Monday, June 17, 2024

 

Nile perch invasion triggered genetic bottlenecks in Lake Victoria's endemic cichlids



The introduction of the Nile perch to Africa’s largest lake impacted the genomic structure of multiple local species.

CICHLIDS ARE A POPULAR AQUARIST SPECIES



TOKYO INSTITUTE OF TECHNOLOGY

Figure. The Nile perch is a menace to endemic cichlids 

IMAGE: 

PICTURED ON THE LEFT IS THE NILE PERCH, A VORACIOUS PREDATOR INTRODUCED INTO LAKE VICTORIA BY HUMANS TO SATISFY MEAT DEMANDS IN THE 1950S. ON THE RIGHT, SEVERAL SPECIES OF ENDEMIC CICHLIDS THAT WERE MARKEDLY AFFECTED ARE SHOWN. THE POPULATIONS OF SOME OF THESE SPECIES DECLINED SO MUCH THAT THEIR GENOMIC STRUCTURE REMAINED SIGNIFICANTLY ALTERED EVEN AFTER THEIR NUMBERS CLIMBED BACK UP.

view more 

CREDIT: MINAMI IMAMOTO, MASATO NIKAIDO




Newfound evidence reveals that the upsurge of the exotic Nile perch in Lake Victoria had long-lasting effects on the genetic diversity of various local cichlid species, report scientists from Tokyo Tech. Through large-scale comparative genomic analyses, the researchers found concrete proof in the collective genome of multiple species that this artificially introduced perch decimated many local fish populations, causing a 'bottleneck effect.'

The careless introduction of exotic species by humans into ecosystems can lead to truly catastrophic results, as has been proven time and time again. One tragic example is the introduction of the Nile perch, a large freshwater fish found in waterbodies in Africa, into Africa’s largest lake—Lake Victoria.

Brought to Lake Victoria in the 1950s to meet commercial demand for its meat, the Nile perch devastated native populations of fish known as haplochromine cichlids. By the 1990s, experts estimated that more than 200 species of endemic cichlids had been driven to extinction by this fierce predator. Interestingly, the remaining species could also have been deeply affected by the severe population loss caused by the Nile perch, since such events tend to reduce the genetic diversity of surviving groups. However, how much the genetic structure of cichlids was affected by the introduction of the Nile perch remains unclear.

Against this backdrop, a research team from Tokyo Institute of Technology (Tokyo Tech), The Graduate University for Advanced Studies, SOKENDAI in Japan and Tanzania Fisheries Research Institute in Tanzania decided to shed some light on the issue. In their latest study, which was published in Molecular Biology and Evolution, the researchers conducted large-scale comparative genomics analyses on multiple species of cichlids endemic to Lake Victoria, which provided detailed insights into the effects of the invasive Nile perch since its introduction to this environment. The team included Associate Professor Masato Nikaido and doctoral student Minami Imamoto from Tokyo Tech.

Through a genomic analysis that included 137 haplochromine species, the researchers discovered that four species from the Mwanza Gulf (located in the southern part of the lake) experienced what is known as a ‘bottleneck event.’ In simple terms, the population of these species was reduced so much that the genetic diversity within the population had significantly decreased.

Further investigation by the researchers painted the Nile perch as the culprit for the observed changes in the genetic structure of these four species. “The timing of the bottleneck, which began during the 1970s–1980s and ended by the 1990s-2000s, corresponded to the historical records of these endemic haplochromines’ disappearance and later resurgence,” explains Nikaido. “This is likely associated with the introduction of Nile perch by commercial demand to Lake Victoria in the 1950s” he further adds.

Out of the four species, the researchers noted that the egg-eating cichlids Haplochromis sp. ‘matumbi hunter’ and Haplochromis microdon had experienced particularly severe bottleneck effects. For matumbi hunter, this effect was so pronounced that its genome had diverged significantly even from those of closely related species. “Our findings support the previously existing hypothesis that carnivorous fishes, including egg-eaters, should have experienced a stronger bottleneck,” remarks Nikaido, “This study presents, for the first time, the impacts of the Nile perch upsurge on the genetic structure of Lake Victoria haplochromines” he further adds.

Worth noting, the loss of genetic diversity due to short-term bottleneck effects can seriously hamper a species’ fitness and adaptability in the long-term. Thus, taken together, these newfound insights tell a cautionary tale of just how bad the introduction of exotic species can be, even for species that survive extinction.

Researchers identified species that suffered severe damage due to the introduction of Nile perch, providing new insights into conservational biology. Genetic evaluations can offer practical solutions for protecting local fauna, such as discovering species needing urgent protection and establishing no-fishing zones. Notably, some cichlid species, previously thought extinct, are gradually being rediscovered. Furthermore, developing conservational strategies based on comparative genomics may facilitate the resurgence of the ecosystem.

Fishing for Answers: The Genetic Impact of the Nile Perch Invasion in Lake Victoria (IMAGE)

TOKYO INSTITUTE OF TECHNOLOGY

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/

 

Golden ball mills as green catalysts




RUHR-UNIVERSITY BOCHUM

Golden Ball Mills 

IMAGE: 

GOLD-LINED GRINDING BOWLS CAN CATALYSE REACTIONS WITHOUT SOLVENTS.

view more 

CREDIT: RUB, MARQUARD




Aldehydes are essential compounds in the chemical industry and are used in the manufacture of medications, vitamins, and fragrances. The selective oxidation of alcohols into aldehydes without secondary reactions is thus of great importance. Overoxidation often occurs with many conventional methods, causing unwanted byproducts such as carboxylic acid and esters to be formed. Traditional alcohol oxidation methods also often require the use of solvents and environmentally harmful chemicals. They not only produce harmful waste but also pose significant health risks for users. In addition, high temperatures and pressures are often used that can cause temperature-sensitive substrates to break down.

Reusable vessels

The Bochum team instead uses mechanochemistry: Ball mills, usually used to grind up materials, are used to conduct chemical reactions. The crucial breakthrough lies in the use of grinding vessels coated with a thin layer of gold just a few nanometers thick. “As we discovered that the reaction exclusively takes place at the gold surface, we were able to limit ourselves to the smallest quantities of the precious metal by simply coating the grinding vessel,” says lead author Maximilian Wohlgemuth. “The vessels can also be reused over several reactions.”

The catalytic reaction takes place directly in the ball mill, without the use of harmful solvents and in mild conditions, which retains the integrity of the substrates and increases energy efficiency. “Our method produces significantly less waste and dispenses with the costly production of molecular gold compounds or gold nanoparticles,” summarizes Wohlgemuth. This makes the process not just more sustainable but also more cost-effective.

Transferable to many areas of chemistry

The introduction of gold as a catalyst in mechanochemical processes has the potential for use in many areas of chemistry. “Our results could pave the way for further research and developments based on the use of precious metals in environmentally friendly processes,” says Lars Borchardt. “The combination of high efficiency, low environmental impact, and cost-effectiveness makes our method a promising approach for the future of chemistry.”

 

Previously uncharacterized parasite uncovered in fish worldwide



Using genome reconstruction, scientists unveiled a once “invisible” fish parasite  present in many marine fish world-wide that belongs to the apicomplexans, one of the most important groups of parasites at a clinical level



UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL OF MARINE, ATMOSPHERIC, AND EARTH SCIENCE

Previously uncharacterized parasite uncovered in fish worldwide 

IMAGE: 

RED LIPPED BLENNY, A TROPICAL MARINE SPECIES IN WHICH THE RESEARCHERS DISCOVERED THE ICHTHYOCOLIDS.

view more 

CREDIT: PHILIPPE GUILLAUME.




Using genome reconstruction, scientists unveiled a once “invisible” fish parasite  present in many marine fish world-wide that belongs to the apicomplexans, one of the most important groups of parasites at a clinical level. However, it had gone unnoticed in previous studies. The parasite is geographically and taxonomically widespread in fish species around the planet, with implications for commercial fishing and oceanic food webs.

 An international research study led by scientists at the Rosenstiel School of Marine, Atmospheric, and Earth Science of the University of Miami, the Institute of Evolutionary Biology (IBE), a joint centre of the Spanish National Research Council (CSIC) and the Pompeu Fabra University (UPF) has characterized a new parasite in the red-lipped blenny, a fish that lives in tropical reefs. The international team has also revealed its presence in fish around the world.

Published by Current Biology, the research used an innovative method to reconstruct part of the parasite's genome from sequencing data obtained from its host, and be able to detect its presence in other fish using genetic “barcodes” (DNA barcoding).

An "invisible" parasite has been unveiled

Despite its presence in fish worldwide, the parasite had not been properly characterized until now. The genomic data of the study reveals that this parasite belongs to a group of organisms previously uncharacterized and have been named ichthyocolids, from the Latin “fish dweller.”

“Although it had been previously identified by microscopy, we had not been able to separate the genomic signal from the host fish and the parasite until now. For the first time, we have been able to identify them through their DNA, and place them within the well-known group of apicomplexan parasites,” said Javier del Campo, lead of the study and principal investigator at IBE in the Microbial Ecology and Evolution group and at the Rosenstiel School in Miami.

The parasite is present in fish around the world

Beyond allowing the description of an entirely new group of apicomplexans, the genome reconstruction has allowed researchers to identify a series of genes that can be used to detect the presence of this organism in other genomic or microbiome samples as if it was a “barcode.”

“Once we found ichthyocolids in the red-lipped blenny, a tropical fish, we wondered if it would also be part of the microbiota of other fish,” says Anthony Bonacolta, a PhD candidate in marine biology and ecology at the Rosenstiel School and first author of the study. 

The team compared the DNA of these apicomplexans with public databases of the microbiomes of hundreds of species of freshwater and marine fish. The results showed that these parasites appear associated with the majority of marine fish species analyzed and are present in all oceans. It would therefore be one of the most widespread parasites among marine fish, with potential implications for commercial fishing and oceanic food webs.

“Future studies could help us better understand the impact of parasites as prevalent as ichthyocolids in marine ecosystems,” del Campo says.

A new member of apicomplexan parasites

The Ichthyocolids belong to Apicomplexa, a large group of parasites including the ones that causes malaria and toxoplasmosis. However, these parasites do not pose direct risk to human health, but are important to study for the health of the oceanic ecosystems and for more context on the evolution of those human parasites.

The discovery of the ichthyocolids adds more context to this evolution. For the first time, they are placed as a sister group to well-known coral inhabitants, the corallicolids, also recently described as apicomplexans.

“Studying ichthyocollids not only reveals more about the evolution of major parasites, but also the other basic traits of apicomplexans which may be important in a clinical sense. They may use similar infection mechanisms (as they are also a blood parasite) or have other similar biology which can enlighten our understanding of other apicomplexans.” said Bonacolta.

Reference article:

Anthony M. Bonacolta, Joana Krause-Massaguer, Nico J. Smit, Paul C. Sikkel, & Javier del Campo (2024). A new and widespread group of fish apicomplexan parasites. Current Biology. DOI: https://doi.org/10.1016/j.cub.2024.04.084

About the University of Miami and Rosenstiel School of Marine, Atmospheric and Earth Science

The University of Miami is a private research university and academic health system with a distinct geographic capacity to connect institutions, individuals, and ideas across the hemisphere and around the world. The University’s vibrant and diverse academic community comprises 12 schools and colleges serving more than 19,000 undergraduate and graduate students in more than 180 majors and programs. Located within one of the most dynamic and multicultural cities in the world, the University is building new bridges across geographic, cultural, and intellectual borders, bringing a passion for scholarly excellence, a spirit of innovation, a respect for including and elevating diverse voices, and a commitment to tackling the challenges facing our world. With more than $413 million in research and sponsored program expenditures annually, the University of Miami is a member of the prestigious Association of American Universities (AAU).

 Founded in 1943, the Rosenstiel School of Marine, Atmospheric, and Earth Science is one of the world’s premier research institutions in the continental United States. The School’s basic and applied research programs seek to improve understanding and prediction of Earth’s geological, oceanic, and atmospheric systems by focusing on four key pillars:

*Saving lives through better forecasting of extreme weather and seismic events.

*Feeding the world by developing sustainable wild fisheries and aquaculture programs.

*Unlocking ocean secrets through research on climate, weather, energy and medicine.

*Preserving marine species, including endangered sharks and other fish, as well as protecting and restoring threatened coral reefs.

www.earth.miami.edu.

 

 

Mineralizing emissions: advanced reactor designs for CO₂ capture




KEAI COMMUNICATIONS CO., LTD.
Graphical abstract 

IMAGE: 

GRAPHICAL ABSTRACT

view more 

CREDIT: DUOYONG ZHANG, ET AL




In an advancing sustainable waste management and CO2 sequestration, researchers have crafted reactors that mineralize carbon dioxide with fly ash particles. This avant-garde technique is set to offer a sustainable and lasting solution to the pressing issue of greenhouse gas emissions, repurposing an industrial by-product in the process.

The relentless march of industrialization has corresponded with a surge in CO2 emissions, a key driver of global warming. Existing carbon capture, utilization, and storage (CCUS) technologies grapple with issues of efficiency and cost. Fly ash, a coal combustion by-product, offers a promising avenue for CO2 mineralization, turning waste into a resource and curtailing emissions. Yet, prevailing reactor designs struggle to achieve the desired synergy between gas-particle interactions and operational efficacy. These hurdles underscore the imperative for an in-depth investigation into innovative reactor configurations and operational fine-tuning.

Shanghai Jiao Tong University's cutting-edge research on fly ash mineralization reactors was published in the Energy Storage and Saving journal on May 7, 2024. The study (DOI: 10.1016/j.enss.2024.04.002), subjected to meticulous computational optimization, unveils a pioneering reactor design anticipated to escalate the efficacy of CO2 capture and mineralization.

The research introduces a duo of reactor designs, each meticulously sculpted for CO2 mineralization via fly ash, with computational fluid dynamics at the helm of optimization. The impinging-type inlet design stands out for its capacity to amplify interfacial interactions, extending particle dwell times and significantly augmenting mineralization rates. The quadrilateral rotary-style inlet, conversely, champions streamlined flow for comprehensive mixing and reaction efficacy. A rigorous exploration of operational parameters—flue gas velocity, carrier gas velocity, and particle velocity—yielded optimal ranges that promise to propel reactor performance to new heights, ensuring efficient CO2 mineralization and phase separation post-reaction.

Dr. Liwei Wang, the study's principal investigator, remarked, "Our findings mark a significant leap forward in carbon capture and utilization technologies. By refining reactor designs and operational parameters, we've achieved a substantial leap in CO2 mineralization efficiency. This work is not only a boon to sustainable waste management but also presents a pragmatic strategy for curtailing industrial carbon emissions, aligning with global climate action initiatives."

The research bears profound implications for coal-fired power plants, offering a transformative use for the fly ash they generate. By channeling this by-product into CO2 mineralization, the study paves the way for diminished carbon emissions and a reduction in the environmental burden of fly ash disposal. The broader applications of this research are expansive, presenting a harmonious solution to waste management and CO2 sequestration that could very well redefine CCUS technology approaches.

###

Media contact:

Name: Yue Yang

Email: enss@xjtu.edu.cn

 

Climate change: rising temperatures may impact groundwater quality


KIT researchers are investigating climate change’s impact on groundwater resources and its follow-on effects



KARLSRUHER INSTITUT FÃœR TECHNOLOGIE (KIT)

Recently published KIT research shows that overly warm groundwater could affect millions of people by 2100. (Photo: Susanne Benz, KIT) 

IMAGE: 

 

RECENTLY PUBLISHED KIT RESEARCH SHOWS THAT OVERLY WARM GROUNDWATER COULD AFFECT MILLIONS OF PEOPLE BY 2100. (PHOTO: SUSANNE BENZ, KIT)

view more 

CREDIT: PHOTO: SUSANNE BENZ, KIT




Earth’s climate system is heating up due to the atmosphere’s increased concentration of greenhouse gases, which limits the amount of heat that can be radiated away. The oceans absorb a substantial fraction of this heat, but soil and groundwater also act as heat sinks. However, little is known thus far about the effects Earth’s surface warming has on groundwater over space and time. “To close this gap, we have simulated the projected changes in global groundwater temperatures through 2100,” said Dr. Susanne Benz from the Institute of Photogrammetry and Remote Sensing at KIT, which prepared the study in cooperation with Dr. Kathrin Menberg and Professor Philipp Blum from the Institute of Applied Geosciences at KIT. “We can provide maps showing global groundwater temperatures at various depths beneath Earth’s surface. The maps show that the world’s highest groundwater warming rates can be expected at locations with a shallow groundwater table and/or high atmospheric warming.”

 

The researchers based their projections on the SSP 2–4.5 and SSP 5–8.5 climate scenarios. These scenarios reflect different socioeconomic development pathways and different trends in the concentration of atmospheric greenhouse gases in the future. SSP 2–4.5 is in the middle range of possible future greenhouse gas concentration trends; SSP 5–8.5 is at the upper extreme. 

 

Millions of People Affected by Overly Warm Drinking Water

The study indicates that by 2100, groundwater temperatures will rise by 2.1 degrees Celsius in the SSP 2–4.5 scenario and by 3.5 degrees Celsius in the SSP 5–8.5 scenario. “There are already about 30 million people living in regions where the groundwater is warmer than stipulated in the strictest drinking water guidelines. That means it may not be safe to drink the water there without treatment. It may need to be boiled first, for example. The drinking water also gets warmed up in water pipes by heat in the ground,” Benz noted. “Depending on the scenario, as many as several hundred million people could be affected by 2100.” According to the study, the figure would be 77 to 188 million people for SSP 2–4.5 and 59 to 588 million for SSP 5–8.5. The broad ranges are due to spatial variations in climate change and population trends. The researchers projected the lowest warming rates in mountainous regions with deep water tables, such as the Andes and the Rocky Mountains. 

 

Temperature Changes Affect Ecosystems

The temperature of groundwater plays a crucial role in water quality by influencing a number of chemical, biological and physical processes. “Under certain conditions, rising groundwater temperatures can lead to increasing concentrations of harmful substances like arsenic or manganese. These higher concentrations can have a negative impact on human health, especially when groundwater is used as drinking water,” Benz said, adding that warmer groundwater also affects groundwater-dependent ecosystems, aquatic biogeochemical processes, geothermal energy potential, and thermal regimes in rivers. It can also pose a challenge to biodiversity and a risk to carbon and nutrient cycles. 

 

A further effect of increased near-surface and groundwater temperatures is that critical thresholds can be exceeded in water distribution networks. This could have human health implications, e.g. by promoting the growth of pathogens such as Legionella spp. Fish species, especially salmon, are also affected by the changing conditions. Their reproduction could be endangered if groundwater-dependent spawning grounds in rivers become too warm. “Our results show how important it is to take action to protect groundwater and find lasting solutions to counteract the negative impact of climate change on groundwater,” Benz said. 

 

Original publication

Susanne A. Benz, Dylan J. Irvine, Gabriel C. Rau, Peter Bayer, Kathrin Menberg, Philipp Blum, Rob C. Jamieson, Christian Griebler, Barret L. Kurylyk: Global groundwater warming. Nature Geoscience, 2024. DOI: 10.1038/s41561-024-01453-x

More about the KIT Climate and Environment Center

 

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 10,000 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,800 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.


Understanding the Green Sahara’s collapse


TUM scientists develop new method for early detection of climate tipping points



TECHNICAL UNIVERSITY OF MUNICH (TUM)





From the last ice age until around 6000 years ago, the region now known as the Sahara Desert was a lush, green landscape teeming with life. This “African Humid Period” ended abruptly, transforming this thriving region into the arid terrain seen today. Scientists have long puzzled over how the slow changes in solar radiation due to variations in Earth’s orbit could lead to such an abrupt large-scale climate transition. This mystery highlights the broader challenge of understanding and predicting abrupt shifts in natural systems—commonly linked to tipping points.

New study by Andreas Morr and Prof. Niklas Boers, researchers at TUM and PIK, introduces an advanced early detection method that provides more accurate and reliable early warnings, particularly under more realistic external conditions. Traditional methods assume that random disturbances in a system are uncorrelated in time. However, this is not realistic for climate systems, because it assumes each day's weather would be independent of the previous day. In reality, tomorrow's weather heavily depends on today's. This mismatch reduces the reliability of conventional methods for early warning signals. The new method by Morr and Boers addresses this limitation by developing estimators of system stability designed specifically for more realistic climate conditions.

When applying their methods to the desertification of the West Sahara, they found a clear early warning before the loss of vegetation, consistent with the crossing of a tipping point. “Our findings suggest that the abrupt end of the African Humid Period was likely caused by a weakening of the system's stability as the orbital configuration of the Earth changed, gradually pushing the system toward a tipping point”, says Andreas Morr. Niklas Boers adds: “The advanced detection method that we developed enhances our ability to monitor and respond to potential tipping points in various natural systems. Our results suggest that large-scale climate tipping events such as this can in principle be anticipated, hopefully enabling timely interventions.”

By improving the accuracy of early warning signals, the research supports better preparedness and response strategies, ultimately helping to protect ecosystems and human societies from severe impacts of potential climate tipping points that might be crossed due to anthropogenic climate change.