Wednesday, July 26, 2023

 

Soil microbes help plants cope with drought, but not how scientists thought



Peer-Reviewed Publication

UNIVERSITY OF ILLINOIS COLLEGE OF AGRICULTURAL, CONSUMER AND ENVIRONMENTAL SCIENCES

Kevin Ricks 

IMAGE: A UNIVERSITY OF ILLINOIS RESEARCH TEAM, INCLUDING KEVIN RICKS (PICTURED), DETERMINED FREE-LIVING SOIL MICROBES DON'T RESPOND TO PLANTS' CRIES FOR HELP DURING DROUGHT. RATHER, THEY ADAPT TO DROUGHT ON THEIR OWN AND INCIDENTALLY PROVIDE BENEFITS. view more 

CREDIT: UNIVERSITY OF ILLINOIS




URBANA, Ill. — There’s a complex world beneath our feet, teeming with diverse and interdependent life. Plants call out with chemical signals in times of stress, summoning microbes that can unlock bound nutrients and find water in soil pores too small for the finest roots. In return, microbes get a safe place to live or a sugary drink. 

It’s a classic you-scratch-my-back-I’ll-scratch-yours scenario. Except when it’s not. New research from the University of Illinois Urbana-Champaign challenges conventional wisdom to show free-living soil microbes are just looking out for themselves.

In a multi-generation experiment, researchers from the College of Agricultural, Consumer and Environmental Sciences (ACES) found microbes helped plants cope with drought, but not in response to plants’ cries for help. Instead, the environment itself selected for drought-tolerant microbes. And while those hardy microbes were doing their thing, they just happened to make plants more drought-tolerant, too. 

“It was a surprise because I expected to see evidence of coevolution and mutualism between the microbes and plants. I think people, myself included, forget that just because microbes do something adaptive or beneficial to the plant, it doesn’t necessarily mean they’re doing it for the plant,” said Kevin Ricks, who completed the project as part of his doctoral degree in the Program for Ecology, Evolution, and Conservation Biology at Illinois. Ricks is now a postdoctoral researcher at the University of Toronto.

To learn how microbes help plants deal with drought, Ricks established live soil communities in pots with or without plants. He watered half of the pots well and imposed drought conditions in the other half, then repeated these treatments for three generations. The idea was to allow time for selection to occur — potentially for plants to signal their need for help and select for microbes that came to their aid.  

In phase two of the experiment, Ricks mixed everything up. He again grew plants in soil from phase one and kept the same watering treatments, but some plants were now experiencing drought in soils that had been well-watered for generations, and vice versa. He expected soil microbes from historically dry pots would have adapted to those conditions, helping plants withstand drought more than microbes from historically wet pots. And that is what he found: Plants experiencing drought were bigger when grown with drought-adapted microbes.

But — and this is key — that was true for soils grown with or without plants in phase one. In other words, microbes adapted to drought over time even without plants selecting for them through chemical signals. Yet they still provided benefits when grown with plants generations later. It was proof these microbes were doing their own thing, only helping plants incidentally.  

No previous studies on the topic had included a no-plant control, leaving the research community to conclude plants and microbes were communicating in a co-evolutionary dialogue. 

“Our results challenge classical thinking about what counts as a mutual benefit. Mycorrhizae and nitrogen-fixing bacteria are kind of model systems, things that people study when they talk about mutualism. But then there's this fuzzier set of interactions that we don't understand yet, but could still wind up having a mutual benefit, or at least a one-way benefit to the plant. I think our approach brings this system into the spotlight,” said co-author Tony Yannarell, associate professor in the Department of Natural Resources and Environmental Sciences, part of the College of ACES at Illinois.

The researchers also sterilized some phase-one soils before imposing treatments in phase two. In those pots, plants in historically dry soils were no better off when experiencing drought. 

“Some previous studies didn't actually compare soil with and without microbes, so it's hard to really implicate the microbes as the driver of the benefit,” Yannarell said. “There are a lot of things that could have been different in the soil, but when we sterilized the microbes away in our experiment, we lost the benefit of the drought adaptation.”

The researchers didn’t identify the microbes in their experiment, so they can’t be sure exactly how they were benefiting plants. But Ricks said soil microbes are involved in many processes that could help plants withstand stress. 

“Microbes are responsible for nutrient and carbon cycling, so whether or not they’re actually facilitating plant access to water, they could still be freeing up nutrients that make the plant healthier and more resilient to stress,” he said. 

 Ricks hesitated to claim his study will shift paradigms in ecological research, especially considering it was a greenhouse experiment focused on free-living soil microbes and a single type of environmental stress. But he hopes it will encourage other scientists to consider no-microbe and no-plant controls in future studies. They might just reveal what’s really going on beneath our feet.

The study, “Soil moisture incidentally selects for microbes that facilitate locally adaptive plant response,” is published in the Proceedings of the Royal Society B [DOI:10.1098/rspb.2023.0469]. This research is a contribution of the GEMS Biology Integration Institute, funded by the National Science Foundation DBI Biology Integration Institutes Program, [award #2022049]. It was additionally supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, under project number ILLU 875–952, as well as by the School of Integrative Biology and the Graduate College at the University of Illinois Urbana-Champaign.

IT peer advice may diminish the management labor pool


Study finds that business students are discouraged by their IT peers to pursue careers in the field


Peer-Reviewed Publication

RENSSELAER POLYTECHNIC INSTITUTE

Nishtha Langer, Ph.D. 

IMAGE: NISHTHA LANGER, PH.D. view more 

CREDIT: RENSSELAER POLYTECHNIC INSTITUTE




It is only natural that, when students consider career options, they ask friends, family, and colleagues in their prospective fields for advice. They may hear about job opportunities, wage expectations, career paths, hiring processes, and more. In the end, that information may inspire and excite, or it may turn students off from the field entirely.

Rensselaer Polytechnic Institute’s Nishtha Langer, Ph.D., associate professor of business analytics at the Lally School of Management, investigated how peers in information technology (IT) influence management students’ choices to pursue careers in the IT industry. Her research, conducted with the help of Tarun Jain of the Indian Institute of Management, yielded surprising results.

“Analyzing students at a leading business school in India, we find that having peers who have worked in IT reduces the likelihood of receiving and accepting an offer in the IT industry,” Langer said. “If a student has no IT experience, however, IT peers ameliorate this effect to a certain degree.”

The findings are significant given the necessity of IT for firms in terms of productivity, cost savings, and adding value, combined with firms’ struggles with IT management talent recruitment. IT managers play critical roles in firms’ strategies, marketing and sales, and project management.

“We usually expect that peers with experience in a certain industry would encourage business school students to enter that industry, but, instead, our research points to the opposite effect,” Langer said. “So, managers who want to use peer-to-peer learning to train workers should be aware that negative messages could be transmitted along with positive ones.”

On the other hand, Langer and Jain found that the students most likely to receive positive messaging and pursue careers in IT happen to be women without IT experience.

“If tech companies are listening, they should note that the spillover effect of equitable policies may reap more diverse managers because women listen to other women’s experiences,” Langer said.

“The findings of Dr. Langer and Dr. Jain are valuable for firms as they strategize around IT management talent recruitment and workforce development,” said Chanaka Edirisinghe, acting dean of Rensselaer’s Lally School of Management. “It is also important to note that different strategies may be more effective among different demographics.”

About Rensselaer Polytechnic Institute:

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, over 30 research centers, more than 140 academic programs including 25 new programs, and a dynamic community made up of over 6,800 students and 110,000 living alumni. Rensselaer faculty and alumni include upwards of 155 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit www.rpi.edu.

For general inquiries: newsmedia@rpi.edu

Visit the Rensselaer research and discovery blog: https://everydaymatters.rpi.edu/

Follow us on Twitter: @RPINews

###

 

Healing power of light: University of Ottawa team advances clear vision for eye repair


With potential to impact millions, study finds that biomimetic materials pulsed with low-energy blue light can reshape damaged corneas, including thickening the tissue.


Peer-Reviewed Publication

UNIVERSITY OF OTTAWA

Healing power of light: University of Ottawa team advances clear vision for eye repair 

IMAGE: AN INJECTABLE BIOMATERIAL ACTIVATED BY PULSES OF LOW-ENERGY BLUE LIGHT HAS TREMENDOUS POTENTIAL FOR ON-THE-SPOT REPAIR TO THE DOMED OUTER LAYER OF THE EYE, A TEAM OF UNIVERSITY OF OTTAWA RESEARCHERS AND THEIR COLLABORATORS HAVE REVEALED. view more 

CREDIT: FACULTY OF MEDICINE, UNIVERSITY OF OTTAWA




An injectable biomaterial activated by pulses of low-energy blue light has tremendous potential for on-the-spot repair to the domed outer layer of the eye, a team of University of Ottawa researchers and their collaborators have revealed.

Guided by biomimetic design—innovation inspired by nature—the multidisciplinary researchers’ compelling results show that a novel light-activated material can be used to effectively reshape and thicken damaged corneal tissue, promoting healing and recovery.

This technology is a potential game-changer in corneal repair; tens of millions of people across the globe suffer from corneal diseases and only a small fraction are eligible for corneal transplantation. Transplant operations are the current gold standard for ailments resulting in thinning corneas such as keratoconus, a poorly understood eye disease that results in loss of vision for many people.

“Our technology is a leap in the field of corneal repair. We are confident this could become a practical solution to treat patients living with diseases that negatively impact corneal shape and geometry, including keratoconus,” says Dr. Emilio Alarcon, an Associate Professor at the uOttawa Faculty of Medicine and researcher at the BioEngineering and Therapeutic Solutions (BEaTS) group at the University of Ottawa Heart Institute.

The cornea is the protective, dome-like surface of the eye in front of the iris and pupil. It controls and directs light rays into the eye and helps achieve clear vision. It’s normally transparent. But injury or infection results in scarring of the cornea.

The collaborative team’s work was published in Advanced Functional Materials, a high-impact scientific journal.

The biomaterials devised and tested by the team are comprised of short peptides and naturally occurring polymers called glycosaminoglycans. In the form of a viscous liquid, the material gets injected within corneal tissue after a tiny pocket is surgically created. When pulsed with low-energy blue light, the injected peptide-based hydrogel hardens and forms into a tissue-like 3D-structure within minutes. Dr. Alarcon says this then becomes a transparent material with similar properties to those measured in pig corneas.

In vivo experiments using a rat model indicated that the light-activated hydrogel could thicken corneas without side effects. The research team – which employed a much smaller blue light dosage compared to what’s been used in other studies – also successfully tested the technology in an ex vivo pig cornea model. Testing in large animal models will be necessary prior to clinical human trials.

“Our material was engineered to harvest the blue light energy to trigger the on-the-spot assembling of the material into a cornea-like structure. Our cumulative data indicates that the materials are non-toxic and remain for several weeks in an animal model. We anticipate our material will remain stable and be non-toxic in human corneas,” says Dr. Alarcon, whose uOttawa lab focuses on developing new materials with regenerative capabilities for tissue of the heart, skin, and cornea.

The rigorous research took over seven years to reach the publication stage.

“We had to engineer each part of the components involved in the technology, from the light source to the molecules used in the study. The technology was developed to be clinically translatable, meaning all components must be designed to be ultimately manufacturable following strict standards for sterility,” Dr. Alarcon says.

The research findings are also the focus of a patent application, which is presently under negotiations for licensing.

Dr. Alarcon was the study’s senior author who guided the material design aspect of the research, while uOttawa’s Dr. Marcelo Muñoz and Aidan MacAdam played big roles in creating the novel technology. Interdisciplinary collaborators included Université de Montréal scientists Dr. May Griffith, an expert in cornea regeneration, and Dr. Isabelle Brunette, an ophthalmology and corneal transplant expert.

The project was supported by a Collaborative Health Research Projects grant, an NSERC Discovery grant, the Government of Ontario, and the University of Ottawa Heart Institute.

 

One simple brain hack might boost learning and improve mental health


Curiosity supercharges people’s memory for paintings they saw while pretending to be an art thief

Peer-Reviewed Publication

DUKE UNIVERSITY

Art Heist Video Game Clip 

IMAGE: “WATCH OUT FOR THE SECURITY GUARD!” A VIDEO OF THE COMPUTER GAME SHOWS HOW PARTICIPANTS CHOSE BETWEEN FOUR DIFFERENT COLORED DOORS TO REVEAL DIFFERENT PAINTINGS (AND THEIR VALUE). PARTICIPANTS HAD TO AVOID BEING SPOTTED BY A SECURITY GUARD BY QUICKLY PRESSING SPACE BAR WHEN HE POPPED UP, AS AN ATTENTION CHECK. view more 

CREDIT: ALYSSA SINCLAIR - DUKE INSTITUTE FOR BRAIN SCIENCES




DURHAM, N.C. – Shifting from a high-pressure mindset to a curious one improves people’s memory.

New research from Duke found that people who imagined being a thief scouting a virtual art museum in preparation for a heist were better at remembering the paintings they saw, compared to people who played the same computer game while imagining that they were executing the heist in-the-moment.

These subtle differences in motivation — urgent, immediate goal-seeking versus curious exploration for a future goal — have big potential for framing real-world challenges such as encouraging people to get a vaccine, prompting climate change action, and even treating psychiatric disorders.

The findings appeared online July 25 in the Proceedings of the National Academy of Sciences.

Alyssa Sinclair, Ph.D. ’23, a postdoctoral researcher working in the lab of Duke Institute for Brain Sciences director Alison Adcock, Ph.D., M.D., recruited 420 adults to pretend to be art thieves for a day. The participants were then randomly assigned to one of two groups and received different backstories.

“For the urgent group, we told them, ‘You’re a master thief, you're doing the heist right now. Steal as much as you can!’,” Sinclair said. “Whereas for the curious group, we told them they were a thief who's scouting the museum to plan a future heist.”

After getting these different backstories, however, participants in the two groups played the exact same computer game, scored the exact same way. They explored an art museum with four colored doors, representing different rooms, and clicked on a door to reveal a painting from the room and its value. Some rooms held more valuable collections of art. No matter which scenario they were pretending to be in, everyone earned real bonus money by finding more valuable paintings.

The impact of this difference in mindset was most apparent the following day. When participants logged back in, they were met with a pop quiz about whether they could recognize 175 different paintings (100 from the day before, and 75 new ones). If participants flagged a painting as familiar, they also had to recall how much it was worth.

Sinclair and her co-author, fellow Duke psychology & neuroscience graduate student Candice Yuxi Wang, were gratified after they graded the tests to see their predictions had played out­­.

“The curious group participants who imagined planning a heist had better memory the next day,” Sinclair said. “They correctly recognized more paintings. They remembered how much each painting was worth. And reward boosted memory, so valuable paintings were more likely to be remembered. But we didn’t see that in the urgent group participants who imagined executing the heist.”

Urgent group participants, however, had a different advantage. They were better at figuring out which doors hid more expensive pieces, and as a result snagged more high value paintings. Their stash was appraised at about $230 more than the curious participants’ collection.

The difference in strategies (curious versus urgent) and their outcomes (better memory versus higher-valued paintings) doesn’t mean one is better than the other, though.

“It’s valuable to learn which mode is adaptive in a given moment and use it strategically,” Dr. Adcock said.

For example, being in an urgent, high-pressure mode might be the best option for a short-term problem.

“If you're on a hike and there's a bear, you don't want to be thinking about long-term planning,” Sinclair said. “You need to focus on getting out of there right now.”

Opting for an urgent mindset might also be useful in less grisly scenarios that require short-term focus, Sinclair explained, like prompting people to get a covid vaccine.

For encouraging long-term memory or action, stressing people out is less effective.

“Sometimes you want to motivate people to seek information and remember it in the future, which might have longer term consequences for lifestyle changes,” Sinclair said. “Maybe for that, you need to put them in a curious mode so that they can actually retain that information.”

Sinclair and Wang are now following up on these findings to see how urgency and curiosity activate different parts of the brain. Early evidence suggests that, by engaging the amygdala, an almond-shaped brain region best known for its role in fear memory, “urgent mode” helps form focused, efficient memories. Curious exploration, however, seems to shuttle the learning-enhancing neurochemical dopamine to the hippocampus, a brain region crucial for forming detailed long-term memories.

With these brain results in mind, Dr. Adcock is exploring how her lab’s research might also benefit the patients she sees as a psychiatrist.

“Most of adult psychotherapy is about how we encourage flexibility, like with curious mode” Dr. Adcock said. “But it’s much harder for people to do since we spend a lot of our adult lives in an urgency mode.”

These thought exercises may give people the ability to manipulate their own neurochemical spigots and develop “psychological maneuvers,” or cues that act similar to pharmaceuticals, Dr. Adcock explained.

“For me, the ultimate goal would be to teach people to do this for themselves,” Dr. Adcock said. “That’s empowering.”

Support for the research came from a Duke Health Scholars Award from Duke University.

CITATION: “Instructed Motivational States Bias Reinforcement Learning and Memory Formation,” Alyssa H. Sinclair, Yuxi C. Wang, R. Alison Adcock. Proceedings of the National Academy of Sciences, July 25 2023. DOI: 10.1073/pnas.2304881120

 

Study offers objective insights to near-miss collisions between drones, airplanes


Peer-Reviewed Publication

EMBRY-RIDDLE AERONAUTICAL UNIVERSITY




Researchers have developed a new way to accurately count and objectively analyze close encounters between drones and airplanes — without depending solely on pilot sightings.

In a peer-reviewed study published by the Society of Automotive Engineers in the “SAE International Journal of Aerospace,” researchers looked at more than 1.8 million piloted aircraft operations and nearly 460,000 flights by small-uncrewed aerial systems (sUAS) around Dallas-Fort Worth Airport, a major hub.

Between August 2018 and July 2021, researchers with Embry-Riddle Aeronautical University and Unmanned Robotic Systems Analysis (URSA) identified 24 near-midair collisions (NMACs) in which sUAS or “drones” came within 500 feet of piloted aircraft.

Given that most air carrier close calls happened within 1.5 miles of a runway approach or departure zone, researchers recommended extending the runway exclusion zone for drones at the ends of high-risk runways, from about 1 mile to 3.5 miles.

“That modification would provide enhanced protection for piloted aircraft operating at less than 500 feet above ground level during approach or departure,” said Ryan Wallace, associate professor of Aeronautical Science. “Typically, small uncrewed aircraft don’t fly above 400 feet.”

Gathering Objective Evidence

Up to this point, information about narrow escapes between sUAS and airplanes has been based on subjective reports from pilots who must simultaneously identify and evade drones in the air. Existing information does not include sUAS not spotted by pilots. Yet, the FAA received an alarming 2,596 pilot reports in 2021 — more than double the 1,210 reports during the first full calendar year of tracking in 2015.

Now, Embry-Riddle Aeronautical University researchers have devised an objective way to gather detailed information about NMACs between drones and airplanes.

They analyzed sUAS and aircraft telemetry data collected using an Unmanned Aerial System (UAS) detection device connected to an antenna atop Dallas-Fort Worth Airport’s busy Terminal C concourse. For each sUAS within a 30-mile radius, the device captured telemetry, altitude, launch location and other details.

Researchers combined that information with ADS-B (automatic dependent surveillance-broadcast), as well as Mode S messages transmitted by airplanes and tracked by the OpenSky Network. To better understand and visualize the resulting data, all information was fed into URSA’s Airspace Awareness Platform, or AAP-NMAC — a proprietary data analytics software.

“We hope that our findings will help improve aviation safety by reducing the risk of collisions between unmanned aircraft systems and piloted aircraft operating in the National Airspace System,” Wallace said.

Understanding Near-Miss Events

Over the nearly three-year study period, researchers detected 24 close-call events, including two in 2018, one in 2019, 14 in 2020 and seven in 2021. Across all of the NMACs, the mean lateral distance between the drone and the airplane was only about 215 feet. Commercial air carriers were involved in 11 NMACs, while seven incidents involved helicopters and six involved general aviation aircraft.

All of the helicopter encounters happened within 1.25 miles of a heliport. Similarly, in 10 of the 11 air carrier encounters, the aircraft was within 1.5 miles of approach or departure and lower than 500 feet above the ground.

“Operations within the vicinity of an airport are critical flight phases for pilots with high workload levels. It is within these areas where aircraft have added susceptibly of a collision with sUAS,” said Scott Winter, associate professor of Graduate Studies and associate dean for research, who was a co-author of the research article. “The findings from this study provide objective data for operators, government agencies and airlines to understand sUAS operations better and prevent possible conflicts.”

As of 2020, an estimated 1.46 million sUAS were operating in the National Airspace System, the FAA has reported. By 2025, the FAA predicts the small uncrewed aircraft systems (sUAS) fleet will include nearly 2.4 million units.

“The proliferation of drones, particularly ones available to the general public, poses obvious risks,” said research collaborator and professor of Human Factors Dr. Stephen Rice. “Unfortunately, not all drone operators are responsible, knowledgeable or safety-minded. Many of them are not even aware of the rules they must follow.”

Of the 24 NMACs identified by Embry-Riddle researchers, Rice noted, the same three sUAS were responsible for more than half (13) of the encounters. Further, in 96% of the cases (23), the drone was operating in excess of the maximum permissible altitude for that area.

Though rare, NMACs between drones and piloted aircraft have happened. On Sept. 18, 2020, a Los Angeles police helicopter hit a drone, requiring an emergency landing. A second helicopter-sUAS collision over Los Angeles had been reported nine months earlier.

This fall, the FAA will implement a new requirement so that all drone operators will need a remote identification or RID signal to enhance safety and security. For those drone operators who comply with the requirement, Wallace noted, “RID signals should further enhance objective information about near-miss encounters between drones and airplanes.”

The journal article describing these findings is entitled “Three Case Studies on Small Uncrewed Aerial Systems Near Midair Collisions with Aircraft: An Evidence-Based Approach for Using Objective Uncrewed Aerial Systems Detection Technology” (DOI: 10.4271/01-16-03-0023), in the SAE [Society of Automotive Engineers] International Journal of Aerospace. In addition to Wallace, Winter and Rice, co-authors include graduate student Sang-A Lee and David C. Kovar of Unmanned Robotics Systems Analysis, USA.

About Embry-Riddle Aeronautical University

Reporters worldwide contact Embry-Riddle Aeronautical University for content experts in all aspects of aviation, aviation business, aerospace, engineering and STEM-related fields. Our faculty experts specialize in unmanned and autonomous systems, security and intelligence, air traffic and airport management, astronomy, human factors psychology, meteorology, spaceflight operations, urban air mobility and much more. Visit the Embry-Riddle Newsroom for story ideas.

Embry-Riddle educates 31,300+ students at its residential campuses in Daytona Beach, Florida and Prescott, Arizona, at approximately 110 Worldwide Campus locations and through online degree programs. In 2023, U.S. News & World Report named Embry-Riddle Worldwide the nation’s No. 2 provider of online bachelor’s degree programs. The university has ranked either No. 1 or No. 2 in this category every year since 2016. Our residential campuses hold multiple Top 10 rankings. All of our campuses have been ranked Best for Veterans.

###

 

Dune restoration could increase the resilience of Southern California's urban beaches to sea level rise


Peer-Reviewed Publication

UNIVERSITY OF CALIFORNIA - SANTA BARBARA

project site 3 OG- UC Santa Barbara 

IMAGE: BEACH BUR, A NATIVE PLANT THAT HELPED TO FORM DUNES ON A SECTION OF SANTA MONICA BEACH IN LOS ANGELES view more 

CREDIT: PHOTO CREDIT: KARINA JOHNSTON




(Santa Barbara, Calif.) — Over the last several years, the residents of Santa Monica, a coastal city on the edge of Los Angeles, saw something neither they, their parents, or perhaps even their grandparents had ever seen before: a three-foot-tall dune system rising gently from the flat, groomed expanse of one of the world’s most famous urban beaches. It’s a six year alliance between sand, wind and vegetation, and, according to UC Santa Barbara researchers, it’s one way to enlist nature to help protect the coast from the impacts of climate change.

“The project was really to assess whether we could naturally grow dunes on a heavily urbanized, mechanically raked beach that had been that way for more than 70 years,” said Karina Johnston, a doctoral student at UCSB’s Marine Science Institute (MSI) and the Bren School for Environmental Science & Management, and lead author on a paper in Frontiers in Marine Science. “Could it work? Could it inform natural solutions to help protect our coastline from sea-level rise?” The short answer: quite possibly.

The threat of sea-level rise has become an issue for all coastal cities around the world as they grapple with warming oceans, more intense storms and flooding events. For heavily populated stretches of coast, such as Santa Monica Beach in Los Angeles, the issue is especially nuanced: City planners have to walk the line between protecting the coast and keeping it available to the millions of visitors it receives each year.

“At the start of the project, considerations were centered around balancing ecology, beach access and the needs of local residents and businesses,” said Shannon Parry, chief sustainability officer for the City of Santa Monica. “Given the popularity of Santa Monica Beach, the project needed to be interactive and accessible.” 

Beach grooming (or raking) is a coastal management measure undertaken generations ago to pick up trash, remove seaweed and make the beach more appealing for visitors. 

“Those management activities have been in place for decades on urban beaches, so it’s created an institutionalized construct of what a beach should look like,” Johnston said. 

Though well-intentioned, the practice of heavily raking the top few inches of sand several times a week and picking up kelp wrack does keep the beach free of debris, but it also flattens the natural landscape of wind-swept dunes held together by natural vegetation, impacts biodiversity and reduces habitat for wildlife. These unnaturally wide stretches of sand have since become the iconic look of southern California beaches, with coastal cities spending millions of dollars each year to maintain it.

But with the growing threats of climate change and sea level rise, people who study and manage California’s urban beaches are taking another look at beach grooming. In collaboration with the City of Santa Monica and The Bay Foundation and other partners, Johnston and MSI researchers Dave Hubbard and Jenifer Dugan started a long-term experiment, sectioning off three sides of a 1.2 hectare (about 3 acre) stretch of Santa Monica Beach with sand fencing, and sowing native dune plant seeds (red sand verbena, beach bur, beach salt bush and beach evening primrose). Then they waited. 

And waited. 

And waited, conducting scientific surveys throughout the study period, and turning to UCLA postdoctoral researcher Kyle Emery to document the long-term results via drone surveys.

“The success of the project was evident on the ground, but the aerial view from the drone provided an entirely different perspective in which the restoration site stood out like an island within a groomed landscape,” Emery said. “The data we collected with the drone surveys allowed us to build digital elevation models and estimate the sand accumulation and increase in elevation of the restoration site relative to the adjacent beach.” Six years after it began, the general elevation across their pilot study area increased by about 0.3 meter (about 1 foot), including a higher foredune ridge with a 0.9 m maximum elevation and 1-m dunes along the perimeter.  The accumulation of sand into dune forms was assisted by native vegetation, which trapped sand as it blew into the area, forming hummocks and dunes . 

Humans weren’t the only ones who noticed the new landforms; shorebirds, and especially the threatened western snowy plover, had started to make use of the new dune landscape to roost. 

Waiting for nature and conducting scientific research was probably the easier job. The collaborators simultaneously undertook a massive information campaign aimed at the local beach community, explaining what the project was for and what they could expect.

“The City of Santa Monica was a fantastic partner,” Johnston said. “They are very forward-thinking about climate change.” City staff dedicated time and effort to sending out mailers, building a website, generating blogs and leveraging social media. They also added informative signs at the site to explain the importance of coastal resilience and set up meetings so the researchers could directly answer any questions from the public.

What’s important to remember, according to the researchers, is that human involvement was also part of the vision. “What we really wanted to do was to let people interact with the site and to not impact recreational opportunities,” Johnston said. Hence, while the area was marked off with signs requesting minimal disturbance, the oceanward side of the plot was unfenced to open it to recreation. 

The public response was “incredibly positive,” according to the researchers, due in large part to the access provided for recreation, and to a walkway through the experimental plot. It became so popular that that people would go out of their way to walk through the middle of the site on their way to the water’s edge and take pictures or birdwatch. 

Not everyone was enthusiastic about the project from the start. One longtime resident was vocal in her opposition to the project at the beginning of one public comment gathering session.

“We started giving a presentation about why the project was happening, and our goals, and we started showing pictures of other places that had dunes and vegetation along the beaches, and she stands up in the middle of the presentation. I froze: What was she going to say?” Johnston recalled.

“And she turns to the City of Santa Monica and stares at them and says, ‘Why is this project not bigger?’ She became one of our staunchest supporters, and we recognized the important value of community input throughout the process.”

“The Santa Monica Beach Pilot Project is a successful proof of concept for scalable, affordable coastal adaptation solutions that address the risks from climate change and coastal sea level rise,” Parry noted. “Through dedicated public engagement and thoughtful ecological design, the project was able to strike a balance between allowing sensitive natural processes to take place and achieving accessibility for Santa Monica beachgoers and residents.”

For all this effort, however, are the new dunes going to do what everyone hopes they will do?

“The dune building is going faster than the current rate of sea level rise,” Hubbard said. “So that’s really good. You could even have a disturbance and it could rebuild itself and catch up again.” 

The last round of winter storms provided some evidence of this resilience, something the researchers hope will buy time as Santa Monica adapts to coastal erosion and climate change. But time, and even bigger storms and wave action will tell whether Nature can rise to the challenge of protecting the urban coast.

Not all groomed beaches will respond to nature-based interventions such as this. Santa Monica Beach is part of a local littoral cell that naturally receives sand cycled in by wave and wind. “This approach is going to be suitable in some areas,” Hubbard said. “It’s not appropriate for other areas that are narrower.”

However, the success of this venture so far is something the scientists hope will inspire other sandy beach researchers and managers to investigate as a possibility for nature-based coastal adaptation. Ideally, field experiments and monitoring should last as long as it takes to gauge factors such as how large dunes can get, whether or not vegetation can re-seed itself and if the dune can self-repair after a significant disturbance. This could take up to a decade.

“One of the highlights of this study is that we actually tracked this project from the beginning and out to more than six years,” Dugan said. Most of the studies they encountered in preparation for this project had done only a few years of monitoring and thus provided incomplete knowledge on the effects of rewilding sections of beach. She suspects that some of these short-term projects could have reported higher levels of response had there been a longer period of monitoring. 

“Now we have all this rich information,” she said. “We know which plants really built the dunes, and where the foredune was likely to form on this groomed beach. All these findings  can be applied to other coastal dune restoration projects.”

For now, the collaboration will continue to monitor the experimental site, especially as this ongoing El Niño weather cycle brings higher sea levels and bigger waves. More information means more options for adaptation.

“We’re not doing this project in a prescriptive way,” Hubbard said. “We’re trying to create an alternative vision of what southern California beaches can be and people can choose for themselves what kind of beach they can have.”