Saturday, September 09, 2023

 

Revolutionizing lithium production on a string


Peer-Reviewed Publication

PRINCETON UNIVERSITY, ENGINEERING SCHOOL

Lithium-harvesting strings 

IMAGE: A PRINCETON RESEARCH TEAM HAS DEVELOPED A NEW APPROACH FOR CONCENTRATING, SEPARATING, AND HARVESTING LITHIUM SALTS. view more 

CREDIT: PHOTO BY BUMPER DEJESUS




A vital component of the batteries at the heart of electric vehicles and grid energy storage, lithium is key to a clean energy future. But producing the silvery-white metal comes with significant environmental costs. Among them is the vast amount of land and time needed to extract lithium from briny water, with large operations running into the dozens of square miles and often requiring over a year to begin production.

Now, researchers at Princeton have developed an extraction technique that slashes the amount of land and time needed for lithium production. The researchers say their system can improve production at existing lithium facilities and unlock sources previously seen as too small or diluted to be worthwhile.

The core of the technique, described Sep. 7 in Nature Water, is a set of porous fibers twisted into strings, which the researchers engineered to have a water-loving core and a water-repelling surface. When the ends are dipped in a salt-water solution, the water travels up the strings through capillary action – the same process trees use to draw water from roots to leaves. The water quickly evaporates from each string’s surface, leaving behind salt ions such as sodium and lithium. As water continues to evaporate, the salts become increasingly concentrated and eventually form sodium chloride and lithium chloride crystals on the strings, allowing for easy harvesting.

In addition to concentrating the salts, the technique causes the lithium and sodium to crystallize at distinct locations along the string due to their different physical properties. Sodium, with low solubility, crystallizes on the lower part of the string, while the highly soluble lithium salts crystallize near the top. The natural separation allowed the team to collect lithium and sodium individually, a feat that typically requires the use of additional chemicals.

“We aimed to leverage the fundamental processes of evaporation and capillary action to concentrate, separate, and harvest lithium,” said Z. Jason Ren, professor of civil and environmental engineering and the Andlinger Center for Energy and the Environment at Princeton and the leader of the research team. “We do not need to apply additional chemicals, as is the case with many other extraction technologies, and the process saves a lot of water compared to traditional evaporation approaches.”

Limited supply of lithium is one obstacle to the transition to a low-carbon society, Ren added. “Our approach is cheap, easy to operate, and requires very little energy. It’s an environmentally friendly solution to a critical energy challenge.”

An evaporation pond on a string

Conventional brine extraction involves building a series of huge evaporation ponds to concentrate lithium from salt flats, salty lakes, or groundwater aquifers. The process can take anywhere from several months to a few years. The operations are only commercially viable in a handful of locations around the world that have sufficiently high starting lithium concentrations, an abundance of available land, and an arid climate to maximize evaporation. For instance, there is only one active brine-based lithium extraction operation in the United States, located in Nevada and covering over seven square miles.

The string technique is far more compact and can begin producing lithium much more quickly. Although the researchers caution that it will take additional work to scale their technology from the lab to an industrial scale, they estimate it can cut the amount of land needed by more than 90 percent of current operations and can accelerate the evaporation process by more than 20 times compared to traditional evaporation ponds, potentially yielding initial lithium harvests in less than one month.

Compact, low-cost, and rapid operations could expand access to include new sources of lithium, such as disused oil and gas wells and geothermal brines, that are currently too small or too dilute for lithium extraction. The researchers said the accelerated evaporation rate could also allow for operation in more humid climates. They are even investigating whether the technology would allow for lithium extraction from seawater.

“Our process is like putting an evaporation pond on a string, allowing us to obtain lithium harvests with a significantly reduced spatial footprint and with more precise control of the process,” said Sunxiang (Sean) Zheng, study co-author and former Andlinger Center Distinguished Postdoctoral Fellow. “If scaled, we may open up new vistas for environmentally friendly lithium extraction.”

Since the materials to produce the strings are cheap and the technology does not require chemical treatments to operate, the researchers said that with additional enhancements, their approach would be a strong candidate for widespread adoption. In the paper, the researchers demonstrated the potential scalability of their approach by constructing an array of 100 lithium-extracting strings.

Ren’s team is already developing a second generation of the technique that will enable greater efficiency, higher throughput, and more control over the crystallization process. He credits the Princeton Catalysis Initiative for providing critical initial support to enable creative research collaborations. Additionally, his team recently received an NSF Partnerships for Innovation Award and an award from Princeton’s Intellectual Property (IP) Accelerator Fund to support the research and development process, including ways to modify the approach to extract other critical minerals in addition to lithium. Together with Kelsey Hatzell, assistant professor of mechanical and aerospace engineering and the Andlinger Center for Energy and the Environment, Ren also received seed funding from the Princeton Center for Complex Materials to better understand the crystallization process.

Zheng is leading the launch of a startup, PureLi Inc., to begin the process of refining the technology and eventually bringing it to the wider marketplace. Zheng was selected as one of four researchers in the inaugural START Entrepreneurs cohort at Princeton, an academic fellowship and startup accelerator designed to foster inclusive entrepreneurship.

“As a researcher, you know firsthand that many new technologies are too expensive or difficult to scale,” Zheng said. “But we are very excited about this one, and with some additional efficiency improvements, we think it has incredible potential to make a real impact on the world.”

The paper, “Spatially Separated Crystallization for Selective Lithium Extraction from Saline Water,” was published online Sep. 7 in Nature Water. In addition to Ren and Zheng, authors include Howard Stone, Fernando Temprano-Coleto, Nan Yao, Guangming Cheng, and Meiqi Yang of Princeton University; Xi Chen, formerly of Princeton University who is now an associate professor at Tsinghua University; and Liangbing Hu and Qi Dong of the University of Maryland.

 

Bacteria generate electricity from wastewater

Peer-Reviewed Publication

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

EPFL scientists with the electircity-generating bacteria. 

IMAGE: MOHAMMED MOUHIB AND MELANIA REGGENTE, THE STUDY'S LEAD SCIENTISTS, POSING AT THEIR LAB AT EPFL. view more 

CREDIT: JAMANI CAILLET (EPFL)

“We engineered E. coli bacteria, the most widely studied microbe, to generate electricity,” says Professor Ardemis Boghossian at EPFL. “Though there are exotic microbes that naturally produce electricity, they can only do so in the presence of specific chemicals. E. coli can grow on a wide range of sources, which allowed us to produce electricity in a wide range of environments, including from waste water.”

In a paper published in the journal Joule, Boghossian’s team report a groundbreaking achievement in bioelectronics, advancing the capabilities of common E. coli bacteria to generate electricity. The work outlines a novel approach that could revolutionize both waste management and energy production.

E. coli bacteria, a staple of biological research, have been harnessed to create electricity through a process known as extracellular electron transfer (EET). The EPFL researchers engineered E. coli bacteria to exhibit enhanced EET, making them highly efficient “electric microbes.” Unlike previous methods that required specific chemicals for electricity generation, the bioengineered E. coli can produce electricity while metabolizing a variety of organic substrates.

One of the study’s key innovations is the creation of a complete EET pathway within E. coli, a feat not achieved before. By integrating components from Shewanella oneidensis MR-1, a bacterium famous for generating electricity, the researchers successfully constructed an optimized pathway that spans the inner and outer membranes of the cell. This novel pathway surpassed previous partial approaches, and led to a three-fold increase in electrical current generation compared to conventional strategies.

Wastewater as a playground

Importantly, the engineered E. coli exhibited remarkable performance in various environments, including wastewater collected from a brewery. While exotic electric microbes faltered, the modified E. coli thrived, showcasing its potential for large-scale waste treatment and energy production.

“Instead of putting energy into the system to process organic waste, we are producing electricity while processing organic waste at the same time – hitting two birds with one stone!” says Boghossian. “We even tested our technology directly on wastewater that we collected from Les Brasseurs, a local brewery in Lausanne. The exotic electric microbes weren't even able to survive, whereas our bioengineered electric bacteria were able to flourish exponentially by feeding off this waste.”

The implications of the study extend beyond waste treatment. Being abile to generate electricity from a wide range of sources, the engineered E. coli can be utilized in microbial fuel cells, electrosynthesis, and biosensing – to name a few applications. In addition, the bacterium’s genetic flexibility means that it can be tailored to adapt to specific environments and feedstocks, making it a versatile tool for sustainable technology development.

“Our work is quite timely, as engineered bioelectric microbes are pushing the boundaries in more and more real-world applications” says Mouhib, the lead author of the manuscript. “We have set a new record compared to the previous state-of-the-art, which relied only on a partial pathway, and compared to the microbe that was used in one of the biggest papers recently published in the field. With all the current research efforts in the field, we are excited about the future of bioelectric bacteria, and can’t wait for us and others to push this technology into new scales.”

Flasks containing the electricity-producing E. coli.

CREDIT

Jamani Caillet (EPFL)

 

Measurement campaign on small-scale variability of sunlight in the USA successfully concluded


important climate data at the Earth’s surface for the latest satellite generations and the energy transition

Reports and Proceedings

LEIBNIZ INSTITUTE FOR TROPOSPHERIC RESEARCH (TROPOS)

S2VSR-1 

IMAGE: THE PYRNET DEVICES FROM TROPOS MEASURED GLOBAL RADIATION, TEMPERATURE AND HUMIDITY EVERY SECOND IN THE FIELDS OF OKLAHOMA OVER THE NEXT 3 MONTHS. view more 

CREDIT: JONAS WITTHUHN, TROPOS




Leipzig/ Oklahoma City. For the first time, German researchers have measured the influence of clouds on short-term fluctuations of solar radiation in North America. They have used a globally unique network of radiation sensors that was designed and built at the Leibniz Institute for Tropospheric Research (TROPOS), which has been deployed in the flat prairies of the Midwest of the USA from the beginning of June until the end of August this year. So-called pyranometers have recorded the incoming sunlight at 60 locations distributed over an area of 6x6 square kilometres in the US state of Oklahoma with second precision. The researchers from Leipzig  have measured in the direct vicinity of the Southern Great Plains (SGP) Atmospheric Observatory, the world's largest and most comprehensive observatory for atmospheric radiation. The "Small-Scale Variability of Solar Radiation" (S2VSR) measurement campaign by TROPOS, the US radiation measurement programme ARM, and the University of Oklahoma has successfully collected important climate data at the Earth surface. The planned scientific analysis of this data aims for a more efficient use of the latest generations of weather and environmental satellites and photovoltaic systems, and to make weather forecasts and climate models more accurate.

 

These measurements complement the data sets obtained during six previous field campaigns in Germany and in the Arctic since the construction of this network 10 years ago. For this campaign, not only the prevailing meteorological conditions are of interest, but also the extensive possibilities for comparison with routine measurements at the site of the observatory and in the entire state of Oklahoma, namely the comprehensive atmospheric measurements of the ARM programme and the Oklahoma MESONET. The TROPOS pyranometer network has supplemented these with information on fluctuations on the second and decameter scale, which the routine measurements cannot provide due to the too-large distances between stations. The data will now serve as a basis for comparisons with the latest satellite observations: on the one hand, with the American geostationary GOES-R satellite, which already provides observations with 500m resolution every 5 minutes, similar to those of the European METEOSAT satellites of the third generation expected for the end of this year; and on the other hand, with the European Sentinel-2 mission, with images of up to 10 metres spatial resolution.

The field campaign relied on the logistical support and very good cooperation with the American Atmospheric Radiation Measurement (ARM) programme. ARM is focused on the study of the atmosphere and its interactions with atmospheric radiation, and has operated the observatory in Oklahoma since 1992. Another important partner for the campaign and the planned scientific analysis of these observations is the School of Meteorology at the University of Oklahoma. It is the largest meteorology department in the United States and is traditionally better known for its severe weather research. But it has made a significant shift in the last 8 years to a broader atmospheric research programme. „The collaboration on the S2VSR measurement campaign offers excellent opportunities for our CL2EAR (CLouds ClimatE Aerosols Radiation) research group,” says Prof. Jens Redemann, Director of the School of Meteorology. „Through S2VSR, our students have gotten "hands-on" training in handling and data analysis of this unique network of pyranometers that could provide the key to many questions in our research field. We hope for a long and comprehensive collaboration between TROPOS and OU Meteorology.”

“During the 12-week campaign, two measurement stations were damaged by mowing activities, and only one could be repaired. In the course of the routine maintenance, occasional impairments of the measurements were found due to dirty or tilted pyranometers. However, the preliminary quality assurance of the collected data shows that the overall quality and availability is very high even in comparison to past campaigns, and that the campaign was a great success. Here, the commitment of the students of the University of Oklahoma for the maintenance needs to be emphasised in particular, ” reports Dr. Hartwig Deneke from TROPOS

The scientific analysis of the Small-Scale Variability of Solar Radiation (S2VSR) campaign data, which will now begin, will aim for new insights into the short-term fluctuation of sunlight at the Earth's surface as caused primarily by clouds. „On these scales, effects in atmospheric radiative transfer are dominated by the 3-dimensional structure of clouds, which so far is insufficiently taken into account by current weather and climate models as well as in satellite-based products. We hope that in the medium term, the gained insights will also contribute towards improving short-term forecasts of sunlight for the optimal use of renewable energy generated by photovoltaics,” explains Dr. Hartwig Deneke.

  

Colleagues from the University of Oklahoma also helped with the installation of the PyrNet.

CREDIT

Jonas Witthuhn, TROPOS

Era of hydrogen-fueled vehicles to begin -- World-class technology technology for a 2-liter class hydrogen engine (or a passenger car hydrogen engine) capable of running entirely on hydrogen has been developed for the first time in the country

Emissions of carbon dioxide and fine dust reduced by 99% and 90%, respectively

NATIONAL RESEARCH COUNCIL OF SCIENCE & TECHNOLOGY


IMAGE: HYDROGEN ENGINE TEST AND DEVELOPMENT view more
CREDIT: KOREA INSTITUTE OF MACHINERY AND MATERIALS (KIMM)

Amid the fierce competition throughout the globe to develop hydrogen mobility technologies to achieve carbon neutrality, a new technology for a 2-liter class hydrogen-fueled engine (a passenger car hydrogen engine) capable of running entirely on hydrogen has been developed for the first time in the country.

The joint research team led by Principal Researcher Young Choi of the Department of Mobility Power Research of the Korea Institute of Machinery and Materials (President Sang-jin Park, hereinafter referred to as KIMM), an institute under the jurisdiction of the Ministry of Science and ICT, and Researcher Hong-gil Baek of the Zero-Carbon Engine Research Lab of Hyundai-Kia Motor Company (Chairman Eui-sun Chung, hereinafter referred to as HMC) developed the “direct injection hydrogen engine” that runs entirely on hydrogen fuels, and demonstrated its world-class excellence through performance evaluation.

The joint research team of KIMM and HMC injected hydrogen directly into the combustion chamber of the engine of HMC’s existing hybrid vehicle, with a pressure larger by more than 30 times than atmospheric pressure (or with a pressure of more than 30 bar). By using a turbo charger that improves the performance of the engine, the research team was able to maintain high thermal efficiency in all domains from the ignition of the engine to the upper limit of the engine load, allowing the engine to be stably operated throughout the entire engine operating conditions.

In the case of conventional “port injection engines*,” the amount of air that flows into the combustion chamber declines because of the space taken up by the hydrogen fuel that exists in a gaseous state, which leads to lower fuel efficiency and poorer engine performance due to the backfire of the hydrogen fuel and air.
* Port injection hydrogen engine: A port injection hydrogen engine is a type of internal-combustion engine that uses hydrogen as fuel, and combusts hydrogen after mixing it with air by injecting hydrogen using an upper inhaling port instead of injecting it into the cylinder.

On the other hand, the “direct injection hydrogen engine” newly developed by the joint research team has fundamentally resolved the issue of backfire by injecting high-pressure hydrogen fuel directly into the combustion chamber. At the same time, the high compression ratio, fuel stratification, and ultra-lean combustion help to maximize thermal efficiency and improve power performance, while at the same time reducing the amount of harmful emissions.

Compared with gasoline engines, the newly developed hydrogen engine helps to reduce the emissions of carbon dioxide and fine dust by 99 percent and 90 percent, respectively, which meets EU (or European Union)’s requirements for zero-emission vehicles. Additionally, the hydrogen engine emits nitrogen oxides* of less than 15 ppm even without an aftertreatment system that purifies exhaust gases, achieving a high thermal efficiency of up to 40 percent.

* Nitrogen oxides: Nitrogen oxides are chemicals that are created through the reaction between nitrogen and oxygen, and are usually generated during the combustion process of vehicle engines and power plants, etc. Nitrogen oxides are considered to be harmful to the environment, and high emissions of nitrogen oxides may lead to health problems related to respiratory diseases.

Principal Researcher Young Choi of the Department of Mobility Power Research of KIMM said, “The newly developed hydrogen engine technology is an instantaneous and economical technology that can help to replace fossil fuels, which are currently being used as the main power source for vehicles, with carbon-free hydrogen fuels.” He added, “Through collaboration with HMC, we will verify the durability of the engine and also expand the application of this technology to not only passenger vehicles but also commercial vehicles and electricity generation power units. Through continuous research and development of technologies for generating power using carbon-free fuels, we will take the lead in the realization of carbon neutrality.”



###

The Korea Institute of Machinery and Materials (KIMM) is a non-profit government-funded research institute under the Ministry of Science and ICT. Since its foundation in 1976, KIMM is contributing to economic growth of the nation by performing R&D on key technologies in machinery and materials, conducting reliability test evaluation, and commercializing the developed products and technologies.

this research was carried out with the support of the project for the “development of liquid hydrogen engines for running drones and robots,” one of KIMM’s basic projects, as well as the project for the “evaluation of hydrogen direct injection engines” supported by HMC.

DOI

10.1016/j.ijhydene.2022.04.274



 

Biochar-infused concrete: a green solution for corporate sustainability


Biochar-infused concrete is a sustainable material that can be safely used for construction in alignment with Environmental, Social, and Governance (ESG) principles


Peer-Reviewed Publication

CACTUS COMMUNICATIONS

Biochar-Infused Concrete: A Green Solution for Corporate Sustainability 

IMAGE: PROF. YONG SIK OK, THE CHAIR AND DIRECTOR OF THE ASSOCIATION OF PACIFIC RIM UNIVERSITIES (APRU) SUSTAINABLE WASTE MANAGEMENT PROGRAM, PRESIDENT OF THE INTERNATIONAL ESG ASSOCIATION (IESGA), HCR (HIGHLY CITED RESEARCHER) PROFESSOR AT KOREA UNIVERSITY, AND LEAD AUTHOR OF THE ARTICLE. view more 

CREDIT: PROFESSOR YONG SIK OK




Carbon dioxide (CO2) emissions from human activities are the primary drivers of climate change and rising global temperatures. Among the many anthropogenic activities resulting in CO2 emissions, those undertaken by the construction industry have a significant carbon footprint. Therefore, it is essential to mitigate these emissions by switching to low-carbon sustainable construction materials that use bio-based constituents. One such popular bio-based alternative is biochar.

Biochar is the carbon-rich product of the thermochemical conversion of biomass in an oxygen-deficient environment, which has found use in soil amendment in agriculture, as an adsorbent for water and air purification, and as an additive in asphalt for road construction. Biochar is among the most promising materials for carbon sequestration owing to its property to adsorb more than twice its weight in CO2. Therefore, it is now finding applications as a substitute for cement in concrete production. While other bio-based materials are known to decrease the structural performance of concrete, studies show that biochar can enhance such properties if used correctly.

Adding biochar to concrete enhances its mechanical properties and contributes to sustainability objectives. It further reduces the need for traditional cement content, which is desirable given that cement production contributes significantly to carbon emissions. By replacing a portion of cement with biochar, corporate practitioners can substantially lower the carbon footprint of infrastructure development.

What are the benefits and challenges of using biochar in cement? A new article made available online on July 22, 2023, and published in October 2023 in Volume 143 of the journal Cement and Concrete Composites collates the latest research on this topic and provides an in-depth overview of not only the cementitious performance and physicochemical properties of biochar as a construction material, but also its suitability as a sustainable additive in cement, for both economically and ecologically beneficial outcomes. “Since cement production is responsible for about 8% of global CO2 emissions, the core objective of this article is to highlight the potential of biochar in significantly reducing the carbon footprint of the construction industry, while also being economical,” says Prof. Yong Sik Ok, who is the Chair and Director of the Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program, President of the International ESG Association (IESGA), HCR (Highly Cited Researcher) Professor at Korea University, and lead author of the article.

ESG practices encompass social responsibility and community engagement. Adopting biochar-infused concrete demonstrates a commitment to sustainable construction practices, which can positively impact local communities. Reduced emissions and improved air quality, resulting from lower cement usage, can lead to healthier living environments for nearby residents. Corporate practitioners can foster positive relationships with communities by showcasing their dedication to minimizing environmental impacts by advocating for the use of biochar-infused concrete.

“In the long term, biochar can transform the construction industry by influencing architectural practices, urban planning, and infrastructure development toward carbon neutrality. It could also influence industry standards and policies to enable the adoption of other sustainable practices, such as adherence to ESG frameworks, and pave the way for job creation and economic growth in this sector. By reducing the industry's carbon footprint and fostering sustainable construction practices, our work on biochar could significantly contribute to a greener, more resilient, and socially responsible built environment that positively impacts the lives of both current and future generations,” concludes a hopeful Prof. Ok.

Here’s hoping his visions come true.

 

***

 

Reference

DOI: https://doi.org/10.1016/j.cemconcomp.2023.105204

 

Authors: Sachini Supunsala Senadheera1,2, Souradeep Gupta3, Harn Wei Kua 4, Deyi Hou5, Sumin Kim6, Daniel C.W. Tsang7,8, and Yong Sik Ok1,2

 

Affiliations:

1 Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea

2 International ESG Association (IESGA), Republic of Korea

3 Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, India

4 Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore

5 School of Environment, Tsinghua University, China

6 Department of Architecture and Architectural Engineering, Yonsei University, Republic of Korea

7 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, China

8 Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, China

 

About APRU Sustainable Waste Management Program
As a network of leading universities linking the Americas, Asia, and Australasia, APRU (the Association of Pacific Rim Universities) brings together thought leaders, researchers, and policy-makers to exchange ideas and collaborate toward practical solutions to combat the challenges of the 21st century. The APRU Sustainable Waste Management Program focuses on adopting environmentally friendly practices to manage waste effectively, while minimizing its negative impacts on the environment and human health. It involves various strategies and approaches to reduce, reuse, recycle, and properly dispose of waste materials together with ESG concepts. Prof. Yong Sik Ok at Korea University serves as the Director of the program and co-directed by Prof. William Mitch at Stanford University.

 

About Professor Yong Sik Ok
Prof. Yong Sik Ok is a Full Professor and the Director at Korea University, Seoul, Korea. Currently, he is the Director of the Sustainable Waste Management Program for the Association of Pacific Rim Universities (APRU). He is also the President of the International ESG Association. Prof. Ok has made history by being the first and only Highly Cited Researcher (HCR) in three fields, namely, Environment and Ecology, Engineering, and Biology and Biochemistry, in the year 2022, which is abundant evidence of his outstanding contribution to research. Notably, he was declared an HCR in Cross Fields in 2018 and became the first Korean HCR in Environment and Ecology in 2019. Additionally, he was declared the first Korean HCR in Environment and Ecology, and Engineering in 2021.

Prof. Ok has served on the Scientific Organizing Committee of the P4G Nature Forum: Climate Change and Biodiversity, and the Nature Forum: Plastics and Sustainability. He has also chaired several major conferences, including the Engineering Sustainable Development (ESD) series, organized by the APRU and the American Institute of Chemical Engineers. Prof. Ok hosted the first Nature conference in Seoul, which was attended by representatives from several South Korean universities, on waste management and valorization for a sustainable future. This conference was held in collaboration with the Chief Editors of Nature SustainabilityNature Electronics, and Nature Nanotechnology, in 2021. Furthermore, he also partnered with Nature journal to host the first Nature Forum on ESG for Global Sustainability: The “E” Pillar for Sustainable Business in August 2022. The 2023 Global ESG Forum in Singapore was another remarkable event that concluded with academic experts, industrial partners, and ESG practitioners.

 

New study reveals global patterns in marine fish body size and trophic traits with latitude and depth


Peer-Reviewed Publication

PEERJ

Latitudinal gradient of body sizes 

IMAGE: GRADIENTS OF (A) MEAN BODY SIZE WITH STANDARD ERROR (BLACK DOT AND BAR), AND DOT-PLOT OF LOG10 MAXIMUM BODY SIZE FOR <30 CM (BLUE SQUARES), 30–100 CM (GREEN TRIANGLES), AND >100 CM (ORANGE CIRCLES), AND (B) DIFFERENCE FROM THE MEAN BODY SIZE OF ALL FISH IN THIS DATASET (50.7 CM) IN 5-DEGREE LATITUDE BANDS IN THE WHOLE WATER COLUMN. EACH DOT INDICATES ONE SPECIES. view more 

CREDIT: HTTPS://PEERJ.COM/ARTICLES/15880/





Just published in PeerJ Life & Environment, a new research article by Professor Mark Costello (Nord University) and Doctor Han-Yang Lin (University of Auckland) unveils a comprehensive analysis of the relationships between body size, trophic level (position in the food web), latitude, and depth for marine fish species on a global scale. The study sheds light on the complex interplay between evolutionary characteristics and environmental factors in shaping the functional traits of marine species. 

 

“Body size and trophic level increase with latitude, and decrease in the deep-sea and Antarctica, for marine fish species" delves into the intricate dynamics governing the functional traits of marine fish species across latitudinal and depth gradients. 

 

Traditionally, three main theories — the temperature-size rule (TSR), gill-oxygen limitation theory (GOLT), and temperature constraint hypothesis (TCH) — have been proposed to explain the variations in body size and trophic levels of marine species. Until now, however, no study has quantified the relationship between functional traits, latitude, and depth on a global scale for any marine taxon. 

 

Through an extensive analysis of 5,619 marine fish species, the researchers compared the latitudinal gradients of maximum body size and trophic level within different depth zones, including the whole water column and various depth intervals. The study revealed compelling patterns: marine fish species tend to exhibit larger body sizes and higher trophic levels in high latitudes, while the opposite is observed in warmer latitudes, except for the Southern Ocean (Antarctica). The researchers attribute these disparities to the contrasting environmental heterogeneity between the Arctic and Antarctica. The more variable Arctic conditions host a wider diversity of fish species in terms of body size and trophic level. 

 

Furthermore, the study highlights the dominance of fish species with trophic levels ≤ 2.80 in warmer environments, whereas these species are absent in colder regions. This finding underscores the role of temperature in shaping the composition of marine fish communities. Intriguingly, the study also identified a decline in mean maximum body size of fish species with increasing depth, which is attributed to reduced dissolved oxygen levels. This observation aligns with the TSR, GOLT, and TCH hypotheses, providing further validation for these theories.

 

"What I found most remarkable was the contrast between the two polar regions because they are often considered comparable, but the Arctic and Antarctic are not in terms of environmental variability and biodiversity. Also, while average species body size generally got larger in colder (high latitude) temperatures this was not the case in the deep sea, probably due to food and/or oxygen limitations.” stated Professor Mark Costello.

 

The findings of this study have far-reaching implications for marine ecology and our understanding of how various factors shape the distribution and traits of marine organisms. As the first global-scale quantification of functional trait variations for a marine taxon, this research lays the foundation for more targeted conservation efforts and deeper exploration of the mechanisms governing marine biodiversity.

 

The article was published in the PeerJ IABO Hub, the publishing home of the International Association of Biological Oceanography. 

Disclaimer: AAAS and E

SWINE FLU REDUX

Duke-NUS scientists find new strains of influenza A virus in pigs, potentially posing a pandemic risk


Study addresses gaps in understanding of swine influenza A virus evolution and highlights need for early warning of disease emergence

Peer-Reviewed Publication

DUKE-NUS MEDICAL SCHOOL





Scientists from Duke-NUS Medical School and their collaborators have uncovered several previously unknown strains of swine flu viruses that have been circulating unnoticed in Cambodian pig populations over the past 15 years, potentially posing a pandemic risk. The strains include viruses that have been passed by humans to pigs, as well as some with genes originating from as far as North America.

The paper, published in the journal PNAS, makes the case for systematic surveillance to detect and warn of new strains of viruses early to prevent future pandemics.

The study, led by scientists Yvonne Su, Gavin Smith and Michael Zeller from the Emerging Infectious Diseases (EID) Programme, identified genetically diverse pools of influenza A viruses co-circulating in pigs. Pigs are a key intermediary in the emergence and potential spread of influenza viruses between animals and humans, the researchers noted, as they provide a suitable environment for the shuffling of gene segments between avian, swine and human hosts, ultimately giving rise to new viruses. With pork production dramatically increasing over the past 50 years, international trade and movement have further amplified the risks.

“The long-term evolution of different lineages has led to the establishment of genetically distinct viruses that have been continuously circulating in pig populations undetected for decades. Our study revealed the hidden and complex genomic landscape of swine flu virus evolution in Southeast Asia, marking the region as a hotspot for virus diversity and risk of new virus emergence,” said Associate Professor Yvonne Su from Duke-NUS, a senior and corresponding author of the study.

In the study, Assoc Prof Su and her colleagues from Duke-NUS collaborated with counterparts from various institutions, including the National Animal Health and Production Research Institute, Phnom Penh, and London School of Hygiene & Tropical Medicine. From March 2020 to July 2022, they conducted swine influenza surveillance in 18 pig slaughterhouses in Cambodia. They collected 4,089 nasal swabs from pigs in different districts of four provinces. Among these, 72 pigs—or around 2 per cent of the pigs—tested positive for influenza A virus.

The scientists identified nine distinct swine influenza A virus groups, at least seven of which had not been detected for between 2 to 15 years. Among these are multiple H3 lineages that had been passed by humans to pigs, circulating undetected for about 10 years; as well as the H1N1 subtype, which was predominant and likely derived from human origins dating back to the 2009 pandemic. Two seasonal viruses were detected in pigs from Kandal, Phnom Penh, and Takeo provinces, and likely originated from Thailand. The team also isolated a new swine European H1N2 variant (that originally came from birds) with North American genes in Cambodia. While they were the first to detect this variant, their genomic analysis suggests that it had been circulating in pigs in the region since 2014, highlighting the need for better surveillance.

Delving deeper into the movement of viruses across geographical borders, the scientists found that European swine flu viruses had been sporadically introduced into South Central China and Southeast Asia in the early 2000s. Genetic evidence indicated South Central China has served as the major source of European-like swine flu virus transmission in the region since around 2010, with the viruses subsequently spreading more widely across China and Southeast Asian countries such as Cambodia.  

“While swine influenza viruses typically cause mild symptoms in pigs, they pose a pandemic threat to humans, as the human population may lack immunity or have inadequate protection against new strains of swine influenza viruses. Therefore, systematic surveillance is crucial in early detection and warning of new subtypes or strains,” said Professor Gavin Smith, Director of the EID Programme and an author of the study.

Further studies are needed to understand the pandemic threat of the new viruses, including how they react with human viruses and how easily they can spread. To this end, the team is currently developing a platform that can identify major swine flu genetic subtypes. The screening will not be limited to swine and human subtypes but also include avian sequences. With the set up, they will be able to assess if pig and human populations have been infected with the influenza subtypes. 

Professor Patrick Tan, Senior Vice-Dean for Research at Duke-NUS, remarked: “Routine and sustained surveillance is indispensable in identifying new viruses so that their transmission risk can be assessed. It is therefore critical that more efficient and continuous surveillance methods are integrated with automated analytical tools to rapidly provide information on changes in human and animal pathogens. Such a system as the team at Duke-NUS is developing would improve animal health through selection of effective vaccines, and aid in human health by monitoring viruses with the potential for transmission.”