Friday, January 12, 2024

Core-shell ‘chemical looping’ boosts efficiency of greener approach to ethylene production


Multi-university team, including researchers from Lehigh University, reports catalysis breakthrough that could support oxidative coupling of methane (OCM) as an economically viable, more sustainable method for producing the essential chemical feedstock


Peer-Reviewed Publication

LEHIGH UNIVERSITY

Israel Wachs 

IMAGE: 

ISRAEL WACHS IS G. WHITNEY SNYDER PROFESSOR OF CHEMICAL AND BIOMOLECULAR ENGINEERING AND DIRECTOR OF THE OPERANDO MOLECULAR SPECTROSCOPY AND CATALYSIS RESEARCH LAB AT LEHIGH UNIVERSITY. 

view more 

CREDIT: LEHIGH UNIVERSITY





Ethylene is sometimes called the most important chemical in the petrochemical industry because it serves as the feedstock for a huge range of everyday products. It’s used in the production of antifreeze, vinyl, synthetic rubber, foam insulation, and plastics of all kinds. 

Currently, ethylene is produced through an energy- and resource-intensive process called steam cracking, where extremes of temperature and pressure produce ethylene from crude oil in the presence of steam—and in the process, emit tons of carbon dioxide into the atmosphere. Another way in which ethylene can be produced, however, is through a process called oxidative coupling of methane (OCM). It has the potential to be a greener alternative to steam cracking, but until recently, the amount of ethylene it yields did not make the process economically viable.

“So far, the catalytic yield has been below 30 percent for a single pass, meaning just passing the methane and oxygen through the catalyst and getting ethylene on the other side,” says Bar Mosevitzky Lis, a postdoctoral research associate in the Department of Chemical and Biomolecular Engineering in Lehigh University’s P.C. Rossin College of Engineering and Applied Science. “Studies that have simulated the entire industrial process using OCM have shown that the technology doesn’t become profitable until the single pass yield reaches between 30 and 35 percent.”  

OCM is now one step closer to leaving the lab and entering the real world. For the first time, researchers at North Carolina State University (NCSU) and Lehigh University, in collaboration with researchers from the Guangzhou Institute of Energy Conversion and the East China University of Science and Technology, have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene. The paper describing their breakthrough was recently published in Nature Communications.  

The collaboration was led by Fanxing Li, Alcoa Professor of Engineering at NCSU. His team developed a class of core-shell Li2CO3-coated mixed rare earth oxides as catalysts for the oxidative coupling of methane using a chemical looping scheme. The result was a single-pass yield of up to 30.6 percent.

“The idea with chemical looping is that instead of doing a co-feed of methane and oxygen into the chamber with the catalyst, you do it sequentially,” says Mosevitzky Lis, who is also one of the study’s coauthors. “Over time, you lose oxygen from the catalyst and it becomes ineffective. With chemical looping, you start with methane, then switch to oxygen, then back to methane, and the oxygen serves to continually reoxidize the catalyst, thereby replenishing its ability to provide oxygen for the reaction.”

Mosevitzky Lis and his team at Lehigh—led by Israel Wachs, G. Whitney Snyder Professor of Chemical and Biomolecular Engineering and Director of the Operando Molecular Spectroscopy and Catalysis Research Lab—did the characterization of the catalyst. 

“Our specialization is with in situ surface characterization,” says Mosevitzky Lis, “meaning we characterize the surface of catalysts while the reaction is running. We apply a wide array of physical and chemical techniques to understand the transformations catalysts undergo while the catalytic reaction is running on their surface and how these transformations relate to what makes them such good catalysts.”

He says the catalyst is composed from a mixed oxide core covered by lithium carbonate, and it’s the interaction between the core and the shell during chemical looping that is responsible for the high yield. The results mean that, for the first time, upgrading methane—which can be found in natural gas and biogas—into ethylene could be within reach for industry. 

“OCM has the potential to be cheaper and more efficient when it comes to energy and emissions,” he says. “Plus, instead of using crude oil, you’re using methane that typically comes from natural gas but may also be generated in the future from biogas and the electrochemical reduction of carbon dioxide. And once you have ethylene, you’re able to transform it into countless products that are used by the whole world.”

The next step is to determine the suitability of the catalyst for industrial scale production while trying to push the yield even further up. For now, however, having finally improved on a method that’s remained an unfulfilled promise since the 1980s marks a milestone.    

“The intricacy of the system and the dynamics that take place, it’s almost like art,” says Mosevitzky Lis. “Both the core and the shell of the catalyst undergo very extreme processes, generating all kinds of interesting things on the surface. It’s beautiful.”

Related Links: 

 

Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging


Peer-Reviewed Publication

GEORGIA INSTITUTE OF TECHNOLOGY

Light-powered yeast cells 

IMAGE: 

GREEN RHODOPSIN PROTEINS INSIDE THE BLUE CELL WALLS HELP THESE YEAST GROW FASTER WHEN EXPOSED TO LIGHT.

view more 

CREDIT: ANTHONY BURNETTI, GEORGIA INSTITUTE OF TECHNOLOGY





You may be familiar with yeast as the organism content to turn carbs into products like bread and beer when left to ferment in the dark. In these cases, exposure to light can hinder or even spoil the process. 

In a new study published in Current Biology, researchers in Georgia Tech’s School of Biological Sciences have engineered one of the world’s first strains of yeast that may be happier with the lights on.

“We were frankly shocked by how simple it was to turn the yeast into phototrophs (organisms that can harness and use energy from light),” says Anthony Burnetti, a research scientist working in Associate Professor William Ratcliff’s laboratory and corresponding author of the study. “All we needed to do was move a single gene, and they grew 2% faster in the light than in the dark. Without any fine-tuning or careful coaxing, it just worked.”

Easily equipping the yeast with such an evolutionarily important trait could mean big things for our understanding of how this trait originated — and how it can be used to study things like biofuel production, evolution, and cellular aging.

Looking for an energy boost

The research was inspired by the group’s past work investigating the evolution of multicellular life. The group published their first report on their Multicellularity Long-Term Evolution Experiment (MuLTEE) in Nature last year, uncovering how their single-celled model organism, “snowflake yeast,” was able to evolve multicellularity over 3,000 generations.

Throughout these evolution experiments, one major limitation for multicellular evolution appeared: energy.

“Oxygen has a hard time diffusing deep into tissues, and you get tissues without the ability to get energy as a result,” says Burnetti. “I was looking for ways to get around this oxygen-based energy limitation.”

One way to give organisms an energy boost without using oxygen is through light. But the ability to turn light into usable energy can be complicated from an evolutionary standpoint. For example, the molecular machinery that allows plants to use light for energy involves a host of genes and proteins that are hard to synthesize and transfer to other organisms — both in the lab and naturally through evolution. 

Luckily, plants are not the only organisms that can convert light to energy.

Keeping it simple

A simpler way for organisms to use light is with rhodopsins: proteins that can convert light into energy without additional cellular machinery.

“Rhodopsins are found all over the tree of life and apparently are acquired by organisms obtaining genes from each other over evolutionary time,” says Autumn Peterson, a biology Ph.D. student working with Ratcliff and lead author of the study.

This type of genetic exchange is called horizontal gene transfer and involves sharing genetic information between organisms that aren’t closely related. Horizontal gene transfer can cause seemingly big evolutionary jumps in a short time, like how bacteria are quickly able to develop resistance to certain antibiotics. This can happen with all kinds of genetic information and is particularly common with rhodopsin proteins.

“In the process of figuring out a way to get rhodopsins into multi-celled yeast,” explains Burnetti, “we found we could learn about horizontal transfer of rhodopsins that has occurred across evolution in the past by transferring it into regular, single-celled yeast where it has never been before.”

To see if they could outfit a single-celled organism with solar-powered rhodopsin, researchers added a rhodopsin gene synthesized from a parasitic fungus to common baker’s yeast. This specific gene is coded for a form of rhodopsin that would be inserted into the cell’s vacuole, a part of the cell that, like mitochondria, can turn chemical gradients made by proteins like rhodopsin into energy. 

Equipped with vacuolar rhodopsin, the yeast grew roughly 2% faster when lit — a huge benefit in terms of evolution.

“Here we have a single gene, and we're just yanking it across contexts into a lineage that's never been a phototroph before, and it just works,” says Burnetti. “This says that it really is that easy for this kind of a system, at least sometimes, to do its job in a new organism.”

This simplicity provides key evolutionary insights and says a lot about “the ease with which rhodopsins have been able to spread across so many lineages and why that may be so,” explains Peterson, who Peterson recently received a Howard Hughes Medical Institute (HHMI) Gilliam Fellowship for her work. Carina Baskett, grant writer for Georgia Tech’s Center for Microbial Dynamics and Infection, also worked on the study.

Because vacuolar function may contribute to cellular aging, the group has also initiated collaborations to study how rhodopsins may be able to reduce aging effects in the yeast. Other researchers are already starting to use similar new, solar-powered yeast to study advancing bioproduction, which could mark big improvements for things like synthesizing biofuels.

Ratcliff and his group, however, are mostly keen to explore how this added benefit could impact the single-celled yeast’s journey to a multicellular organism. 

“We have this beautiful model system of simple multicellularity,” says Burnetti, referring to the long-running Multicellularity Long-Term Evolution Experiment (MuLTEE). “We want to give it phototrophy and see how it changes its evolution.”

Citation: Peterson et al., 2024, Current Biology 34, 1–7.

DOI: https://doi.org/10.1016/j.cub.2023.12.044

 ANIMAL EXPERIMENTATION

The early bird (or scientist) gets the worm


UC Riverside research on nematodes secures $1.3M NSF funding


Grant and Award Announcement

UNIVERSITY OF CALIFORNIA - RIVERSIDE

Morris Maduro and Gina Broitman-Maduro 

IMAGE: 

PHOTO SHOWS MORRIS MADURO (STANDING) AND GINA BROITMAN-MADURO.

view more 

CREDIT: STAN LIM, UC RIVERSIDE.





RIVERSIDE, Calif. -- Size does not matter. Certainly not when it comes to tiny worms securing the attention of biologists. One such biologist, Morris F. Maduro at the University of California, Riverside, has just been awarded a grant of nearly $1.3 million from the National Science Foundation, or NSF, to study a worm (or nematode) about a millimeter in length.

The research project will focus on the gut of Pristionchus pacificus. Like most nematodes, P. pacificus develops quickly, its growth from embryo to adult taking just four days. It is a complete animal, with a nervous system, skin, intestine, and muscles. Nematodes of the genus Pristionchus are a distant relative of the well-studied species Caenorhabditis elegans, used by biologists as a model organism to study animal development and behavior.

Funded for four years, the research project will focus on changes in the gene network that specify the early intestinal precursor cells in nematodes like P. pacificus. Gene networks describe how genes turn each other on and off. Precursor cells are stem cells that can differentiate — or specialize — into only one cell type.

“During embryonic development, gene networks cause cells to develop along pathways of differentiation, resulting in cells becoming specialized in their function,” said Maduro, a professor of molecular, cell and systems biology who has studied nematodes for more than two decades. “Changes in such networks occur over evolutionary time and in human disease. For more than 25 years, gut specification was studied in only a single species, C. elegans, and its close relatives. The NSF grant will allow us to extend our work into the genus Pristionchus.”

P. pacificus is usually found in association with a species of scarab beetle, while C. elegans is free-living and usually found on rotting fruit. P. pacificus has some adaptations, such as a mouth with a little tooth for eating the corpses of dead beetles. As a result, P. pacificus can attack other nematodes and is more predatory than C. elegansC. elegans tends to eat mostly bacteria and fungi. 

Pristionchus embryos look a like those of C. elegans,” Maduro said. “But even when the phenotype, the outward form of the animal, doesn’t change, the genes behind the scenes can still change. This phenomenon is called developmental system drift, paralleling the term genetic drift. Entire sets of genes can change while their overall function does not. In other words, the endpoint, whether it’s C. elegans or P. pacificus or another nematode species, still looks like a nematode. This means Pristionchus makes its gut in a different way than C. elegans. This idea that genes change when the phenotype looks the same among species is probably quite widespread.”

Photo shows Pristionchus worms. An adult is about 1 millimeter long. 

CREDIT

Maduro lab, UC Riverside.

Eric S. Haag, a professor of biology at the University of Maryland who will not be participating in the research project, said he is excited to learn more about Maduro’s work. 

“Biologists have long sought to understand how new features of animal bodies get encoded by new genomic instructions. But we now know that even the genes that construct ancient traits still undergo evolutionary changes,” Haag said. “Dr. Maduro’s work uses a very manipulable type of nematode to explore this paradoxical fact. Within a group of worms with very similar digestive systems, some species have re-invented the genetic circuits that control their development. It’s so surprising, and I can’t wait to learn about what they find.” 

Maduro explained that gene network changes can occur due to mutations or infection and can lead to diseases such as cancer. 

“Nematodes are a powerful model system for us to study how gene networks can change, because we can get answers inexpensively and on a short time scale,” he said. “By comparing Pristionchus and C. elegans, we hope to learn fundamental principles about how gene networks can become more complex.”

The project will use a combination of bioinformatic and genetics methods to understand how the simple embryonic gene network in an ancestral Pristionchus species underwent expansion over evolutionary time to form a more complex network. 

“Two technologies have allowed researchers to address the explosion of this and other evolutionary questions we see today,” Maduro said. “They are (a) rapid genome sequencing at low cost and (b) the ability to use CRISPR to knock out genes in the genome at low cost and high efficiency.”

Maduro added that nematode species can be found in almost every ecological niche on Earth. 

“There are maybe a million different species,” he said. “We can only study a small number of them. Pristionchus garnered scientific interest only about 25 years ago and research took off in earnest in the past decade when CRISPR became available to simplify gene editing. P. pacificus has three genes that specify the gut, but other related species have fewer genes. We have an opportunity to study the stepwise evolution of how this network got bigger and more complicated.” 

Preliminary work in Maduro’s lab identified two of these three expanded genes in Pristionchus. When the gene pair was deleted, the gut disappeared in about half of the worms. 

“We now need to delete that third gene to make sure we know that’s the only other gene that leads to gut specification,” Maduro said. “This grant will help us do that.”

The project will provide teaching and training opportunities for graduate and undergraduate students, including through a freshman laboratory course in nematode genetics, bioinformatics, microscopy, and molecular biology. Four undergraduate students will receive summer support for each year of the grant to work on projects related to Pristionchus. The grant will support up to two graduate students. Maduro will be assisted in the research by his wife, Gina Broitman-Maduro, an associate specialist in his lab. The start date of the grant is January 15, 2024.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 26,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual impact of more than $2.7 billion on the U.S. economy. To learn more, visit www.ucr.edu.

 

Earth-sized planet discovered in ‘our solar backyard’


'It’s a useful planet because it may be like an early Earth'


UNIVERSITY OF WISCONSIN-MADISON

HD 63433 System Side View.png 

IMAGE: 

YOUNG, HOT, EARTH-SIZED PLANET HD 63433D SITS CLOSE TO ITS STAR IN THE CONSTELLATION URSA MAJOR, WHILE TWO NEIGHBORING, MINI-NEPTUNE-SIZED PLANETS — IDENTIFIED IN 2020 — ORBIT FARTHER OUT.

view more 

CREDIT: ALYSSA JANKOWSKI





MADISON — A team of astronomers have discovered a planet closer and younger than any other Earth-sized world yet identified. It’s a remarkably hot world whose proximity to our own planet and to a star like our sun mark it as a unique opportunity to study how planets evolve.

The new planet was described in a new study published this week by The Astronomical JournalMelinda Soares-Furtado, a NASA Hubble Fellow at the University of Wisconsin–Madison who will begin work as an astronomy professor at the university in the fall, and recent UW–Madison graduate Benjamin Capistrant, now a graduate student at the University of Florida, co-led the study with co-authors from around the world.

“It’s a useful planet because it may be like an early Earth,” says Soares-Furtado.

Here is what scientists know about the planet:

  • The planet is known as HD 63433d and it’s the third planet found in orbit around a star called HD 63433.
  • HD 63433d is so close to its star, it completes a trip all the way around every 4.2 days.
  • “Even though it's really close-orbiting, we can use follow-up data to search for evidence of outgassing and atmospheric loss that could be important constraints on how terrestrial worlds evolve,” Soares-Furtado says. “But that’s where the similarities end — and end dramatically.”
  • Based on its orbit, the astronomers are relatively certain HD 63433d is tidally locked, which means one side is perpetually facing its star.
  • That side can reach a brutal 2,300 degrees Fahrenheit and may flow with lava, while the opposite side is forever dark.

What you should know about the planet’s star:

  • HD 63433 is roughly the same size and star type as our sun, but (at about 400 million years old) it’s not even one-tenth our sun’s age.
  • The star is about 73 light years away from our own sun and part of the group of stars moving together that make up the constellation Ursa Major, which includes the Big Dipper.
  • “On a dark night in Madison,” Soares-Furtado says, “you could see [HD 63433] through a good pair of binoculars.”

How the scientists found the planet:

  • Since then, TESS took four more looks at the star, compiling enough data for the researchers to detect HD 63433d crossing between the star and the satellite.

What comes next:

  • The researchers, including UW–Madison study co-authors graduate student Andrew C. Nine, undergraduate Alyssa Jankowski and Juliette Becker, a UW–Madison astronomy professor, think there is plenty to learn from HD 63433d.
  • The planet is uniquely situated for further study. Its peppy young star is visible from both the Northern and Southern hemispheres, increasing the number of instruments, like the South African Large Telescope or WIYN Observatory in Arizona (both of which UW–Madison helped design and build) that can be trained on the system.
  • And the star is orders of magnitude closer than many Soares-Furtado has studied, possibly affording opportunities to develop new methods to study gasses escaping from the planet’s interior or measure its magnetic field.

“This is our solar backyard, and that's kind of exciting,” Soares-Furtado says. “What sort of information can a star this close, with such a crowded system around it, give away? How will it help us as we move on to look for planets among the maybe 100 other, similar stars in this young group it’s part of?”

This research was supported in part by grants from NASA (HST-HF2-51493.001-A, 21-ASTRO21-0068 and XRP 80NSSC21K0393) and the National Science Foundation (AST-2143763, PHY-2210452 and 1745302).

HD 63433 Fact Sheet.PNG 

 

Drinkable, carbon monoxide-infused foam enhances effectiveness of experimental cancer therapy


Peer-Reviewed Publication

UNIVERSITY OF IOWA HEALTH CARE

Gas-entrapping foam infused with carbon monoxide may help improve cancer therapies. 

IMAGE: 

GAS-ENTRAPPING FOAM INFUSED WITH CARBON MONOXIDE ENHANCES ANTI-CANCER ACTIVITY OF AUTOPHAGY INHIBITORS, WHICH MAY HELP IMPROVE THERAPIES FOR MANY DIFFERENT CANCERS.

view more 

CREDIT: UNIVERSITY OF IOWA HEALTH CARE





Did smokers do better than non-smokers in a clinical trial for an experimental cancer treatment? That was the intriguing question that led University of Iowa researchers and their colleagues to develop a drinkable, carbon monoxide-infused foam that boosted the effectiveness of the therapy, known as autophagy inhibition, in mice and human cells. The findings were recently published in the journal Advanced Science. 

Looking for ways to exploit biological differences between cancer cells and healthy cells is a standard approach for devising new cancer treatments. But it is a painstaking process that requires a deep understanding of complex cancer biology and often a dose of unexpected insight. 

The potential of autophagy inhibitors 

Researchers have known for several decades that autophagy, which is the cell’s natural recycling system, is increased in cancer cells relative to healthy cells, suggesting that inhibiting autophagy might be a way to target cancer cells. However, results from almost 20 clinical trials testing autophagy inhibitors have been inconclusive. 

"Within those clinical trials they found mixed results; there was some benefit, but for many patients there was no benefit, which really pushed researchers back to the drawing board,” says James Byrne, MD, PhD, UI assistant professor of radiation oncology and biomedical engineering and senior author on the new study.  

Searching for insight into why autophagy inhibition only seems to work some of the time, the researchers made the surprising discovery that smokers in two of the previous trials of autophagy inhibitors seemed to do better than non-smokers.  

“When we looked at how the smokers did in those trials, we saw an increase in overall response in smokers that received the autophagy inhibitors, compared to (non-smoker) patients, and we also saw a pretty robust decrease in the target lesion size,” Byrne says. 

This was an exciting finding for Byrne and his team because smoking is also associated with increased levels of carbon monoxide, a gas molecule that can increase autophagy in cells in a way that researchers think might enhance the anti-cancer effect of autophagy inhibitors. 

“We know also that smokers have higher carbon monoxide levels and while we definitely don’t recommend smoking, this suggested that elevated carbon monoxide might improve the effectiveness of autophagy inhibitors. We want to be able to harness that benefit and take it into a therapeutic platform,” says Byrne, who also is a member of University of Iowa Holden Comprehensive Cancer Center. 

Carbon monoxide boosts anti-cancer activity of autophagy inhibition 

The team already had just such a “platform” to test their ideas. Byrne specializes in crafting gas-entrapping materials (GEMs)—foams, gels, and solids made from safe, edible substances that can be infused with different gas molecules. For this study, the researchers created a drinkable foam infused with carbon monoxide.  

When mice with pancreatic and prostate cancers were fed the carbon monoxide foam and simultaneously treated with an autophagy inhibitor, tumor growth and progression was significantly reduced in the animals. The team also showed that combining carbon monoxide with autophagy inhibitors had a significant anti-cancer effect in human prostate, lung, and pancreatic cancer cells in petri dishes. 

Ultimately, Byrne hopes to test this approach in human clinical trials. 

“The results from this study support the idea that safe, therapeutic levels of CO, which we can deliver using GEMs, can increase the anti-cancer activity of autophagy inhibitors, opening a promising new approach that might improve therapies for many different cancers,” he says. 

In addition to Byrne, the research team included UI researchers Jianling Bi, Emily Witt, Megan McGovern, Arielle Cafi, Lauren Rosenstock, Lucas Absler, Srija Machkanti, Kellie Bodeker, Scott Shaw, Vitor Lira, and Michael Henry. 

The research team also included scientists from MIT, Harvard Medical School, University of Pennsylvania, Rutgers Cancer Institute of New Jersey, University of North Carolina Wilmington, and Oregon Health and Science University. 


News media trigger conflict for romantic couples with differing political views


 NEWS RELEASE 

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, NEWS BUREAU

van duyn_emily210914-08-lbs 

IMAGE: 

COUPLES WITH DIFFERING POLITICAL VIEWS AND IDENTITIES FACE UNIQUE CHALLENGES IN THEIR CONSUMPTION OF NEWS, WHICH CAN CREATE SIGNIFICANT STRESS ON THEIR RELATIONSHIP, UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN COMMUNICATION PROFESSOR EMILY VAN DUYN FOUND IN A RECENT STUDY.

view more 

CREDIT: L. BRIAN STAUFFER




CHAMPAIGN, Ill. — By one estimate, as many as 30% of people in the U.S. are in romantic relationships with partners who do not share their political views. In today’s hyperpartisan climate, where Democrats and Republicans have difficulty talking to each other and their views are polarized about media outlets’ credibility, how do couples with differing political perspectives decide which media to follow? And how do these decisions affect their discussions on political issues and their relationship in general?

To explore these questions, University of Illinois Urbana-Champaign communication professor Emily Van Duyn conducted in-depth interviews with 67 people whose partners’ political views differed from their own. For these couples, seemingly mundane decisions about media consumption became “especially difficult,” Van Duyn said.

“Their cross-cutting political views presented many challenges for these couples,” Van Duyn said. “Deciding which media to consume and whether to do so together or separately was difficult because it presented them with a choice about recognizing their political differences and finding a way to navigate them.

“They saw the news as inherently political, and their selection of a news outlet or the act of sharing an article or video meant they were intentionally pulling their partner into a recognition of their political differences.”

News coverage activated differences between the partners that otherwise would not have emerged, sparking conflict as well as discussion. Conflict emerged in various ways, including disagreement over news sources and content, but also when one person failed to respond as intensely as their partner when the latter shared news that they found disturbing or alarming, Van Duyn said.

Partners’ differing political beliefs and/or identities created a need to influence or negotiate their news consumption, a process that Van Duyn calls “negotiated exposure” and that played out across public-facing media such as television and those that are more private in nature like social media.

This process and the interpersonal conflict that resulted from it “often worked in tandem to reinforce one another and impact the relationship,” Van Duyn said. “Conflict resulting from news consumption often caused individuals to seek greater control of their news exposure, a reinforcing process that highlights the muddled order in how individuals simultaneously navigate news and relationships in contemporary democracy.”

 Van Duyn chose to interview only one partner from each couple so that participants would feel comfortable speaking freely without the concern of impacting their relationship or feeling constrained by their partners’ views. To protect the privacy of those interviewed, who were recruited through social media advertisements, pseudonyms were used in the study.

Of the participants, 39 were female, 27 were male and one identified as non-binary. Most were in opposite-sex relationships and had been in their current relationship more than two years. The majority (42) of the study participants where white, 11 were Black, three were Hispanic and 11 were Asian.

A 46-year-old Virginia woman identified as “Wendy” in the study was a Donald Trump-supporting Republican whose boyfriend of two years was a Democrat who voted for Hillary Clinton. Wendy said that she and her partner compromised on which news programs they viewed on television and when, with Wendy having control over programming during the morning hours and her boyfriend’s preferences taking precedence during the afternoon.

 Since the couple fervently disagreed about then-President Trump, co-viewing TV news together created friction, especially when Wendy felt there was too much negative coverage of Trump and wanted to avoid it. Moreover, negative news stories about Trump made Wendy susceptible not only to her boyfriend’s criticism of her favored candidate – but also of herself, personally.

Some couples sought a common media outlet they could agree on to co-view together, while others intentionally chose to consume news independently, whether in separate rooms or by scrolling their social media feeds on separate devices while in each other’s company. Other individuals sought ways of consuming news with their partner that superseded their differences and utilized other news media privately, according to the study.

Nancy, a 49-year-old Michigan woman who had switched from voting Republican to voting Democratic in 2016 and 2020, said her husband was a Trump supporter that held political beliefs she described as “diametrically opposed” to her own. News was a significant source of conflict between them as was Nancy’s ideological shift, which her husband attributed to her viewing CNN.

Nancy, who worked from home, responded by watching CNN secretly during the day when her spouse was away and kept her political activity – working as a text banker for the Democratic party during the 2020 election – secret as well.

“The point in their relationship when couples’ political differences emerged affected how partners negotiated news with one another,” Van Duyn said. “While some were aware of their ideological differences at the outset of the relationship, other individuals found their shared tradition of amicably co-viewing the news together disrupted when their partners’ views or party affiliation changed. Negotiations around news selection in cross-cutting relationships involved a negotiation of political identity as much as of news exposure.”

When the news began to take a negative toll on some participants and their relationship, these couples decided to avoid the news altogether and quit sharing articles or videos with each other because doing so triggered tensions that affected their emotional intimacy.

Van Duyn said that some of those who chose news avoidance cited heightened conflict within their relationship or mental health concerns such as anxiety.

The study, published in the journal Political Communication, was funded by the Institute for Humane Studies at George Mason University.