Sunday, November 20, 2022

Mining the heat below our feet could unlock clean energy for the world

TEDX Boston presenter describes Quaise Energy’s unique approach and progress to date

Reports and Proceedings

SCIENCE COMMUNICATIONS

Quaise G1 geothermal rig.png 

IMAGE: ARTIST'S RENDITION OF THE QUAISE DRILLING RIG BEING DEVELOPED TO ACCESS THE GEOTHERMAL HEAT MILES BELOW OUR FEET. SEE SHIPPING CONTAINERS AT RIGHT FOR SCALE. view more 

CREDIT: HECTOR VARGAS, QUAISE ENERGY

CAMBRIDGE, MA--The heat miles beneath our feet—deep geothermal energy—could provide more than enough clean, renewable energy to meet world demand as we transition away from fossil fuels, according to a presenter at the inaugural TEDX Boston Planetary Stewardship Event held November 13-14.

Timed to align with the United Nations’ Climate Change Conference, the TEDX Boston event was “designed to spotlight actionable ideas for human activity to achieve a sustainable relationship with the planet’s natural systems,” according to the event’s web site.

Great Potential

“The total energy content of the heat stored underground exceeds our annual energy demand as a planet by a factor of a billion. So tapping into a fraction of that is more than enough to meet our energy needs for the foreseeable future,” said Matt Houde, one of 100 speakers at the TEDX Boston event. Houde is co-founder and project manager at Quaise Energy.

Today, however, we can’t drill deep enough to unlock that energy. “If we can get to ten miles down, we can start to find economic temperatures everywhere. And if we go even deeper, we can get to temperatures where water [pumped to the site] becomes supercritical,” a steam-like phase that will allow “a step change improvement in the power production per well and so cheapen the cost of energy,” Houde said.

The deepest hole that’s been drilled to date, the Kola borehole, went 7.6 miles down. It took 20 years to complete because conventional equipment like mechanical drill bits can’t withstand the conditions at those depths. They break down. “And the truth is, we’ll need hundreds if not thousands of Kola boreholes if we want to scale geothermal to the capacity that’s needed,” Houde said.

Enter Quaise, which “is developing technology to blast rock with microwaves to potentially drill the deepest holes on Earth. And no, I’m not stealing a plot device from Star Trek. This technology is real and has been proven in [an MIT] lab,” said Houde, who went on to describe the Quaise approach in more detail, the challenges involved, and progress to date.

Many Benefits

First, however, Houde addressed the many benefits of deep geothermal energy in general. These include being available 24/7, which “can help balance out the intermittent flows of wind and [solar].” Deep geothermal plants will also have a “minimal surface footprint”—they won’t need much land. Houde illustrated this with an artist’s rendition of a future rig next to truck shipping containers.

Finally, Houde said, geothermal is “the perfect energy source to take advantage of the largest workforce in the world, the oil and gas industry.” That industry has “11 million jobs in the US alone, and a skill set that is exactly what’s needed for geothermal to rapidly scale.”

Drilling with Microwaves

Quaise is working to replace conventional drill bits with millimeter wave energy (cousins to the microwaves many of us cook with). Those millimeter waves literally melt then vaporize the rock to create ever-deeper holes.

The general technique was developed at MIT over the last 15 years. In the lab there scientists demonstrated that millimeter waves could indeed drill a hole in basalt. Further, the gyrotron machine that produces the millimeter wave energy is not new. It’s been used for some 70 years in research toward nuclear fusion as an energy source.

The Quaise technique also takes advantage of the conventional drilling technologies developed by the oil and gas industry. The company will use these to drill down through surface layers (what they were optimized for) to basement rock (which millimeter waves can easily power through). Houde explained that millimeter waves “are ideal for the hard, hot, crystalline rock deep down that conventional drilling struggles with.” They are not as efficient in the softer rock closer to the surface, but “those are the same formations that conventional drilling excels at.” Hence the company’s hybrid approach to the problem.

Challenges Remain

There are still several challenges that must be solved to scale the Quaise technology. These include some fundamental science, such as a better understanding of rock properties at great depths. Further, “we need to advance the supply chain for gyrotrons” and the waveguides that carry their energy downhole, Houde said. That equipment is currently optimized for specialized one-off projects in fusion research. For deep geothermal applications, they must be produced in quantity and be robust and reliable in a field environment.

There are also engineering challenges that must be addressed. “Chief among them,” said Houde, “how do we ensure full removal of the ash [created by the process] and transport that ash up the borehole over long distances?”

Progress to Date

In the lab at MIT, engineers demonstrated the technology by drilling a hole in basalt with a 1:1 aspect ratio (two inches deep by two inches in diameter). Quaise has extended the MIT results by scaling up the power density of the microwave beam as well as the depth of the hole by a factor of ten to achieve a 10:1 aspect ratio. In parallel, the company is building the first field-deployable prototype millimeter-wave drilling rigs.

“Our current plan is to drill the first holes in the field in the next few years,” Houde said. “And while we continue to advance the technology to drill deeper, we will also explore our first commercial geothermal projects in shallower settings.”

For more information about deep geothermal and Quaise Energy, read the following articles that appeared the day of Houde’s TEDX Boston presentation and the day after.

‘Deep Geothermal’ Promises to Let Drillers Go Deeper, Faster and Hotter

By Benoît Morenne

Wall Street Journal

November 13, 2022

Deep Geothermal — One Renewable Energy Source To Rule Them All?

By Steve Hanley

Cleantechnica

November 14, 2022

 

--By Elizabeth A. Thomson, correspondent for Quaise Energy

NYU Abu Dhabi researchers uncover groundbreaking insights into the evolution of color patterns in frogs and toads

Large comparative analysis of frogs and toads finds that their vertebral stripe – which helps them evade predators – evolves repeatedly and rapidly, and is adaptive to the animal’s habitat


Peer-Reviewed Publication

NEW YORK UNIVERSITY

Figure 1 

IMAGE: THE IMAGES ARE ALL PTYCHADENA ROBEENSIS, TAKEN BY SANDRA GOUTTE, PHD, A RESEARCH ASSOCIATE AT THE EVOLUTIONARY GENOMICS LAB AT NYUAD. view more 

CREDIT: COURTESY OF NYU ABU DHABI

A team of researchers from NYU Abu Dhabi (NYUAD) has discovered new insights into the evolution of color patterns in frogs and toads – collectively known as anurans. Animal color patterns can help them camouflage with their surroundings and avoid detection from preys or predators. Many anurans have a light stripe along their back, which, when observed from above, creates the optical illusion that the animal is split in two halves and confuses visually-oriented predators. Although this color pattern is widespread in frogs around the world, little is known regarding its evolution or genetic origin.

In their paper published in the journal Molecular Biology and Evolution, the researchers of the Evolutionary Genomics Lab at NYUAD completed a broad-scale comparative analysis, which included over 2,700 species of anurans, to further the understanding of the evolutionary history of the vertebral stripe. They found that the vertebral stripe has evolved hundreds of times and is selected for in terrestrial habitats where visual predators coming directly from above – such as mammals or birds – are more prevalent. In contrast, the pattern was lost significantly more often in arboreal lineages – those living in trees – than in other habitats. While beneficial to frogs living on the ground, this color pattern may thus be disadvantageous to frogs living in trees.

To understand the genetic basis of the pattern, the researchers focused on the Ethiopian grass frog species Ptychadena robeensis, which is polymorphic – meaning that it presents the vertebral stripe trait in multiple forms – wide, thin or absent. They found that the gene ASIP is linked to the stripe pattern in that species. This genetic variation affects the level of expression of ASIP in the different morphs, a higher expression leading to a wide stripe and a lower expression leading to a thin stripe.

They also compared the genes of closely-related species of frogs and found that, while they present the same stripe patterns, they do not share the genetic variation found in P. robeensis. This led the researchers to the conclusion that the stripe alleles found in P. robeensis evolved recently. The researchers further conclude that the vertebral stripe evolves rapidly in anurans, which may allow species to adapt to environmental changes or variable conditions.

This study is the first large-scale study of the adaptive value of the anuran vertebral stripe, whose evolutionary history has, until now, not been well understood. This study also establishes a link between the ASIP gene and a color pattern in anurans for the first time. ASIP is a well-studied gene in mammals, known to be linked to melanin production and color variation. The fact that it is linked to color patterns in frogs opens new research avenues on anuran color patterns and comparative studies across vertebrates.

“Our findings establish that the vertebral stripe in frogs and toads holds a great potential in the field of evolutionary biology as it represents a clear example of repeated evolution. Studying this color pattern in other species can thus help us understand to which extent evolution predictably employs the same molecular paths when identical phenotypes evolve under similar selection pressures,” said Sandra Goutte, PhD, a research associate at the Evolutionary Genomics Lab at NYUAD. “The identification of ASIP’s role in the coloration of anurans by our team can also guide future comparative studies across vertebrates."



The images are all Ptychadena robeensis, taken by Sandra Goutte, PhD, a research associate at the Evolutionary Genomics Lab at NYUAD.



The landscape is a grassland in the Ethiopian Highlands near Dinsho, in Oromia

About NYU Abu Dhabi

www.nyuad.nyu.edu

NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective undergraduate curriculum across the disciplines with a world center for advanced research and scholarship. The university enables its students in the sciences, engineering, social sciences, humanities, and arts to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from over 115 countries and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Down syndrome, like Alzheimer's, is a double-prion disorder

Discovery may point to new therapeutic approach for common neurodegenerative disorders

Peer-Reviewed Publication

UNIVERSITY OF CALIFORNIA - SAN FRANCISCO

The brains of people with Down syndrome develop the same neurodegenerative tangles and plaques associated with Alzheimer’s disease and frequently demonstrate signs of the neurodegenerative disorder in their forties or fifties. A new study from researchers at UC San Francisco shows that these tangles and plaques are driven by the same amyloid beta (Aß) and tau prions that they showed are behind Alzheimer’s disease in 2019. 

Prions begin as normal proteins that become misshapen and self-propagate. They spread through tissue like an infection by forcing normal proteins to adopt the same misfolded shape. In both Alzheimer’s and Down syndrome, as Aß and tau prions accumulate in the brain, they cause neurological dysfunction that often manifests as dementia. 

Tau tangles and Aß plaques are evident in most people with Down syndrome by age 40, according to the National Institute on Aging, with at least 50% of this population developing Alzheimer’s as they age. 

The new study, published Nov. 7, 2022, in Proceedings of the National Academy of Sciences, highlights how a better understanding of Down syndrome can lead to new insights about Alzheimer’s, as well.

“Here you have two diseases—Down syndrome and Alzheimer’s disease—that have entirely different causes, and yet we see the same disease biology. It’s really surprising,” said Stanley Prusiner, MD, the study’s senior author, who was awarded the Nobel Prize in 1997 for his discovery of prions

Down syndrome is the most common neurodegenerative disease among younger people in the United States, while Alzheimer’s is the most common among adults. 

Down syndrome occurs because of an extra copy of chromosome 21. Among the many genes on that chromosome is one called APP, which codes for one of the major components of amyloid beta. With an extra copy of the gene, people with Down syndrome produce excess APP, which may explain why they develop amyloid plaques early in life. 

Young Brains Give a Clearer Picture

It’s been known for some time that Aß plaques and tau tangles are present in both Down syndrome and Alzheimer’s. Having shown earlier that these neurodegenerative features are provoked by prions in Alzheimer’s, the researchers wanted to know whether the same aberrant proteins were present in the brains of people with Down syndrome. 

While there have been extensive studies of these plaques and tangles in the brains of people with Alzheimer’s disease, it can be challenging to discern which changes in the brain are from old age and which are from prion activity, said Prusiner, director of the UCSF Institute for Neurodegenerative Diseases, part of the Weill Institute for Neurosciences.

“Because we see the same plaques-and-tangles pathology at a much younger age in people with Down syndrome, studying their brains allows us to get a better picture of the early process of disease formation, before the brain has become complicated by all the changes that go on during aging,” he said. “And ideally, you want therapies that address these early stages.”

Employing a variation on the novel assay they used in the Alzheimer’s study, the team looked at donated tissue samples from deceased people with Down syndrome, which they obtained from biobanks around the world. Of the 28 samples from donors aged 19 to 65 years old, the researchers were able to isolate measurable amounts of both Aß and tau prions in almost all of them.

New Insights Could Lead to Prevention 

The results confirm not only that prions are involved in the neurodegeneration seen in Down syndrome, but that Aß drives the formation of tau tangles as well as amyloid plaques, a relationship that has been suspected but not proven. 

“The field has long tried to understand what the intersection is between these two pathologies,” said lead author Carlo Condello, PhD, also a member of the UCSF Institute for Neurodegenerative Diseases. “The Down syndrome case corroborates the idea; now you have this extra chromosome that’s driving the Aß, and there’s no tau gene on the chromosome. So, it’s truly by increasing the expression of Aß that you kick off production of the tau.” 

That insight and others gleaned from studying the brains of people with Down syndrome will lead to a much better picture of how prions begin to form in the first place, said Condello. 

Whether the Down syndrome brain tissue will prove to be the ultimate model for developing treatments for Alzheimer’s remains to be seen, the researchers said. While the two disorders share many similarities in their prion pathobiology, there are some differences that may be limiting. 

Still, the researchers said, studying the plaques and tangles in Down syndrome is a promising route to identifying the specific prions that arise at the very earliest stages of the disease process. That insight could open new vistas on not only treating but perhaps even fending off Alzheimer’s disease.

“If we can understand how this neurodegeneration begins, we are one big step closer to being able to intervene at a meaningful point and actually prevent these large brain lesions from forming,” Condello said.


Authors: Additional UCSF authors on the study include Alison Maxwell, Department of Pharmaceutical Chemistry, and Erika Castillo, Atsushi Aoyagi, William Seeley, of the UCSF Weill Institute for Neurosciences. For other authors, please see the study.

Funding: This work was supported by NIH grants P01AG002132, P30AG066519, AG023501, and AG019724, and DHA grants HU311661-040066323 and HU0001-19-2-000 along with other institutes and and philanthropy. For a complete list, please see the study.
 

A Tale of Terroir: Porcini mushrooms have evolved with a preference to local adaptation

Peer-Reviewed Publication

UNIVERSITY OF UTAH

Porcini hunt 

IMAGE: BRYN DENTINGER AND KEATON TREMBLE IN ANTIGUA, GUATEMALA, HUNTING FOR PORCINI IN JUNE 2022. view more 

CREDIT: BRYN DENTINGER

The Dentinger Lab at the Natural History Museum of Utah has published a provocative new paper in the journal New Phytologist that describes their work with the much beloved mushroom, Boletus edulis, better known by gastronomers worldwide as the porcini. In the paper, Keaton Tremble and Bryn Dentinger, PhD, present a first-of-its-kind genetic survey of porcini mushrooms across the Northern Hemisphere. By evaluating the genetic code of these samples from across the globe, they learned that these delicious fungi evolved in surprising ways – contrary to the expectations of many who might think that geographic isolation would be the primary driver for species diversity. In fact, there are regions in the world where porcini maintain their genetic distinctiveness in local ecological niches, even if they are not isolated geographically from other genetic lineages.

The French word terroir, made famous by viticulturalists, immediately comes to mind. Terroir describes the local factors such as soil types, amount of sunshine, degree of slope, microclimate, soil microorganisms, etc. that make each plot of land yield distinctive wines. It is a celebration of the local ecology and its impact on the vines, grapes, and finished product. Tremble and Dentinger’s new study offers mushroom hunters tantalizing data to claim that the porcinis in their secret forest patch express the qualities of their terroir in the same way as the best wines in the world.

But this isn’t the point of the study. With the advent of genetic sequencing, most mycology genetic studies have focused on describing the unique characteristics of fungi in a small geographic area. Tremble and Dentinger wanted to do something different. Rather than just comparing a group of mushrooms from Colorado to a group in California in order to call them different species, they wanted to better understand the global trends in how the genetic code was preserved or changed in porcini. “Our study is important because it goes beyond overly simplistic sampling method used in the past,” states Dentinger. 

What they found is that porcini have evolved in different, but clearly recognizable ways across the globe. “In North America, there is a strong stratification of separate genetic populations in local areas, despite the fact that they aren’t reproductively isolated,” explains Tremble. “Yet in Europe, there is one lineage that dominates from Spain to Georgia to Scandanavia.” 

Evolutionary biologists typically believe that there is one evolutionary strategy that governs the speciation process for a particular organism, but Tremble and Dentinger have showed that porcini actually exhibit multiple, divergent strategies. In fact, this is the first genetic study in any organism to show such a result at the global scale.

A related, significant result is a refutation of the traditional notion that isolation is the main way that species develop their uniqueness. As the Encyclopedia of Ecology (Second Edition – 2019) proudly states: “all evolutionary biologists agree that geographic isolation is a common, if not the most common, mechanism by which new species arise (Futuyma, 2013).” 

Keaton Tremble, PhD candidate in Bryn Dentinger’s lab at NHMU, holding a large porcini mushroom found in the Uinta mountain range in Utah.

CREDIT

Bryn Dentinger

More than identifying mushrooms

It’s an exciting time to be a mycologist. Not only is the fungal kingdom barely explored and described, but DNA sequencing technology has introduced a seismic shift in how mycologists classify fungi. For millennia, humans have identified mushrooms that are good to eat from ones that are poisonous based on how they looked, or their phenotype. But phenotypes can be deceiving – consider a brother and sister who have different hair color, different nose shapes, etc. They are still more genetically similar to each other than to other people in the population. Thus, genetic similarities are considered the true marker of different species, bucking the trend of mushroom identification that stretches back to the beginning of humanity. 

On top of this, let’s remember that mushrooms are just the reproductive structure of the main organism, called a mycelium. Like icebergs, mycelia only show us the tip of themselves, while the massive fungal body lives underground, bound up with the roots of trees. Boletus edulisspreads geographically thanks to the tiny spores released from the porcini mushrooms, borne on the wind, mammals, and even flies. Thus, biologists are tempted to believe that in whatever geographic area where spores can fly, a species will be defined by the genetic mixing within this geographic space. 

Tremble and Dentinger’s study soundly refutes this assumption.

In North America, different genetic lineages exist side-by-side, and despite genetic evidence of intermixing, local ecological factors played the bigger role in maintaining the distinction of these lineages. “Utah happens to be one of the areas where two distinct lineages live,” notes Dentinger. What these lineages show is that the local ecology is a stronger factor in maintaining their genetic distinctiveness than genetic flow from other lineages.

“This paper shows that you don’t need isolation for genetic divergence,” Tremble asserts. “The force of ecological adaptation is so strong in Boletus edulis that even though you can disperse spores basically anywhere, there is strong selection to adapt to specific environments.”

The marvels of the dried porcini

The secret to their study resides deep in the heart of natural history museums: collections of mushrooms. Tremble is a PhD candidate in the School of Biological Sciences, defending his thesis in spring 2023 to receive his degree in Evolutionary Biology. He made a fortuitous choice when working with Dentinger as his advisor – as the Curator of Mycology at NHMU, Dentinger has established NHMU’s Genomics Lab to be able to analyze DNA quickly and efficiently. More importantly for this study, Dentinger’s professional contacts at natural history museums around the world helped Tremble access the 160 samples that would have been near impossible to collect otherwise.

“You have to rely on opportunistic encounters in nature to collect a living sample,” Dentinger explains. “This is fundamentally different from working with plants, which are there in every season, and animals, which you can bait.” Thus, it would have taken an incredible amount of logistics, timing, and luck to find, correctly identify, and ship 160 different samples across the Northern Hemisphere back to the lab at NHMU. 

Instead, “our study was all possible thanks to fungaria,” Dentinger states, referring to the name for fungus collections in museums. They plumbed the depths of NHMU’s fungarium and reached out to collaborators around the globe. 

“Without the accumulated field work by 80 different people, this would not have been possible,” Tremble notes. All of the samples were dried porcini mushrooms, stable and ready for Tremble to extract their DNA. Since Boletus edulismycelia have a surprisingly long lifespan (estimated to be up to 45 years), they used samples only dating back to 1950 to make sure that the study kept to just a few generations.

Tremble used sophisticated software to run statistical analyses on these samples. He genotyped 792,923 SNPs (pronounced “snips,” short for single nucleotide polymorphisms), which are the individual ways in which the 160 porcini genomes differed from one another. In order to classify major lineages, he filtered out the SNPs that were only present in one sample (which would be considered just a “family unit” or individual variant) so that he could instead observe only major differences between genomes. In the end, Tremble identified 6 major lineages. 

Feeding his data into mathematical models, Tremble uncovered a complex web of genomic mixing, where lineages remained distinct despite evidence that other lineages had mixed with them. Their modeling and geographical sample data showed that this ability to remain distinct was due to environmental adaptation, not physical isolation.

Keaton Tremble and Bryn Dentinger in the NHMU Genomics Lab.

CREDIT

Mark Johnston/NHMU

Lineages or species?

Tremble and Dentinger take a decidedly agnostic approach to the question of whether they should be identifying these 6 distinct lineages as “species.” They abstain from doing so in their paper because they want to focus on the genetic data and the larger questions related to strategies in evolutionary biology. Plus, that species discussion is one vexed conversation.

 “There is no formal process for defining a species,” Tremble notes, “it’s an ongoing debate. We didn’t want to call them species or subspecies because it automatically implies that they are separately evolving groups, which they definitely aren’t.” They decided to call them lineages because this term is genetically resolvable, that is, lineages can be quantifiably distinguished from one another using statistical genetic approaches. 

But that doesn’t mean they don’t want to tackle the taxonomy. “This is going to be a forthcoming article in a different journal,” Dentinger says. The world of fungi never experienced the Victorian era-explosion of identifying and naming species that happened with animals and plants. With only an estimated 5% of fungi diversity being identified, naming and taxonomy must happen, if only to help mycologists speak about their subject. 

However the species-subspecies taxonomy for Boletus edulis shakes out, Dentinger assures us of one thing: “Terroir is more important than people thought.” 

So, find a mushroom hunter and get on his or her good side in order to find the porcini best adapted to your palate.

First study of monkeypox infection in women provides new insights to inform public health response to ongoing outbreak

Peer-Reviewed Publication

QUEEN MARY UNIVERSITY OF LONDON

  • This is the first global case study series of monkeypox infection in women (cisgender and transgender) and non-binary people in the ongoing outbreak.
  • The authors found differing clinical presentations according to gender identity and sexual practices.
  • Sexual contact is the most likely route of transmission in 89% of trans women and 61% of cis women and non-binary individuals, and nearly one-quarter of cis women are suspected to have become infected without sexual contact.

An international collaboration of clinicians, established and led by Professor Chloe Orkin at Queen Mary University of London, has published the first case study series of monkeypox infection during the 2022 outbreak in cisgender (cis) and transgender (trans) women and non-binary individuals assigned as female at birth.

The case series, published today (17 November 2022) in The Lancet, provides much needed insight into risk factors, routes of transmission and other clinical features of monkeypox infection. So far, these groups have been underrepresented in research and little is known about how the disease affects women. These data will help to guide the international response to the ongoing monkeypox outbreak.

This is the second monkeypox case series from the international group, whose first paper in The New England Journal of Medicine this summer identified new clinical symptoms of monkeypox in men. The study proved influential in shaping international case definitions, thereby contributing to the global response to monkeypox. These case series provide the most comprehensive picture of the ongoing monkeypox outbreak happening across the world, which the authors have discussed in a clinical overview of monkeypox for The Lancet Seminars, also published today.

Clinicians across 15 countries contributed data from 136 women (69 cisgender, 62 transgender) and five non-binary individuals with confirmed monkeypox infection between 11 May and 4 October 2022.

In the first case study series, sexual contact was the suspected route of transmission for nearly all (95-100%) men. In the latest study of women, sexual contact is likely to be the route of transmission for most (73%), but not all the cases. Differentiating between cis and trans women in these data reveals important insights; for example, sexual contact is the most common route of transmission for trans women, but nearly one-quarter of cis women in the study are suspected to have contracted monkeypox infection without sexual contact.

The women experienced a similar clinical presentation to what has been seen in men (mucosal sores and anal and genital sores). These clinical symptoms were frequently misdiagnosed as sexually transmitted infections (STIs), especially in cis women. While men and trans women were more likely to access sexual health and HIV clinics, most cis women attended a wider range of clinical settings including emergency departments, primary care and various hospital departments. This reinforces the need for education for health professionals beyond sexual health clinics to ensure that monkeypox symptoms are not misdiagnosed and to limit onward transmission.

Similar to the global case series in men, which identified monkeypox DNA in the semen of 29/32 semen samples tested, this case series found monkeypox viral DNA in 100% of vaginal swabs taken (14/14). This strengthens the likelihood of sexual transmission through bodily fluids as well as skin-to-skin contact. Although 26% of cis women lived with children, only two children acquired monkeypox - a reassuring and important finding, as children can be more severely affected than adults.

Research lead author Chloe Orkin, Professor of HIV Medicine at Queen Mary University of London and Director of the SHARE collaborative, said:

“During the global outbreak, case definitions have rightly focused on the most affected groups, sexually active men who have sex with men. The public health response has been tailored to reach this group. However, as the outbreak progresses, it’s important to also focus attention on underrepresented groups such as women and nonbinary individuals to better understand their risk. It is important to describe how the infection manifests in women as this has not been characterised until now and doctors need to be able to recognise the disease. These learnings will help inform and tailor effective public health measures to be inclusive of these groups.”

Dimie Ogoina, Professor and Infectious Disease Physician at the Niger Delta University Teaching Hospital, said:

“This case series of monkeypox, which is the first to bring together cases from the global south and north, further illustrates that monkeypox is a problem for all genders and all regions. There is a need for more investment in surveillance, research and development to understand the differences and similarities in the clinical course and outcome of monkeypox in all affected regions, especially in Africa.”

Research author Asa Radix, Senior Director of Research and Education at the Callen-Lorde Community Health Centre in NYC and co-chair of the World Professional Association of Transgender Health, said:
“Individuals who identify as transgender, nonbinary and gender diverse are often absent from research representation. The inclusion of transgender women and nonbinary individuals in this series illustrates the importance of demographic and outcome data being disaggregated by both sex and gender and is key to improving ongoing monkeypox surveillance and targeted public health interventions.”

 Tackling plastic pollution with a net of law and chemical coding

Queensland University of Technology

Peer-Reviewed Publication

QUEENSLAND UNIVERSITY OF TECHNOLOGY

QUT researchers 

IMAGE: QUT RESEACHERS: DR HOPE JOHNSON INSET. FROM LEFT: PROFESSOR AFSHIN AKHTAR-KHAVARI, DR JOSHUA HOLLOWAY, DISTINGUISHED PROFESSOR CHRISTOPHER BARNER-KOWOLLIK, ANNASTASIA BOUSGAS, LEWIS CHAMBERS AND ASSOCIATE PROFESSOR JAMES BLINCO. view more 

CREDIT: QUT

An innovative proposal to tackle the global plastic pollution crisis with a combination of DNA-like encoding of plastics and international law has been put forward by a transdisciplinary team of QUT researchers.

Plastic pollution has been identified as an environmental problem similar in scope and complexity as global challenges like climate change.

The QUT research team, from chemistry and law, have published their multi-pronged approach in Polymer Chemistry.

The researchers are Dr Hope JohnsonDr Lewis ChambersDr Joshua Holloway, Annastasia Bousgas, Professor Afshin Akhtar-KhavariAssociate Professor James Blinco, and ARC Laureate Fellow Professor Christopher Barner-Kowollik, and they are part of QUT’s Centre for Materials Science and Centre for a Waste Free World.

Professor Barner-Kowollik said one of the biggest challenges in addressing plastic pollution was tracing the polluting plastic back to the source.

“Tracing plastic resolves the anonymity of plastic waste,” Professor Barner-Kowollik said.

“If a technology existed that allowed to give unique ‘DNA’ to each batch of plastic that was produced, plastic waste could be traced back to the producer, given the information stored in the ‘DNA’ could be simply read-out.”

Professor Barner-Kowollik said there were several emerging advances in polymer chemistry that could play a part in identifying plastic.

One solution could be chemically labelling batches of plastic production using sequence-defined polymers, that could be decoded in a way similar to DNA, although at this point reading information from sequence-defined polymers is challenging. However, new and simple technologies for reading information from such sequence-defined polymers embedded into plastics are emerging.

If polymer science can develop the means of uniquely identifying plastics and tracing each piece back to its producer, there still remains the issue of enforcing responsibility – which is where the legal researchers around Dr Hope Johnson come in.

“One of the first challenges with an international problem such as this is the obvious one of jurisdiction, and also where in the regulatory process we can best intervene to create sustainable change” Professor Afshin Akhtar-Khavari said.

“A considerable challenge is the implementation in international frameworks so that malicious actors cannot identify loopholes

“A careful and coordinated international approach is of the essence, yet establishing it will require initial careful research into the underpinning international governance principles and subsequent coordinated approaches for implementation.”

The researchers describe their paper as a “discussion starter”, not only on the plausibility of using sequence-defined polymers for coding and reading ‘DNA’ embedded in plastics and the associated governance challenges, but also for a broader conversation.

“Research is done with focus, but sometimes there needs to be a broader lens,” Professor Barner-Kowollik said.

“There is a critical need for the social and natural sciences to work more closely together in the future, breaking currently still prevailing siloed structures.”

The combined approach, of polymer science and international law, is looking at the single outcome of enforcing responsibility on polluters.

The paper says that identifying the people responsible for the plastic pollution could lead to a phasing out of plastics.

Pinpointing plastic polluters (VIDEO)