Thursday, June 27, 2024

 

Invasive ants spread by hitchhiking on everyday vehicles


These queens of the highway can hitch a ride on your vehicle


Peer-Reviewed Publication

VIRGINIA TECH

Ants found on the inside of a car, hitching a ride to find a new home. 

IMAGE: 

ANTS FOUND ON THE INSIDE OF A CAR, HITCHING A RIDE TO FIND A NEW HOME.

view more 

CREDIT: PHOTO BY SCOTTY YANG FOR VIRGINIA TECH.




Insects are masters of transportation and get around by flying, crawling, swimming, burrowing, and even gliding. Now, ants have been observed using a new method of getting around: hitchhiking. These social insects pack up the whole family, including their queen, and hop in the car for an opportunistic ride to a new area where they can set up a home.

Scotty Yang, assistant professor in the Virginia Tech Department of Entomology within the College of Agriculture and Life Sciences, recently published a paper in Ecological Entomology describing this automotive phenomenon. His observations of this ant behavior spanned from 2017-23, when he observed nine species of ants hitchhiking on personal vehicles. Of these nine species, seven were considered invasive to the places they were found.

It has been well documented that insects can hitch a ride on vehicles, but typically the research focuses on agricultural machinery or the trucking industry. Yang’s work is the first to look at ants hitching on everyday vehicles.

Yang’s study was a citizen science effort that incorporated social media reports from people throughout Taiwan. The work primarily studied ant populations and their hitchhiking on the island, and it included examples of species such as the ghost ant and the black cocoa ant. In the study, factors such as the time of year, weather, type of car, location, duration of stay, and number of ants were examined to better understand the patterns which gave rise to a successful hitchhiker colony.

“We saw social media posts where people were devastated about finding their cars covered in ants,” Yang said. “Although we felt sorry for them, we wanted to examine whether these events had anything in common.”

Ants can hitch a ride on the inside or outside of your vehicle and can even hang out under the hood.

Based on the data collected, Yang learned that hitchhiking ants need three main things to succeed: The ants must be able to climb the surface of the vehicle, the ants must be exhibiting foraging/colonizing behaviors, and the ants must be able to withstand the temperature of the part of the vehicle they settle in.

Tracking invasive insects and how they spread is an important subject for entomologists because these creatures can represent threats to native species of plants and animals. The spread of invasive ants was previously thought to occur primarily through the transport of agricultural, arboreal, and horticultural materials such as logs, plants, and dirt. The impact of noncommercial transport of ants was poorly understood.

Most personal vehicles offer no real food or shelter, but when ants live in overcrowded colonies, they look to leave and find a new, bigger home. Native species of ants tend to face these pressures less frequently, meaning invasive species are more likely to hitchhike, further dispersing these insects into new areas.

As an entomologist based at Virginia Tech, Yang explained how this study could have broad impact in Virginia and the Eastern United States. Of the 100 worst invasive species in the world, five are species of ants and two of these are already established in Virginia: the red imported fire ant and the Argentine ant. These ants have been found in increasingly northern territories, potentially drawn to rising seasonal temperatures over the past decade.

Yang suggests that hitchhiking events will provide more chances for these ants to arrive in new locations, speeding the ants’ spread. He hopes to implement a similar citizen science program in Virginia to the one he conducted in Taiwan, with the goal of tracking the spread of invasive ants and their connection to personal vehicles.

 

How does the human brain switch between survival tasks?


Study uses fMRI scans to analyze the role of the human hypothalamus in switching between hunting and escaping behaviors in a virtual survival game


Peer-Reviewed Publication

PLOS

How does the human brain switch between survival tasks? 

IMAGE: 

THE LEFT FIGURE ILLUSTRATES THE HYPOTHALAMUS, A REGION RESPONSIBLE FOR ENCODING THE SWITCH BETWEEN SURVIVAL-RELATED BEHAVIORS, ALONG WITH ITS CONNECTED REGIONS DURING THE SWITCHING PROCESS. THE RIGHT FIGURE DEMONSTRATES THAT THE OPTIMAL COORDINATION OF THE SWITCHED BEHAVIOR OCCURS ONLY WHEN THERE IS PATTERN SYNCHRONIZATION BETWEEN THE HYPOTHALAMUS AND THE AMYGDALA.

view more 

CREDIT: JAEJOONG KIM, CALIFORNIA INSTITUTE OF TECHNOLOGY (CC-BY 4.0, HTTPS://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)



The hypothalamus is a small region of the human brain typically associated with regulating body temperature, hunger, thirst, fatigue, and sleep. But it also has another important role: helping the brain and body switch between different and opposing survival behaviors such as hunting prey and escaping predators. That’s the conclusion of a new study publishing June 27th in the open-access journal PLOS Biology by Jaejoong Kim and Dean Mobbs of California Institute of Technology, US, and colleagues.

Previous studies in animals have suggested that the hypothalamus is critical in switching between behaviors, but it has been unclear if this is the case in humans. Studying the brain region in humans is challenging because of the tiny size of the hypothalamus; several of its subregions are below the resolution of typical functional magnetic resonance imaging (fMRI) scans.

In the new study, the researchers developed artificial-intelligence-based approaches to optimize and analyze fMRI scans of the brains of 21 healthy individuals, taken over four-hour periods while people were engaged in a hunting and escaping survival game within the fMRI scanner. Participants had to control an avatar, switching between hunting prey and escaping a predator.

The researchers built a computational model to explain the differences in movement patterns that characterized hunting behavior compared to escaping behavior. Then, they analyzed how changes in movements were linked with subtle changes in hypothalamus activity. Using this approach, the team discovered that patterns of neural activity in the hypothalamus, as well as nearby regions of the brain that are directly connected to the hypothalamus, are associated with behavior switching — at least for survival behaviors. Moreover, the strength of this hypothalamus signaling could predict how well someone would perform in their next survival task. While the association was seen for switching between hunting and escaping behaviors, it was not observed for switching between other behaviors.

The authors conclude that the hypothalamus plays a key role in how the human brain switches between and coordinates survival behaviors — a function that is important and evolutionarily advantageous.

The authors add, “New research demonstrates the vital role of the human hypothalamus in switching between survival behaviors such as hunting and escaping, employing advanced imaging and computational modeling methods. This research also reveals how the hypothalamus interacts with other brain regions to coordinate these survival strategies.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biologyhttp://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002624

Citation: Kim J, Tashjian SM, Mobbs D (2024) The human hypothalamus coordinates switching between different survival actions. PLoS Biol 22(6): e3002624. https://doi.org/10.1371/journal.pbio.3002624

Author Countries: United States

Funding: This study was funded by the Templeton Foundation grant (TWCF0366; https://www.templeton.org/; to DM, ST, JK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Overburdened caseworkers put foster youths’ online safety on the back burner





UNIVERSITY OF NOTRE DAME

Karla Badillo-Urquiola 

IMAGE: 

KARLA BADILLO-URQUIOLA

view more 

CREDIT: PHOTO BY BARBARA JOHNSTON/UNIVERSITY OF NOTRE DAME




Foster parents and caseworkers agree: Sexual-related risks are the top concern for online safety for youths in the U.S. child welfare system. But how these two groups approach technology access and other online risks is conflicted, according to research from the University of Notre Dame.

In a study led by Karla Badillo-Urquiola, the Clare Boothe Luce Assistant Professor of Computer Science and Engineering at Notre Dame, 32 caseworkers across the U.S. were interviewed about the online risks encountered by adolescents ages 13-17 in foster care. Caseworkers shared how they are trained to manage online safety and the major challenges they face in their roles. Badillo-Urquiola then compared the results to her previous study, which included interviews with 29 foster parents of 42 foster teens on similar topics.

The research published in the Proceedings of the ACM on Human-Computer Interaction showed that caseworkers are mostly concerned with online activity that facilitates offline, physical risks such as sex trafficking, running away, illegal drug activity and physical fights. Additionally, caseworkers perceive technology as a facilitator for contacting unsafe people, such as previous abusers, and engaging in risky communication with strangers. Harassment like cyberbullying and more general online risks are considered secondary concerns, which caseworkers reported they don’t receive training for.

Both foster parents and caseworkers reported being overburdened with other challenges, forcing them to put online safety as a low priority.

“Foster parents shared that they don’t receive enough support from their caseworkers, but caseworkers said they are struggling too, with large caseloads and focusing on keeping kids physically safe,” Badillo-Urquiola said. “Online safety becomes an afterthought.”

In the U.S. child welfare system, caseworkers are legally responsible for the physical and social-emotional well-being of foster youths, with authority and responsibility over a child’s case. They also receive intense, mandatory training about sexual risks and sex trafficking for foster youth, but many depend on their personal experience instead when navigating these concerns.

Some caseworkers called the training outdated and obsolete due to technology advancing too quickly.

Meanwhile, foster parents receive no training and believe they do not get appropriate guidance from their caseworkers to address online safety concerns. However, the research showed that foster parents were more aware of foster youths’ interactions and experiences online, but they did not have the authority and preparation to manage these situations effectively.

“We see this tension between giving youth in foster care normalcy and keeping them safe,” Badillo-Urquiola said. “Foster parents may want to give foster children a phone because their other children have one and so do other teens, but the parents don’t want the foster child to fall into risky behaviors. The parents don’t know what measures to put in place that provides online access but keeps foster youth safe.”

Unfortunately, a lack of experience and a fear of online risks often cause foster parents to completely revoke access to technology for foster youths, contrary to the “normalcy” policies the U.S. child welfare system calls for.

“We get health services online, apply for jobs online, or even to buy a car you may want access to the internet. It’s also a way to connect and have a social system,” Badillo-Urquiola said. “Restricting technology so much can actually hinder the life skills that foster youth need.”

The study argues that the prioritization of physical safety over online and emotional well-being of foster youths is rooted in a lack of resources and support for caseworkers.

To help improve online safety for foster youths, the researchers proposed multiple socio-technical systems such as collaborative technologies for caseworkers and foster parents, a centralized incidents database to consolidate problem resolutions and best practices, online support forums for caseworkers and foster parents to connect and learn from each other, and training modules for caseworkers, foster parents and foster youths.

“Our world is shifting and society is becoming so technologically advanced, but our child welfare system isn’t advancing with it,” Badillo-Urquiola said. “The child welfare system is not supporting the challenges caseworkers, foster parents and foster youth are facing.”

This research was a multi-institutional collaboration among Notre Dame’s Badillo-Urquiola, Vanderbilt University’s Zainab Agha and Pamela J. Wisniewski, University of Central Florida’s Denielle Abaquita and University of Colorado’s Scott B. Harpin.

 

Under pressure: How comb jellies have adapted to life at the bottom of the ocean



Research shows deep sea organisms have unique lipid structures to help them survive



Peer-Reviewed Publication

UNIVERSITY OF CALIFORNIA - SAN DIEGO

collage of comb jellies 

IMAGE: 

A COLLAGE OF FIVE OF THE COMB JELLY SPECIES STUDIED. RED COLORATION AS SEEN IN THE TWO SPECIMENS AT RIGHT IS COMMON AMONG DEEP-SEA ANIMALS.

view more 

CREDIT: 2021 JACOB WINNIKOFF




The bottom of the ocean is not hospitable: there is no light; the temperature is freezing cold; and the pressure of all the water above will literally crush you. The animals that live at this depth have developed biophysical adaptations that allow them to survive in these harsh conditions. What are these adaptations and how did they develop?

University of California San Diego Assistant Professor of Chemistry and Biochemistry Itay Budin teamed up with researchers from around the country to study the cell membranes of ctenophores (“comb jellies”) and found they had unique lipid structures that allow them to live under intense pressure. Their work appears in Science.

Adapting to the environment

First things first: although comb jellies look like jellyfish, they are not closely related. Comb jellies comprise the phylum Ctenophora (pronounced tee-no-for-a). They are predators that can grow as large as a volleyball and live in oceans all over the world and at various depths, from the surface all the way down to the deep sea.

Cell membranes have thin sheets of lipids and proteins that need to maintain certain properties for cells to function properly. While it has been known for decades that some organisms have adapted their lipids to maintain fluidity in extreme cold — called homeoviscous adaptation — it was not known how organisms living in the deep sea have adapted to extreme pressure, nor whether the adaptation to pressure was the same as the adaptation to cold.

Budin had been studying homeoviscous adaptation in E. coli bacteria, but when Steven Haddock, senior scientist at the Monterey Bay Aquarium Research Institute (MBARI), asked whether ctenophores had the same homeoviscous adaptation to compensate for extreme pressure, Budin was intrigued.

Complex organisms have different types of lipids. Humans have thousands of them: the heart has different ones than the lungs, which are different from those in the skin, and so on. They have different shapes too: some are cylindrical and some are shaped like cones.

To answer whether ctenophores adapted to cold and to pressure through the same mechanism, the team needed to control the temperature variable. Jacob Winnikoff, the study’s lead author who worked at both MBARI and UC San Diego, analyzed ctenophores collected from across the northern hemisphere, including those that lived at the bottom of the ocean in California (cold, high pressure) and those from the surface of the Arctic Ocean (cold, not high pressure).

“It turns out that ctenophores have developed unique lipid structures to compensate for the intense pressure that are separate from the ones that compensate for intense cold,” stated Budin. “So much so that the pressure is actually what’s holding their cell membranes together.”

The researchers call this adaptation “homeocurvature” because the curve-forming shape of the lipids has adapted to the ctenophores’ unique habitat. In the deep sea, the cone-shaped lipids have evolved into exaggerated cone shapes. The pressure of the ocean counteracts the exaggeration so the lipid shape is normal, but only at these extreme pressures. When deep-sea ctenophores are brought up to the surface, the exaggerated cone shape returns, the membranes split apart, and the animals disintegrate.

The molecules with an exaggerated cone shape are a type of phospholipid called plasmalogens. Plasmalogens are abundant in human brains and their declining abundance often accompanies diminishing brain function and even neurodegenerative disease like Alzheimer’s. This makes them very interesting to scientists and medical researchers.

“One of the reasons we chose to study ctenophores is because their lipid metabolism is similar to humans,” stated Budin. “And while I wasn’t surprised to find plasmalogens, I was shocked to see that they make up as much as three-quarters of a deep-sea ctenophore’s lipid count.”

To further test this discovery, the team went back to E. coli, conducting two experiments in high-pressure chambers: one with unaltered bacteria and a second with bacteria that had been bioengineered to synthesize plasmalogens. While the unaltered E. coli died off, the E. coli strain containing plasmalogens thrived.

These experiments were conducted over the course of several years and with collaborators across multiple institutions and disciplines. At UC San Diego, in addition to Budin, whose group conducted the biophysics and microbiology experiments, Distinguished Professor of Chemistry and Biochemistry Edward Dennis’s lab conducted lipid analysis by mass spectrometry. Marine biologists at MBARI collected ctenophores to study, while physicists at the University of Delaware ran computer simulations to validate membrane behaviors at different pressures.

Budin, who is interested in studying how cells regulate lipid production, hopes this discovery will lead to further investigations into the role plasmalogens play in brain health and disease.

“I think the research shows that plasmalogens have really unique biophysical properties,” he said. “So now the question is, how are those properties important for the function of our own cells? I think that’s one takeaway message.” This 


Full list of authors: Daniel Milshteyn, Edward A. Dennis, Aaron Armando, Oswald Quehenberger and Itay Budin (all UC San Diego); Jacob R. Winnikoff (Harvard University); Sasiri J. Vargas-Urbano, Miguel Pedraza and Edward Lyman (all University of Delaware); Alexander Sodt (National Institute of Child Health and Human Development); Richard E. Gillilan (Cornell University); and Steven H.D. Haddock (MBARI).

This research was supported through grants by the National Science Foundation, the National Aeronautics and Space Administration, the National Institutes of Health, the Office of Naval Research, and the David and Lucile Packard Foundation.

 

A CHARMed collaboration created a potent therapy candidate for fatal prion diseases




WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH





27-Jun-2024 

Drug development is typically slow: the pipeline from basic research discoveries that provide the basis for a new drug to clinical trials to production of a widely available medicine can take decades. But decades can feel impossibly far off to someone who currently has a fatal disease. Broad Institute Senior Group Leader Sonia Vallabh is acutely aware of that race against time, because the topic of her research is a neurodegenerative and ultimately fatal disease–fatal familial insomnia, a type of prion disease–that she will almost certainly develop as she ages. Vallabh and her husband, Eric Minikel, switched careers and became researchers after they learned that Vallabh carries a disease-causing version of the prion protein gene and that there is no effective therapy for fatal prion diseases. The two now run a lab at Broad Institute where they are working to develop drugs that can prevent and treat these diseases, and their deadline for success is not based on grant cycles or academic expectations but on the ticking time bomb in Vallabh’s genetic code.

That is why Vallabh was excited to discover, when she entered into a collaboration with Whitehead Institute Member Jonathan Weissman, that Weissman’s group likes to work at full throttle. In less than two years, Weissman, Vallabh, and their collaborators have developed a set of molecular tools called CHARMs that can turn off disease-causing genes such as the prion protein gene—as well as, potentially, genes coding for many other proteins implicated in neurodegenerative and other diseases—and they are refining those tools to be good candidates for use in human patients. Although the tools still have many hurdles to pass before the researchers will know if they work as therapeutics, the team is encouraged by the speed with which they have developed the technology thus far.

“The spirit of the collaboration since the beginning has been that there was no waiting on formality,” Vallabh says. “As soon as we realized our mutual excitement to do this, everything was off to the races.”

Co-corresponding authors Weissman and Vallabh and co-first authors Edwin Neumann, a graduate student in Weissman’s lab, and Tessa Bertozzi, a postdoc in Weissman’s lab, describe CHARM—which stand for Coupled Histone tail for Autoinhibition Release of Methyltransferase—in a paper published in the journal Science on June 27.

“With the Whitehead and Broad Institutes right next door to each other, I don’t think there’s any better place than this for a group of motivated people to move quickly and flexibly in the pursuit of academic science and medical technology,” says Weissman, who is also a professor of biology at the Massachusetts Institute of Technology and an HHMI Investigator. “CHARMs are an elegant solution to the problem of silencing disease genes, and they have the potential to have an important position in the future of genetic medicines.”

To treat a genetic disease, target the gene

Prion disease, which leads to swift neurodegeneration and death, is caused by the presence of misshapen versions of the prion protein. These cause a cascade effect in the brain: the faulty prion proteins deform other proteins, and together these proteins not only stop functioning properly but also form toxic aggregates that kill neurons. The most famous type of prion disease, known colloquially as mad cow disease, is infectious, but other forms of prion disease can occur spontaneously or be caused by faulty prion protein genes.

Most conventional drugs work by targeting a protein. CHARMs, however, work further upstream, turning off the gene that codes for the faulty protein so that the protein never gets made in the first place. CHARMs do this by epigenetic editing, in which a chemical tag gets added to DNA in order to turn off or silence a target gene. Unlike gene editing, epigenetic editing does not modify the underlying DNA—the gene itself remains intact. However, like gene editing, epigenetic editing is stable, meaning that a gene switched off by CHARM should remain off. This would mean patients would only have to take CHARM once, as opposed to protein-targeting medications that must be taken regularly as the cells’ protein levels replenish.

Research in animals suggests that the prion protein isn’t necessary in a healthy adult, and that in cases of disease, removing the protein improves or even eliminates disease symptoms. In a person who hasn’t yet developed symptoms, removing the protein should prevent disease altogether. In other words, epigenetic editing could be an effective approach for treating genetic diseases such as inherited prion diseases. The challenge is creating a new type of therapy.

Fortunately, the team had a good template for CHARM: a research tool called CRISPRoff that Weissman’s group previously developed for silencing genes. CRISPRoff uses building blocks from CRISPR gene editing technology, including the guide protein Cas9 that directs the tool to the target gene. CRISPRoff silences the targeted gene by adding methyl groups, chemical tags that prevent the gene from being transcribed or read into RNA and so from being expressed as protein. When the researchers tested CRISPRoff’s ability to silence the prion protein gene, they found that it was effective and stable.

Several of its properties, though, prevented CRISPRoff from being a good candidate for a therapy. The researchers’ goal was to create a tool based on CRISPRoff that was just as potent but also safe for use in humans, small enough to deliver to the brain, and designed to minimize the risk of silencing the wrong genes or causing side effects.

From research tool to drug candidate

Led by Neumann and Bertozzi, the researchers began engineering and applying their new epigenome editor. The first problem that they had to tackle was size, because the editor needs to be small enough to be packaged and delivered to specific cells in the body. Delivering genes into the human brain is challenging; many clinical trials have used adeno-associated viruses (AAVs) as gene-delivery vehicles, but these are small and can only contain a small amount of genetic code. CRISPRoff is way too big; the code for Cas9 alone takes up most of the available space.

The Weissman lab researchers decided to replace Cas9 with a much smaller zinc finger protein (ZFP). Like Cas9, ZFPs can serve as guide proteins to direct the tool to a target site in DNA. ZFPs are also common in human cells, meaning they are less likely to trigger an immune response against themselves than the bacterial Cas9.

Next, the researchers had to design the part of the tool that would silence the prion protein gene. At first, they used part of a methyltransferase, a molecule that adds methyl groups to DNA, called DNMT3A. However, in the particular configuration needed for the tool, the molecule was toxic to the cell. The researchers focused on a different solution: instead of delivering outside DNMT3A as part of the therapy, the tool is able to recruit the cell’s own DNMT3A to the prion protein gene. This freed up precious space inside of the AAV vector and prevented toxicity.

The researchers also needed to activate DNMT3A. In the cell, DNMT3A is usually inactive until it interacts with certain partner molecules. This default inactivity prevents accidental methylation of genes that need to remain turned on. Neumann came up with an ingenious way around this by combining sections of DNMT3A’s partner molecules and connecting these to ZFPs that bring them to the prion protein gene. When the cell’s DNMT3A comes across this combination of parts, it activates, silencing the gene.

“From the perspectives of both toxicity and size, it made sense to recruit the machinery that the cell already has; it was a much simpler, more elegant solution,” Neumann says. “Cells are already using methyltransferases all of the time, and we’re essentially just tricking them into turning off a gene that they would normally leave turned on.”

Testing in mice showed that ZFP-guided CHARMs could eliminate more than 80% of the prion protein in the brain, while previous research has shown that as little as 21% elimination can improve symptoms.

Once the researchers knew that they had a potent gene silencer, they turned to the problem of off-target effects. The genetic code for a CHARM that gets delivered to a cell will keep producing copies of the CHARM indefinitely. However, after the prion protein gene is switched off, there is no benefit to this, only more time for side effects to develop, so they tweaked the tool so that after it turns off the prion protein gene, it then turns itself off.

Meanwhile, a complementary project from Broad Institute scientist and collaborator Benjamin Deverman’s lab, focused on brain-wide gene delivery and published in Science on May 17, has brought the CHARM technology one step closer to being ready for clinical trials. Although naturally occurring types of AAV have been used for gene therapy in humans before, they do not enter the adult brain efficiently, making it impossible to treat a whole-brain disease like prion disease. Tackling the delivery problem, Deverman’s group has designed an AAV vector that can get into the brain more efficiently by leveraging a pathway that naturally shuttles iron into the brain. Engineered vectors like this one make a therapy like CHARM one step closer to reality.

Thanks to these creative solutions, the researchers now have a highly effective epigenetic editor that is small enough to deliver to the brain, and that appears in cell culture and animal testing to have low toxicity and limited off-target effects.

“It’s been a privilege to be part of this; it’s pretty rare to go from basic research to therapeutic application in such a short amount of time,” Bertozzi says. “I think the key was forming a collaboration that took advantage of the Weissman lab’s tool building experience, the Vallabh and Minikel lab’s deep knowledge of the disease, and the Deverman lab’s expertise in gene delivery.”

Looking ahead

With the major elements of the CHARM technology solved, the team is now fine-tuning their tool to make it more effective, safer, and easier to produce at scale as will be necessary for clinical trials. They have already made the tool modular, so that its various pieces can be swapped out and future CHARMs won’t have to be programmed from scratch. CHARMs are also currently being tested as therapeutics in mice. 

The path from basic research to clinical trials is a long and winding one, and the researchers know that CHARMs still have a way to go before they might become a viable medical option for people with prion diseases, including Vallabh, or other diseases with similar genetic components. However, with a strong therapy design and promising laboratory results in hand, the researchers have good reason to be hopeful. They continue to work at full throttle, intent on developing their technology so that it can save patients’ lives not someday, but as soon as possible.

By Greta Friar, Whitehead Institute

 

Northwestern researchers propose a new, holistic way to teach synthetic biology


Approach promises to bridge scientists across disciplines to solve society’s biggest challenges


Peer-Reviewed Publication

NORTHWESTERN UNIVERSITY

Levels of organization 

IMAGE: 

LOOKING AT DIFFERENT LEVELS OF ORGANIZATION CAN HELP BREAK DOWN COMPLEX TOPICS IN SYNTHETIC BIOLOGY.

view more 

CREDIT: LUCKS LAB




The field of synthetic biology, the science of manipulating biology, has a lot of “cooks in the kitchen,” which has both helped it flourish and made it unusually difficult to create a cohesive, consistent curriculum for students at every level of study. Each discipline involved — from chemical engineering to ethics — has a unique approach to teaching and literature, which creates inconsistencies between what scientists learn.

Now, Northwestern University researchers propose a new way to teach synthetic biology that uses different levels of organization — starting at the molecular scale and growing to the societal scale — to teach core principles and a holistic view of developing sustainable synthetic biology technologies. The approach incorporates components from many disciplines, allowing people from many different backgrounds to access synthetic biology education.

A paper detailing the framework was published yesterday (June 26) in the journal Nature Communications.

“Early versions of synthetic biology courses lacked a conceptual foundation,” said Julius Lucks, a synthetic biology expert and lead author. “From an educational perspective, you saw a kind of hodgepodge depending on which department you were in. We set ourselves the challenge of trying to figure out, how can you merge all those disciplines, somehow develop a common framework and create a common language?”

Lucks is a professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and co-director of the Center for Synthetic Biology (CSB).

When genetic engineering emerged in the 1970s, the idea to reuse, repurpose and reconfigure biological systems to address challenges in society — the core of synthetic biology — became possible. With CRISPR’s advent around 1990, synthetic biology was popularized and, without any curriculum to turn to, faced an identity problem.

“One of the biggest problems we saw in our students and labs are that they tend to be focused on a very specific problem,” said Ashty Karim, a Northwestern research assistant professor of chemical and biological engineering and the paper’s first author.

“For example, if you're looking at how CRISPR works, you might be studying the localized protein machinery that makes edits to the DNA. But if you're going to create a technology based on CRISPR, there are many other important facets than the molecular scale workings. How does it work in the context of a cell or a population of cells within someone's body across different tissues? How does that interact with current healthcare systems? These are discussions that we need to be having and might influence the science that we do.”

Karim is the director of research at CSB and a core member of its faculty.

From this came the idea of breaking down biology into scales, developed originally from a conversation about how most introductory biology courses present a continuum that moves from DNA to tissue to organism. There are emerging behaviors that appear at different levels of organization; society behaves differently from an organism, and so on. Synthetic biology, according to the paper, can be broken down into five components: molecular, circuit/network, cellular, biological communities and societal.

Key to the proposed framework is the presence of robust ethics at each scale.

By piloting the curriculum with undergraduate and graduate students at Northwestern, the authors said they found that different core principles, like thermodynamics and kinetics, mapped onto different scales naturally. For instance, do you need to understand a principle all the time? Or can you “ignore” it up to a certain scale?

Curriculum should also be underpinned by case studies that help learners analyze how engineering choices made at one scale affect biological function at another, assemble potential solutions to global challenges across scales and identify the impact of synthetic biology on societal goals and ethical issues. Case studies can also be tailored to the institution or instructor implementing the curriculum.

Presenting the approach to classes has been greatly successful, according to Lucks and Karim, who both said the concept “clicked” for students even the first time they taught the course. The scales concept has been so successful that in fact, the Northwestern Center for Synthetic Biology uses it to organize its cutting-edge collaborative research.

The researchers also hope the curriculum can be implemented much more broadly and have provided resources and ideas that others may use to adapt the approach to their needs and interests.

The development of the deconstruction approach was supported by the National Science Foundation through the SynBAS NRT program (grant number 2021900) and by the Bachrach Family Foundation.