Sunday, October 22, 2023

 

Ancient sea monster remains reveal oldest mega-predatory pliosaur


Peer-Reviewed Publication

UPPSALA UNIVERSITY

Lorrainosaurus - Life reconstruction 

IMAGE: 

THE OLDEST MEGAPREDATORY PLIOSAUR, LORRAINOSAURUS, IN THE ANCIENT MIDDLE JURASSIC SEA THAT COVERED WHAT IS TO DAY NORTHERN FRANCE 170 MILLION YEARS AGO.

view more 

CREDIT: JOSCHUA KNÜPPE




The fossils of a 170-million-year-old ancient marine reptile from the Age of Dinosaurs have been identified as the oldest-known mega-predatory pliosaur – a group of ocean-dwelling reptiles closely related to the famous long-necked plesiosaurs. The findings are rare and add new knowledge to the evolution of plesiosaurs. The study has been published in the journal Scientific Reports.

The fossils were found 40 years ago in north-eastern France. An international team of palaeontologists from the Naturkunde-Museum Bielefeld in Germany, the Institute of Paleobiology of the Polish Academy of Sciences in Warsaw, Poland, the Natural History Museum in Luxembourg and The Museum of Evolution at Uppsala University in Sweden have now analysed them and identified them as a new pliosaur genus: Lorrainosaurus.

Pliosaurs were a type of plesiosaur with short necks and massive skulls. They appeared over 200 million years ago, but remained minor components of marine ecosystems until suddenly developing into enormous apex predators. The new study shows that this adaptive shift followed feeding niche differentiation and the global decline of other predatory marine reptiles over 170 million years ago.

Lorrainosaurus is the oldest large-bodied pliosaur represented by an associated skeleton. It had jaws over 1.3 m long with large conical teeth and a bulky ‘torpedo-shaped’ body propelled by four flipper-like limbs.

Lorrainosaurus was one of the first truly huge pliosaurs. It gave rise to a dynasty of marine reptile mega-predators that ruled the oceans for around 80 million years,” explains Sven Sachs, a researcher at the Naturkunde-Museum Bielefeld, who led the study.

This giant reptile probably reached over 6 m from snout to tail, and lived during the early Middle Jurassic period. Intriguingly, very little is known about plesiosaurs from that time.

“Our identification of Lorrainosaurus as one of the earliest mega-predatory pliosaurs demonstrates that these creatures emerged immediately after a landmark restructuring of marine predator ecosystems across the Early-to-Middle Jurassic boundary, some 175 to 171 million years ago. This event profoundly affected many marine reptile groups and brought mega-predatory pliosaurids to dominance over ‘fish-like’ ichthyosaurs, ancient marine crocodile relatives, and other large-bodied predatory plesiosaurs”, adds Daniel Madzia from the Institute of Paleobiology of the Polish Academy of Sciences, who co-led the study.

Pliosaurs were some of the most successful marine predators of their time.

“Famous examples, such as Pliosaurus and Kronosaurus – some of the world’s largest pliosaurs – were absolutely enormous with body-lengths exceeding 10 m. They were ecological equivalents of today’s Killer whales and would have eaten a range of prey including squid-like cephalopods, large fish and other marine reptiles. These have all been found as preserved gut contents”, said senior co-author Benjamin Kear, Curator of Vertebrate Palaeontology and Researcher in Palaeontology at The Museum of Evolution, Uppsala University.

The recovered bones and teeth of Lorrainosaurus represent remnants of what was once a complete skeleton that decomposed and was dispersed across the ancient sea floor by currents and scavengers.

“The remains were unearthed in 1983 from a road cutting near Metz in Lorraine, north-eastern France. Palaeontology enthusiasts from the Association minéralogique et paléontologique d’Hayange et des environs recognised the significance of their discovery and donated the fossils to the Natural History Museum in Luxembourg”, said co-author Ben Thuy, Curator at the Natural History Museum in Luxembourg.

Other than a brief report published in 1994, the fossils of Lorrainosaurus remained obscure until this new study re-evaluated the finds. Lorrainosaurus indicates that the reign of gigantic mega-predatory pliosaurs must have commenced earlier than previously thought, and was locally responsive to major ecological changes affecting marine environments covering what is now western Europe during the early Middle Jurassic.

Lorrainosaurus is thus a critical addition to our knowledge of ancient marine reptiles from a time in the Age of Dinosaurs that has as yet been incompletely understood”, says Benjamin Kear.

Life-sized reconstruction of the head and jaws of the oldest megapredatory pliosaur, Lorrainosaurus.

The 1.3 m long lower jaw of Lorrainosaurus with a life-sized reconstruction of its head displayed in the Musée national d’histoire naturelle de Luxembourg.

CREDIT

Model By 10 Tons


Plants in the Cerrado combine at least two strategies to survive fire, study shows


Plant species native to the Brazilian savanna-like biome grow thick bark to protect their internal tissues and hide organs that assure resprouting below the ground, according to an article in Flora by researchers at São Paulo State University


Peer-Reviewed Publication

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

Plants in the Cerrado combine at least two strategies to survive fire 

IMAGE: 

DIFFERENT BELOW-GROUND ORGANS ANALYZED IN CERRADO SPECIES: (A) XYLOPODIUM IN STRYPHNODENDRON ROTUNDIFOLIUM; (B) XYLOPODIUM AND POSSIBLE TUBEROUS ROOT IN ANNONA CRASSIFLORA; (C) ROOT CROWN IN MICONIA ALBICANS; (D) WOODY RHIZOME IN HANDROANTHUS OCHRACEUS 

view more 

CREDIT: MARCO ANTONIO CHIMINAZZO/UNESP




In an article published in the journal Flora, researchers at São Paulo State University (UNESP) in Brazil examine some of the strategies developed over eons of evolution by plants in the Cerrado, Brazil’s savanna-like biome, to protect themselves and resprout quickly after fire.

The article is commended by the journal as Highlighted Student Research. Its first author, Marco Antonio Chiminazzo, a PhD candidate at UNESP in Rio Claro, received funding from FAPESP for his master’s (19/21300-6) and PhD research (21/09269-9).  

The co-authors are Alessandra Fidelis, a professor in the Department of Biodiversity at the Rio Claro Institute of Biosciences (IBRC-UNESP); Aline Bombo, a postdoctoral fellow at the same institution, and Tristan Charles-Dominique, a researcher at the Paris Sorbonne and Montpellier University in France. All three are Chiminazzo’s thesis advisors.

“Fire plays an important role in the history of the Cerrado’s savanna-type vegetation. To survive fires, these plants have developed various strategies, which the different lineages have refined during a long evolutionary process,” Chiminazzo said. “We’ve known since we began studying the biome that the Cerrado’s plants have thick bark to protect their internal tissues. They also have a wide array of below-ground organs that enable them to resprout because they’re protected by being under the surface. However, these two strategies require plants to deploy a lot of resources. Our key question was whether they could do both at the same time – whether typical species of the Cerrado with below-ground organs were also able to produce significant amounts of above-ground bark.”

The researchers also set out to discover whether there were differences between clonal and non-clonal species in terms of bark production and bud protection and whether maximum height correlated with the ability to propagate clonally, given that clonal plants are generally smaller because their resources must be used to fuel both vertical and lateral growth.

“The first step was a review of the literature to identify woody species in the Cerrado whose below-ground organs and above-ground bark production rates had been described. We then went out into the field to dig and collect plants in areas of grassland with scattered shrubs [campo sujo] and dense woodland or shrubland [cerrado sensu stricto] in order to analyze their organs,” Chiminazzo said. The field trips were to the Santa Bárbara Ecological Station, an environmental protection unit in Águas de Santa Bárbara, São Paulo state.

“We grouped the species on the basis of clonality or non-clonality and of types of below-ground organ, especially woody rhizomes, which promote clonal growth, or xylopodia and root crowns, which do not,” he said.

By comparing below-ground organs and bark production rates, the authors of the study were able to show that plant species in the Cerrado can produce large amounts of bark (up to 0.9 millimeters per unit of growth) and at the same time develop below-ground organs that specialize in resprouting. In other words, they can protect themselves from fire by hiding a large proportion of their biomass below ground. 

“We also found a clear division between clonal species and species that occupy the same space throughout their life cycle [in a phenomenon termed on-spot persistence]. Specifically, clonal species with woody rhizomes tend to produce more bark, protect themselves better and grow taller than species with xylopodia and root crowns,” he said. 

These differences suggest that the plants have evolved two distinct strategies for resprouting from underground buds: clonal growth associated with a considerable effort to protect aerial branches; and on-spot persistence, possibly linked to a stronger focus on protecting buds in organs below ground. 

“The findings show that plants in the Cerrado are capable of investing in different strategies to protect themselves against fire,” Bombo said. “The usual view is that that they invest either in above- or below-ground strategies. The ability to invest in both reflects the extent to which woody plants have adapted to fire in the Cerrado. Having both aerial and underground fire-related strategies for regeneration and persistence enables these species to survive fire events of varying intensities.”

Next steps include examining which fire regimes favor regeneration and persistence strategies that are aerial, underground or a combination of both. “This can help us understand better the differences between above- and below-ground carbon stocks in the Cerrado,” Bombo said. “Furthermore, a comparison with different savannas around the world will show whether the results of this study might also apply to other types of vegetation exposed to fire events.”

The study was also funded via two other projects (17/02934-1 and 15/06743-0). 

Threatened biome 

The Cerrado is now the most threatened of Brazil’s biomes. Deforestation in the Amazon has decreased significantly in 2023, while destruction of native vegetation in the Cerrado has risen to record levels. In the first five months of the year, it increased 35% compared with January-May 2022. The increase corresponded to 3,532 square kilometers of destruction. These numbers, which come from the National Space Research Institute (INPE), are highly alarming because the Cerrado is the world’s most biodiverse savanna, contains 33% of Brazil’s biodiversity, and is the birthplace of the three largest river basins in South America.

As the destruction advances, important scientific research has been conducted to predict and prevent fire propagation (read more at: agencia.fapesp.br/44694) or use fire as a land management and conservation strategy (read more at: agencia.fapesp.br/26064). Other studies have also highlighted the extraordinary resilience and regenerative power of Cerrado plant species, which have evolved over millions of years in the presence of fire (read more at: agencia.fapesp.br/41100).  

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

 

Who is the ultimate winner of the two strategies to protect cathode for constructing long-cycle performance all-solid-state batteries?


Peer-Reviewed Publication

BEIJING INSTITUTE OF TECHNOLOGY PRESS CO., LTD

Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances 

IMAGE: 

CONSTRUCTING BR-DOPED LI10SNP2S12-BASED ALL-SOLID-STATE BATTERIES WITH SUPERIOR PERFORMANCES

view more 

CREDIT: [CHUANG YU, HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY]




They published their work on Oct. 18 in Energy Material Advances.

 

"Constructing a good interface between cathode and electrolyte is crucial for the development of all-solid-state battery," said Chuang Yu, a professor at the State Key Laboratory of Advanced Electromagnetic Technology at Huazhong University of Science and Technology. "Currently, strategies such as coating protect layer on cathode surface and isolating cathode/sulfide electrolyte by halide electrolyte layer are typical solutions to solve the problems at the interface between the cathode and the sulfide electrolytes, but it is not yet clear who is more suitable for sulfide-based all-solid-state batteries."

 

Yu explained that sulfide electrolytes currently used will undergo oxidative decomposition during the operation, which deteriorates to cyclability, and strategies should be employed to suppress such decomposition.

 

"Halide electrolytes have wide electrochemical windows which can compensate for the shortage of sulfide electrolytes," Yu said. "The coating layer of the cathode surface can relieve the decomposition of sulfide electrolytes. Both strategies are favored to cycle performance."

 

But it's too simplistic to think that introducing halide electrolytes can significantly improve the cycling performance of batteries. According to Yu, the use of halides introduces a new interface that is the halide/sulfide interface. The compatibility is not fully understood yet between two electrolytes and efforts should be made to explore the answer.

 

"We take Li9.9SnP2S11.9Br0.1 sulfide electrolyte as an example, employing cathode surface coating and halide/sulfide bilayer electrolyte strategies to improve the electrochemical performance of batteries," Yu said. "The cycle performance of batteries with a coating layer is excellent. The initial discharge capacity of halide/sulfide bilayer electrolyte batteries is very high but the cyclability is undesirable."

 

"This provides us with an opportunity to explore the stability of halide/sulfide interface, as batteries with bilayer electrolyte have poor cycle performance. In fact, they are indeed unstable, and after a period of contact, the impedance of the two is significantly lower than when they contact at the beginning," Yu said.

 

"The products between halide and sulfide, such as In2S3, are the main culprit causing poor cycling performance," Yu added. "Strategies should be explored to enhance the interface stability between halide and sulfide. Otherwise, the only way to significantly enhance the cycling performance of batteries is to use the coating method on the cathode surface."

 

Other contributions include Qiyue Luo, Liang Ming, Chaochao Wei, Zhongkai Wu, Ziling Jiang, Chen Liu and Shijie Cheng, State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology; Shiyu Liu, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology; Dong Zhang and Kecheng Cao, School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, Shanghai Tech University; Long Zhang, College of Physics and Energy, Fujian Normal University.

 

The National Key Research and Development Program (2021YFB2500200). This work is also supported by the National Natural Science Foundation of China (Nos. 52177214) and the National Key Research and Development Program (2021YFB2400300). This work uses resources of Analytical and Testing Center of Huazhong University of Science and Technology.

 

###

Reference


Authors: QIYUE LUO, LIANG MING, DONG ZHANG, CHAOCHAO WEI, ZHONGKAI WU, ZILING JIANG, CHEN LIU , SHIYU LIU, KECHENG CAO , LONG ZHANG, CHUANG YU , AND SHIJIE CHENG


Title of original paper: Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances

 

Journal: Energy Material Advances


DOI: 10.34133/energymatadv.0065


Affiliations: 1State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.  2School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. 3School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, Shanghai Tech University, Shanghai 201210, P. R. China. 4Wuhan National High Magnetic Field Center,  Huazhong  University  of  Science  and  Technology,  Wuhan  430074,  P.  R.  China.  5College  of  Physics  and Energy, Fujian Normal University, Fuzhou 350117, P. R. China

About the Author: Chuang Yu is currently a professor at Huazhong University of Science and Technology | Hust School of Electrical and Electronic Engineering. His research interest focuses on all-solid-state lithium and sodium ion electrolytes and their applications in solid-state Li and Na cells.

 

 

A review of energy supply for biomachine hybrid robots


Peer-Reviewed Publication

BEIJING INSTITUTE OF TECHNOLOGY PRESS CO., LTD

Various energy supply methods for BHRs 

IMAGE: 

SCIENTISTS FROM THE BEIJING INSTITUTE OF TECHNOLOGY REVIEWED THE VARIOUS ENERGY SUPPLY METHODS FOR BIOMACHINE HYBRID ROBOTS.

view more 

CREDIT: JIELIANG ZHAO BEIJING INSTITUTE OF TECHNOLOGY



Bio-machine hybrid robots (BHRs) represent a new generation of micro-aerial vehicles that be controlled by building an interface between biological and artificial systems. In contrast to conventional bionic robots, they are free of complex mechanical structures, and due to the direct adoption of the animal body, they have superior moving characteristics and lower energy demand. Thus, the BHRs can be applied in many important scenarios, such as urban and wilderness rescue operations, environmental monitoring and hazardous area surveys.

To accomplish long mission endurance, the energy supply of the control backpack must be considered. As different biological carriers have different requirements for the energy equipment, BHRs' power supply is an important issue. A review paper by scientists at the Beijing Institute of Technology summarized advancements in supply devices in BHRs research.

The new review paper, published on Sep. 26 in the journal Cyborg and Bionic Systems, provided a comprehensive overview of the various energy supply methods in BHRs research, from the selection of chemical batteries for different bio-carriers to the development and application of various energy harvesters.

“You may couldn’t imagine that one day when you are trapped in the wild, the first one to notice your distress message and rescue you is an animal. But this will be a reality in the future.” explained study author Jieliang Zhao, a professor at the Beijing Institute of Technology.

For a long time, bionic scientists have expected to be able to mimic the Creator's ingenious biological designs and constructions. Although scientists have designed and built robots to mimic the movement of animals in nature in every way possible, no bionic robot has yet matched the efficiency and maneuverability of the animal body itself.

Bio-machine hybrid robots (BHRs) have become another new method. BHRs use animals as carriers and modulate carrier movement by constructing bio-mechanical interfaces to accomplish scenario-specific tasks. The energy supply unit used to power the control backpack and electronic component carried by BHRs determines their future development and practical application, according to Zhao.

The newly published review analyzed the various energy supply methods in BHRs research. The study authors grouped the energy supply devices into five categories: chemical batteries; solar cells; biofuel cells; bio-thermal harvesters and bio-vibration harvesters. They analyzed the focus of different carrier animals in the selection of chemical batteries separately. For example, when selecting the battery for flying insects, in addition to meeting the basic electrical requirements, it is also necessary to consider the weight and size of the entire battery, to ensure the carrier insect can fly properly.

Although the size of the batteries becomes smaller and smaller, they can’t provide sustainable energy for BHRs and the frequent charging will affect animal life. Thus, some researchers started to develop solar cells, biofuel cells, bio-thermal harvesters and bio-vibration energy harvesters to supply energy to BHRs. In the review, they contain a summary overview of current research on self-powered devices for BHRs. “Energy harvesters can effectively harvest different forms of energy from the surrounding environment or the animal itself, which could achieve self-powering of the BHRs,” said Zhao.

Looking forward, the team considers that five important challenges need to be overcome. The first one is developing high energy density energy supply devices. They think with the creation of new materials and advances in micro-nano technology, the main directions for enhancing energy density are provided in terms of composite materials and micro-scale structural design.

The second one is developing biocompatibility of energy supply devices to avoid serious immune reactions that could affect the animal's lifetime. The third one is compound energy supply. By reasonably harvesting multiple environmental energy sources and applying multiple energy conversion mechanisms, the space utilization efficiency of energy supply devices be improved effectively and the power output can be also increased.

The fourth one is the stability of the energy supply because the long-term stability of the energy supply system is a basic requirement for the effective control of BHRs. The last one is an environmentally friendly energy supply. As BHRs are used in the natural environment, addressing the impact of energy supply systems on the environment is a vital challenge.

“The research field of energy supply for BHRs is still in its infancy,” said Zhao. Most studies have been done only in the laboratory and the output of harvesters is lower than actual demand. As new conceptual robots, BHRs have important application prospects in future scenarios, such as animal monitoring and wildlife rescue. The energy supply system directly determines the practical application of BHRs. This review calls for more researchers to be able to focus on this field and work together to overcome the challenges in energy supply and promote the practical application of BHRs。

Authors of the paper include Zhiyun Ma, Jieliang Zhao, Li Yu, Mengdan Yan, Lulu Liang, Xiangbing Wu, Mengdi Xu, Wenzhong Wang, Shaoze Yan.

This work was supported by the National Key R&D Program of China (2021YFB3400200), the Beijing Natural Science Foundation (3212012), the National Natural Science Foundation of China (52075038), the Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (KF20200001), and the Opening Project of State Key Laboratory of Tribology, Tsinghua University (SKLTKF20B06).

The paper, " A Review of Energy Supply for Biomachine Hybrid Robots " was published in the journal Cyborg and Bionic Systems on 26 September 2023 at DOI: https://doi.org/10.34133/cbsystems.0053

 

Reference

Authors: Zhiyun Ma1, Jieliang Zhao1*, Li Yu1, Mengdan Yan1, Lulu Liang1, Xiangbing Wu1, Mengdi Xu2, Wenzhong Wang1*, Shaoze Yan3

Title of original paper: A Review of Energy Supply for Biomachine Hybrid Robots

Journal: Cyborg and Bionic Systems

DOI: 10.34133/cbsystems.0053

 

Affiliations:

1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

2Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

3Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China.

 

A brief introduction about yourself. 

About Dr. Jieliang Zhao:

Jieliang Zhao is a Professor at the Beijing Institute of Technology (BIT) and Teli Young Fellow of BIT. His research interests include Spacecraft dynamics, animal behavior and bionic machinery, and intelligent structures and drives. Up to now, he has published over 35 SCI papers in ACS Applied Materials and Interfaces, Applied Surface Science, Acta Astronautica, Journal of Bionic Engineering, Journal of Insect Science, and other journals with the h-index of 9 and total citations of over 261.

 

Personal Homepage: https://me.bit.edu.cn/szdw/jsml/jdkxjcb/jxsjjys/bssds18/011124976e4b4967affa67c6f99e2e19.htm

 

POSTMODERN MESMERISM

Moving muscle fibers with magnets “programs” how they align within tissue


Peer-Reviewed Publication

CELL PRESS

Magnetic matrix actuation 

IMAGE: 

THIS ILLUSTRATION DEPICTS A NEW PLATFORM FOR MAGNETIC MATRIX ACTUATION, ENABLING THE STUDY OF HOW TISSUES RESPOND TO DYNAMIC MECHANICAL CUES IN THEIR ENVIRONMENT. 

view more 

CREDIT: ELLA MARUSHCHENKO




Stimulating muscle fibers with magnets causes them to grow in the same direction, aligning muscle cells within tissue, Massachusetts Institute of Technology (MIT) and Boston University investigators report October 20 in the journal Device. The findings offer a simpler, less time-consuming way for medical researchers to program muscle cell alignment, which is strongly tied to healthy muscle function.

“The ability to make aligned muscle in a lab setting means that we can develop model tissues for understanding muscle in healthy and diseased states and for developing and testing new therapies that combat muscle injury or disease,” says senior author Ritu Raman (@DrRituRaman), an MIT engineer. A better understanding of the rules that govern muscle growth could also have applications in robotics, she adds.

In a previous investigation, Raman and colleagues found that “exercising” muscle fibers by making them contract in response to electrical stimulation for 30 minutes a day over the course of 10 days made the fibers stronger. This time, the researchers wanted to explore whether mechanically stimulating the muscle fibers over the same time frame (rather than letting them respond on their own) would have the same result. To investigate, they developed a method to mechanically stimulate muscle tissue that differs from typical lab techniques.

“Generally, when people want to mechanically stimulate tissues in a lab environment, they grasp the tissue at both ends and move it back and forth, stretching and compressing the whole tissue,” said Raman. “But this doesn't really mimic how cells talk to each other in our bodies. We wanted to spatially control the forces between cells within a tissue, matching native systems.”

To stimulate the muscle cells in a more true-to-life way, Raman and her team grew cells in a Petri dish on a soft gel that contained magnetic particles. When they would move a magnet back and forth under the gel, the particles moved back and forth, too, which “flexed” the cells. The researchers could precisely control the way the gel moved, and, in turn, the magnitude and direction of the forces the cells within experienced, by changing the strength and orientation of the magnet. To measure the alignment of the muscle fibers within the tissues and whether they contracted in synchrony, the team’s collaborators at Boston University developed a custom software that automatically tracked videos of the muscle and generated graphs of its movement.

“We were very surprised by the findings of our study,” said Raman. While mechanically stimulating the muscle fibers over the 10-day period did not seem to make them any stronger, it did cause them all to grow in the same direction.

“Furthermore, we were excited to find that, when we triggered muscle contraction, aligned muscle was beating synchronously, whereas non-aligned muscle was not beating rhythmically,” said Raman. “This confirmed our understanding that the form and function of muscle are intrinsically connected, and that controlling form can help us control function.”

Raman and colleagues plan to take the study further by investigating how different mechanical stimulation regimens impact both healthy and diseased muscle fibers. Additionally, they plan to study how mechanical stimulation affects other types of cells.


Magnetic Matrix Actuation [VIDEO] | 


The researchers were supported by the US DoD Army Research Office Early Career Program, the NSF CAREER program, the NEC Corporation Fund, and the NSF Graduate Research Fellowship Program.

Device, Rios and Bu et al. “Mechanically programming anisotropy in engineered muscle with actuating extracellular matrices.” https://www.cell.com/device/fulltext/S2666-9986(23)00149-7 

Device (@Device_CP), is a physical science journal from Cell Press along with ChemJoule, and MatterDevice aims to be the breakthrough journal to support device- and application-oriented research from all disciplines, including applied physics, applied materials, nanotechnology, robotics, energy research, chemistry, and biotechnology under a single title that focuses on the integration of these diverse disciplines in the creation of the cutting-edge technology of tomorrow. Visit http://www.cell.com/device/home. To receive Cell Press media alerts, contact press@cell.com.