Six hundred million years ago, fever appeared in animals as a response to infections: the higher body temperatures optimized their immune systems. At the time, virtually all animal species were cold-blooded. They had to sit in warm patches of habitat for extended periods of time to achieve fever-range body temperatures. For Michael Logan, a Tupper Fellow at the Smithsonian Tropical Research Institute in Panama (STRI), pathogens may be the reason why warm-blooded creatures first emerged.
By keeping their bodies warm at all times, birds and mammals may be effectively priming their immune systems to withstand virulent pathogens [Credit: Michael Logan] |
Over the years, scientists have proposed three different models for why endotherms evolved high, stable body temperatures. One claims that it aids physiological processes; another, that it helps animals maintain activity over longer periods of time; and the third, that it enables parents to take care of precocial offspring. However, none of these models have found strong support and the evolutionary history of endothermy remains somewhat of a mystery.
Although these various hypotheses may have some truth to them, for Logan, the trigger must have been something that profoundly impacted the ability of animals to survive and reproduce, otherwise endothermy would be too costly a strategy and would not be favored by natural selection. In a recent paper, published in the journal Ideas in Ecology and Evolution, he explains this theory.
The ability to mount a rapid fever response to a pathogen means warm-blooded creatures are not limited by the thermal variation in their habitats [Credit: Michael Logan] |
In this context, endothermy may offer critical advantages over ectothermy. The ability to mount a rapid fever response to a pathogen means endotherms are not limited by the thermal variation in their habitats. Meanwhile, cold-blooded creatures depend on external sources of heat to reach fever-like temperatures. They are subject to fluctuations in environmental conditions, and in searching for the ideal microclimate required to initiate fever, they may struggle to forage or mate and may be exposed to predators.
"This hypothesis has emerged from recent discoveries in the fields of immunology and animal physiology, but we still need to rigorously test it with data and experiments," Logan said. "For example, my model predicts that species that maintain the warmest, most stable body temperatures (all else remaining equal) should also experience the highest frequency of disease outbreaks or the most virulent pathogens."
Source: Smithsonian Tropical Research Institute [June 04, 2019]
Read more at https://archaeologynewsnetwork.blogspot.com/2019/06/pathogens-may-have-facilitated.html#zdYzTgeuO3OBcR3e.99