ROBOTICS
Autonomous products like robot vacuums make our lives easier. But do they deprive us of meaningful experiences?
News from the Journal of Marketing
Peer-Reviewed PublicationResearchers from University of St. Gallen and Columbia Business School published a new Journal of Marketing article that examines how the perceived meaning of manual labor can help predict the adoption of autonomous products.
The study, forthcoming in the Journal of Marketing, is titled “Meaning of Manual Labor Impedes Consumer Adoption of Autonomous Products” and is authored by Emanuel de Bellis, Gita Venkataramani Johar, and Nicola Poletti.
Whether it is cleaning homes or mowing lawns, consumers increasingly delegate manual tasks to autonomous products. These gadgets operate without human oversight and free consumers from mundane chores. However, anecdotal evidence suggests that people feel a sense of satisfaction when they complete household chores. Are autonomous products such as robot vacuums and cooking machines depriving consumers from meaningful experiences?
This new research shows that, despite unquestionable benefits such as gains in efficiency and convenience, autonomous products strip away a source of meaning in life. As a result, consumers are hesitant to buy these products.
The researchers argue that manual labor is an important source of meaning in life. This is in line with research showing that everyday tasks have value—chores such as cleaning may not make us happy, but they add meaning to our lives. As de Bellis explains, “Our studies show that ‘meaning of manual labor’ causes consumers to reject autonomous products. For example, these consumers have a more negative attitude toward autonomous products and are also more prone to believe in the disadvantages of autonomous products relative to their advantages.”
Highlight Saving Time for Other Meaningful Tasks
On one hand, autonomous products take over tasks from consumers, typically leading to a reduction in manual labor and hence in the ability to derive meaning from manual tasks. On the other hand, by taking over manual tasks, autonomous products provide consumers with the opportunity to spend time on other, potentially more meaningful, tasks and activities. “We suggest that companies highlight so-called alternative sources of meaning in life, which should reduce consumers’ need to derive meaning specifically from manual tasks. Highlighting other sources of meaning, such as through family or hobbies, at the time of the adoption decision should counteract the negative effect on autonomous product adoption,” says Johar.
In fact, a key value proposition for many of these technologies is that they free up time. iRobot claims that its robotic vacuum cleaner Roomba saves owners as much as 110 hours of cleaning a year. Some companies go even a step further by suggesting what consumers could do with their freed-up time. For example, German home appliance company Vorwerk promotes its cooking machine Thermomix with “more family time” and “Thermomix does the work so you can make time for what matters most.” Instead of promoting the quality of task completion (i.e., cooking a delicious meal), the company emphasizes that consumers can spend time on other, arguably more meaningful, activities.
This study demonstrates that the perceived meaning of manual labor (MML) – a novel concept introduced by the researchers – is key to predicting the adoption of autonomous products. Poletti says that “Consumers with a high MML tend to resist the delegation of manual tasks to autonomous products, irrespective of whether these tasks are central to one’s identity or not. Marketers can start by segmenting consumers into high and low MML consumers.” Unlike other personality variables that can only be reliably measured using complex psychometric scales, the extent of consumers’ MML might be assessed simply by observing their behavioral characteristics, such as whether consumers tend to do the dishes by hand, whether they prefer a manual car transmission, or what type of activities and hobbies they pursue. Activities like woodworking, cookery, painting, and fishing are likely predictors of high MML. Similarly, companies can measure likes on social media for specific activities and hobbies that involve manual labor. Finally, practitioners can ask consumers to rate the degree to which manual versus cognitive tasks are meaningful to them. Having segmented consumers according to their MML, marketers can better target and focus their messages and efforts.
In promotions, firms can highlight the meaningful time consumers gain with the use of autonomous products (e.g., “this product allows you to spend time on more meaningful tasks and pursuits than cleaning”). Such an intervention can prevent the detrimental effects of meaning of manual labor on autonomous product adoption.
Full article and author contact information available at: https://doi.org/10.1177/00222429231171841
About the Journal of Marketing
The Journal of Marketing develops and disseminates knowledge about real-world marketing questions useful to scholars, educators, managers, policy makers, consumers, and other societal stakeholders around the world. Published by the American Marketing Association since its founding in 1936, JM has played a significant role in shaping the content and boundaries of the marketing discipline. Shrihari (Hari) Sridhar (Joe Foster ’56 Chair in Business Leadership, Professor of Marketing at Mays Business School, Texas A&M University) serves as the current Editor in Chief.
https://www.ama.org/jm
About the American Marketing Association (AMA)
As the largest chapter-based marketing association in the world, the AMA is trusted by marketing and sales professionals to help them discover what is coming next in the industry. The AMA has a community of local chapters in more than 70 cities and 350 college campuses throughout North America. The AMA is home to award-winning content, PCM® professional certification, premiere academic journals, and industry-leading training events and conferences.
https://www.ama.org
JOURNAL
Journal of Marketing
ARTICLE TITLE
Meaning of Manual Labor Impedes Consumer Adoption of Autonomous Products
Sponge makes robotic device a soft touch
A simple sponge has improved how robots grasp, scientists from the University of Bristol have found.
This easy-to-make sponge-jamming device can help stiff robots handle delicate items carefully by mimicking the nuanced touch, or variable stiffness, of a human.
Robots can skip, jump and do somersaults, but they’re too rigid to hold an egg easily. Variable-stiffness devices are potential solutions for contact compliance on hard robots to reduce damage, or for improving the load capacity of soft robots.
This study, published at the IEEE International Conference on Robotics and Automation (ICRA) 2023, shows that variable stiffness can be achieved by a silicone sponge.
Lead author Tianqi Yue from Bristol’s Department of Engineering Mathematics explained: “Stiffness, also known as softness, is important in contact scenarios.
“Robotic arms are too rigid so they cannot make such a soft human-like grasp on delicate objects, for example, an egg.
“What makes humans different from robotic arms is that we have soft tissues enclosing rigid bones, which act as a natural mitigating mechanism.
“In this paper, we managed to develop a soft device with variable stiffness, to be mounted on the end robotic arm for making the robot-object contact safe.”
Silicone sponge is a cheap and easy-to-fabricate material. It is a porous elastomer just like the cleaning sponge used in everyday tasks.
By squeezing the sponge, the sponge stiffens which is why it can be transformed into a variable-stiffness device.
This device could be used in industrial robots in scenarios including gripping jellies, eggs and other fragile substances. It can also be used in service robots to make human-robot interaction safer.
Mr Yue added: “We managed to use a sponge to make a cheap and nimble but effective device that can help robots achieve soft contact with objects. The great potential comes from its low cost and light weight.
“We believe this silicone-sponge based variable-stiffness device will provide a novel solution in industry and healthcare, for example, tunable-stiffness requirement on robotic polishing and ultrasound imaging.”
The team will now look at making the device achieve variable stiffness in multiple directions, including rotation.
Paper:
“A Silicone-sponge-based Variable-stiffness Device” by Tianqi Yue at the IEEE International Conference on Robotics and Automation (ICRA) 2023.
METHOD OF RESEARCH
Experimental study
SUBJECT OF RESEARCH
Not applicable
ARTICLE TITLE
A Silicone-sponge-based Variable-stiffness Device
ARTICLE PUBLICATION DATE
7-Jun-2023