions by analyzing historical data and then comparing it to more recent findings tied to an increase in reported concussions among young athletes.
The average age of the study's patients was 15-and-a-half years with nearly 62% being males, the most common sport participated in by these athletes was football, followed by hockey and then soccer. From the study's participants, 14 % reported suffering from amnesia and 33 % reported a history of concussions. Results of the study include:
  • Athletes with only one concussion required just over 30 days of recovery prior to returning to sport (RTS) while others who reported a second or more concussions required more time.
  • The most common sport of injury was football (27.7%). There was a high incidence of previous concussion (33.1%), and 32 athletes sustained a recurrent concussion.
  • Visual motor speed and reaction time scores decreased with recurrent concussions.
  • Male and female athletes with a previous history of concussion, and those with delayed diagnosis, required increased time to RTS.
The research team also found that athletes who have suffered concussions have a higher incidence of non-contact lower extremity injuries due to balance issues after concussions which may have implications on the performance, safety and well-being of athletes. These findings will be the focus of the next study also led by Toufic Jildeh, M.D., administrative chief resident in Orthopaedic Surgery at Henry Ford Hospital.
One of the earliest studies on concussion data came from the NFL's mild traumatic brain injury committee and was published in the journal Neurosurgery in January 2004. Based on data collected between 1996 and 2001, researchers found that NFL players were sidelined for six or fewer days after a concussion.
A related 2019 study also led by Dr. Jildeh and published in American Journal of Sports Medicine showed a similar trend with NFL players being sidelined much longer.
"Historically, the literature reported a concussion prevalence of 4-5%, however recent studies have found that nearly 20% of adolescents have suffered at least one concussion, there's a huge disparity in terms of reporting over time," says Dr. Jildeh. Previously, it was thought that young age was a protective factor against concussion and that the neuroplasticity offered fast recovery. However, this thinking has been disproven with more recent studies.
"Concussions have been a pressing issue. We want to limit the number of concussions and head injuries in a young athlete," says Vasilios (Bill) Moutzouros, M.D., chief of Sports Medicine at Henry Ford and a study co-author, adding that younger athletes who suffer a concussion early in life are much more likely to experience longer term effects if they get repeatedly concussed.
Kelechi Okoroha, M.D., a Henry Ford sports medicine surgeon and study co-author, points to the findings as a baseline for young athletes with a history of concussions, "Depending on the number of concussions, the 30-day mark gives us a baseline for how much time adolescent athletes required before returning to sport," he says.
The study offers a lot of information to reflect on and build on according to Jeffrey Kutcher, M.D., medical director and sports neurologist at the Henry Ford Concussion and Sports Neurology Clinic, and global director of the Kutcher Clinic.
"Concussion diagnosis and management requires an individualized and comprehensive neurological approach to ensure we are accurately diagnosing and managing return to play effectively," says Dr. Kutcher who also serves as advisor to the players' associations for the National Football League and National Hockey League.
The study concludes that team physicians must be particularly mindful when evaluating an adolescent athlete due to the short and long-term neurocognitive implications, particularly as it pertains to RTS, and that high school athletes sustaining a concussion require careful attention when determining RTS readiness.
###

New research reveals how hurricane Lane brought fire and rain to Hawaiian islands

UNIVERSITY OF HAWAII AT MANOA
IMAGE
IMAGE: TWO VIEWS FROM THE RAINBOW FALLS OVERLOOK NEAR HILO, HAWAI?I--LEFT SHOWS TYPICAL FLOW; RIGHT SHOWS THE EARLY IMPACT OF HURRICANE. view more 
CREDIT: LEFT: RYAN MCCLYMONT, RIGHT: GORDON TRIBBLE, USGS.
Hurricane Lane was an impactful event for the Hawaiian Islands. In August 2018, over a four-day period, the island of Hawai'i received an average of 17 inches of rainfall, with a four-day single-station maximum of 57 inches, making Hurricane Lane the wettest tropical cyclone ever recorded in Hawai'i. A recently published study, led by University of Hawai'i at Mānoa researchers, details the compounding hazards--fire and rain--produced by the storm.
"In this study we document what we believe to be the first instance of a hurricane causing both heavy rainfall and contributing to multiple instances of fire simultaneously," said Alison Nugent, lead author of the study and assistant professor of Atmospheric Sciences in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST).
A team of UH Mānoa and East-West Center scientists analyzed multiple aspects of the storm's meteorology and climatology, the environmental conditions leading up to the storm, and documented the associated societal impacts.
They found that land-use characteristics and preceding moisture conditions exacerbated fire hazard, and both fire and rain severity were influenced by the hurricane environment and local topographic features. Conditions at the edge of the storm resulted in dry windy weather conducive to fire, while closer to the storm center, the incredibly moist atmosphere lifted by Hawai'i's mountains brought intense, long-lasting rainfall. The simultaneous occurrence of rain-driven flooding and landslides, strong winds, and multiple fires complicated emergency response.
The vulnerability of a population in any given location to the impacts of tropical cyclone hazards is determined by a multitude of interacting factors. Biophysical aspects include distance inland from the coast, terrain slope, coastal ecosystem integrity, and land surface cover. Socioeconomic factors include infrastructure quality, the availability of early warning systems, and capacity for evacuation and emergency response.
The background image shows a visible satellite image of Hurricane Lane on August 22nd, 2018 when its eye was centered near the Hawaiian Islands. The white dashed line indicates the track of Lane, labeled with dates and times (UTC), and the color of the hurricane symbol indicates the strength of winds in the storm
"The surprising thing about Hurricane Lane was that, despite never making landfall, the storm caused considerable damage and disruptions across the state from two rather contradictory things: fire and rain," said Nugent. "Severe flooding on the windward island of Hawai'i Island built over several days, and multiple fires initiated on the lee sides of Maui and O?ahu within hours of each other. Hurricane Lane is one of only three documented cases of hurricanes influencing wildland fire risk in real-time."  
In Hawai'i, landfall by hurricanes is relatively rare due to persistent vertical wind shear over the islands, which weakens hurricanes by essentially tipping them over. However, when hurricanes do occur near Hawai'i, the geography of the islands can exacerbate the hazards. The nearly 750 miles of coastline makes much of the state susceptible to coastal flooding, and the mountainous topography can enhance high-intensity rainfall, as well as intensifying wind speeds. In addition, the steep mountainous terrain can enhance flash flooding and trigger landslide events.
The study highlights Hawai'i's vulnerability to natural hazards and reveals that these events can place significant constraints on emergency responders. This research also demonstrates UH Mānoa's technical expertise across multiple disciplines--climatology, meteorology, water resources, fire science--to assess and predict the impacts of natural hazards and other climate-related events.
In the future the team plans to develop the analytical approaches and Hawai'i-focused climate products needed to assess and prepare for future impacts, especially in the context of a changing climate where intensity and frequency of extreme events is likely to increase.
###

mammals, including humans, indicate equal connectivity

Pioneering study led by Tel Aviv University researchers contradicts widespread conjectures
AMERICAN FRIENDS OF TEL AVIV UNIVERSITY
Researchers at Tel Aviv University, led by Prof. Yaniv Assaf of the School of Neurobiology, Biochemistry and Biophysics and the Sagol School of Neuroscience and Prof. Yossi Yovel of the School of Zoology, the Sagol School of Neuroscience, and the Steinhardt Museum of Natural History, conducted a first-of-its-kind study designed to investigate brain connectivity in 130 mammalian species. The intriguing results, contradicting widespread conjectures, revealed that brain connectivity levels are equal in all mammals, including humans.
"We discovered that brain connectivity -- namely the efficiency of information transfer through the neural network -- does not depend on either the size or structure of any specific brain," says Prof. Assaf. "In other words, the brains of all mammals, from tiny mice through humans to large bulls and dolphins, exhibit equal connectivity, and information travels with the same efficiency within them. We also found that the brain preserves this balance via a special compensation mechanism: when connectivity between the hemispheres is high, connectivity within each hemisphere is relatively low, and vice versa."
Participants included researchers from the Kimron Veterinary Institute in Beit Dagan, the School of Computer Science at TAU and the Technion's Faculty of Medicine. The paper was published in Nature Neuroscience on June 8.
"Brain connectivity is a central feature, critical to the functioning of the brain," Prof. Assaf explains. "Many scientists have assumed that connectivity in the human brain is significantly higher compared to other animals, as a possible explanation for the superior functioning of the 'human animal.'" On the other hand, according to Prof. Yovel, "We know that key features are conserved throughout the evolutionary process. Thus, for example, all mammals have four limbs. In this project we wished to explore the possibility that brain connectivity may be a key feature of this kind -- maintained in all mammals regardless of their size or brain structure. To this end we used advanced research tools."
The project began with advanced diffusion MRI scans of the brains of about 130 mammals, each representing a different species. (All of the brains were removed from dead animals, and no animals were euthanized for the purposes of this study.) The brains, obtained from the Kimron Veterinary Institute, represented a very wide range of mammals -- from tiny bats weighing 10 grams to dolphins whose weight can reach hundreds of kilograms. Since the brains of about 100 of these mammals had never been MRI-scanned before, the project generated a novel and globally unique database. The brains of 32 living humans were also scanned in the same way. The unique technology, which detects the white matter in the brain, enabled the researchers to reconstruct the neural network: the neurons and their axons (nerve fibers) through which information is transferred, and the synapses (junctions) where they meet.
The next challenge was comparing the scans of different types of animals, whose brains vary greatly in size and/or structure. For this purpose the researchers employed tools from Network Theory, a branch of mathematics that enabled them to create and apply a uniform gauge of brain conductivity: the number of synopses a message must cross to get from one location to another in the neural network.
"A mammal's brain consists of two hemispheres connected to each other by a set of neural fibers (axons) that transfer information," Prof. Assaf explains. "For every brain we scanned, we measured four connectivity gages: connectivity in each hemisphere (intrahemispheric connections), connectivity between the two hemispheres (interhemispheric), and overall connectivity. We discovered that overall brain connectivity remains the same for all mammals, large or small, including humans. In other words, information travels from one location to another through the same number of synapses. It must be said, however, that different brains use different strategies to preserve this equal measure of overall connectivity: some exhibit strong interhemispheric connectivity and weaker connectivity within the hemispheres, while others display the opposite."
Prof. Yovel describes another interesting discovery. "We found that variations in connectivity compensation characterize not only different species but also different individuals within the same species," he says. "In other words, the brains of some rats, bats, or humans exhibit higher interhemispheric connectivity at the expense of connectivity within the hemispheres, and the other way around -- compared to others of the same species. It would be fascinating to hypothesize how different types of brain connectivity may affect various cognitive functions or human capabilities such as sports, music or math. Such questions will be addressed in our future research."
"Our study revealed a universal law: Conservation of Brain Connectivity," Prof. Assaf concludes. "This law denotes that the efficiency of information transfer in the brain's neural network is equal in all mammals, including humans. We also discovered a compensation mechanism which balances the connectivity in every mammalian brain. This mechanism ensures that high connectivity in a specific area of the brain, possibly manifested through some special talent (e.g. sports or music) is always countered by relatively low connectivity in another part of the brain. In future projects we will investigate how the brain compensates for the enhanced connectivity associated with specific capabilities and learning processes."
###
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #66 in the world.


Researchers boost koala spotting system

QUEENSLAND UNIVERSITY OF TECHNOLOGY

QUT researchers have published an improved and innovative method for estimating the number of koalas in an area detected by using drones and an artificial intelligent algorithm as they continue the quest of identifying surviving koala populations in bushfire areas.
In an article published in the journal Ecology and Evolution, the researchers led by Associate Professor Grant Hamilton detail the statistical method that uses the number of koalas automatically detected in infrared images of bushland as a starting point.
Their previous research, published in the Nature journal Scientific Reports, showed their system was more reliable and less invasive than traditional animal population monitoring techniques.
Professor Hamilton, who co-authored the latest study with PhD student Evangeline Corcoran and Dr Simon Denman, said all methods for spotting koalas in heavy bushland faced challenges, whether spotters used traditional methods such as people looking up at the trees, dogs brought in to sniff out the koalas or high-tech tools such as infrared drones.
"All abundance estimation methods are at least a bit wrong - that's why they're called estimates," Professor Hamilton said.
The lead author on the article, Evangeline Corcoran, said that finding wildlife in a complex environment could be very challenging.
"We never have perfect knowledge, so we never know exactly how many koalas were there when we do a count," Ms Corcoran said.
"No matter how accurate the drone cameras, a koala could be hiding behind a branch when the drone flies over the area or perhaps one koala is counted twice in an aerial survey.
"That's why we generally have a margin of error. We use different terminology, but for example in general terms our current count might have an error margin of plus or minus ten per cent. That means we're confident that the true number of koalas is somewhere within the margin of error
"By accounting for different factors about the site that can impact on how many koalas we detect, we're making the margin of error smaller and so making our estimates more accurate.
"In this way, we are deriving a count figure that accounts for more factors such as temperature, which is an important consideration because our thermal cameras give a more accurate estimate when its colder, and the density of the forest canopy."
Professor Hamilton is currently involved in a project in which he is using his artificial intelligence (AI) system that uses drones and infrared imaging in a collaborative project to count Kangaroo Island's surviving koala population after the recent devastating bushfires.
Professor Hamilton's system for detecting koalas in bushland begins with drones fitted infrared cameras covering an area in a "lawnmower" pattern at early morning and during the colder months so that the heat of the koalas better stands out.
###
To contribute to Professor Hamilton's work in this area, go to https://alumni-and-friends.qut.edu.au/giving/save-the-koalas. All funds donated will go towards improved monitoring to assist with wildlife recovery.
Media contact:
Rod Chester, QUT Media, 07 3138 9449, rod.chester@qut.edu.au
After hours: Rose Trapnell, 0407 585 901, media@qut.edu.au