Wednesday, December 20, 2023

 

Protein allows poison dart frogs to accumulate toxins safely


A newly identified protein helps poison dart frogs accumulate and store a potent toxin in their skin which they use for self-defence against predators


Peer-Reviewed Publication

ELIFE

Oophaga sylvatica 

IMAGE: 

THE DIABLITO POISON DART FROG, OOPHAGA SYLVATICA, IS NATIVE TO COLOMBIA AND ECUADOR

view more 

CREDIT: MARIE-THERESE FISCHER (CC BY 4.0)





Scientists have identified the protein that helps poison dart frogs safely accumulate their namesake toxins, according to a study published today in eLife.

The findings solve a long-standing scientific mystery and may suggest potential therapeutic strategies for treating humans poisoned with similar molecules.

Alkaloid compounds, such as caffeine, make coffee, tea and chocolate delicious and pleasant to consume, but can be harmful in large amounts. In humans, the liver can safely metabolise modest amounts of these compounds. Tiny poison dart frogs consume far more toxic alkaloids in their diets, but instead of breaking the toxins down, they accumulate them in their skin as a defence mechanism against predators.

“It has long been a mystery how poison dart frogs can transport highly toxic alkaloids around their bodies without poisoning themselves,” says lead author Aurora Alvarez-Buylla, a PhD student in the Biology Department at Stanford University in California, US. “We aimed to answer this question by looking for proteins that might bind and safely transport alkaloids in the blood of poison frogs.”

Alvarez-Buylla and her colleagues used a compound similar to the poison frog alkaloid as a kind of ‘molecular fishing hook’ to attract and bind proteins in blood samples taken from the Diablito poison frog. The alkaloid-like compound was bioengineered to glow under fluorescent light, allowing the team to see the proteins as they bound to this decoy.

Next, they separated the proteins to see how each one interacted with alkaloids in a solution. They discovered that a protein called alkaloid binding globulin (ABG) acts like a ‘toxin sponge’ that collects alkaloids. They also identified how the protein binds to alkaloids by systematically testing which parts of the protein were needed to bind it successfully. 

“The way that ABG binds alkaloids has similarities to the way proteins that transport hormones in human blood bind their targets,” Alvarez-Buylla explains. “This discovery may suggest that the frog’s hormone-handling proteins have evolved the ability to manage alkaloid toxins.”

The authors say the similarities with human hormone-transporting proteins could provide a starting point for scientists to try and bioengineer human proteins that can ‘sponge up’ toxins. “If such efforts are successful, this could offer a new way to treat certain kinds of poisonings,” says senior author Lauren O’Connell, Assistant Professor in the Department of Biology, and a member of the Wu Tsai Neurosciences Institute, at Stanford University.

“Beyond potential medical relevance, we have achieved a molecular understanding of a fundamental part of poison frog biology, which will be important for future work on the biodiversity and evolution of chemical defences in nature,” O’Connell concludes.

##

Media contacts 

Emily Packer, Media Relations Manager

eLife

e.packer@elifesciences.org

01223 855373

George Litchfield, Marketing and PR Assistant

eLife

g.litchfield@elifesciences.org

About eLife

eLife transforms research communication to create a future where a diverse, global community of scientists and researchers produces open and trusted results for the benefit of all. Independent, not-for-profit and supported by funders, we improve the way science is practised and shared. In support of our goal, we have launched a new publishing model that ends the accept/reject decision after peer review. Instead, papers invited for review will be published as a Reviewed Preprint that contains public peer reviews and an eLife assessment. We also continue to publish research that was accepted after peer review as part of our traditional process. eLife receives financial support and strategic guidance from the Howard Hughes Medical InstituteKnut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Biochemistry and Chemical Biology research published in eLife, visit https://elifesciences.org/subjects/biochemistry-chemical-biology.

And for the latest in Ecology, see https://elifesciences.org/subjects/ecology.

 

Fish display distinct individual behaviours when swimming to find food


A high-throughput sense-of-smell test highlights the individual behavioural responses of blind and sighted fish to different odours and suggests ‘personality’ plays a role in foraging success


Peer-Reviewed Publication

ELIFE

Cavefish responding to alanine 

VIDEO: 

FOUR CAVEFISH RESPONDING TO ALANINE. THE FIRST 30 SECONDS SHOW THE BASELINE BEHAVIOUR OF THE FISH, SWIMMING AROUND AND ALONG THE WALLS OF THE TEST BOX. THE NEXT 30 SECONDS (AFTER BLACK INTERRUPTION) SHOW THE BEHAVIOURAL RESPONSES OF THESE FOUR INDIVIDUALS TO ALANINE, WHICH WAS PERFUSED ON THE LEFT SIDE. THE FOUR CAVEFISH MOSTLY SHOW STRONG ATTRACTIVE RESPONSES AND INTENSE FORAGING/SEARCHING BEHAVIOUR AROUND THE TUBE WHERE THE ODORANT WAS PERFUSED. THESE BEHAVIOURAL TESTS WERE PERFORMED IN THE DARK; THIS IS AN INFRARED MOVIE.

view more 

CREDIT: BLIN ET AL.




Fish from the same species can evolve their sense of smell and display individual foraging ‘personalities’ to successfully find food in different habitats, according to new research.  

In the study, published today as a Reviewed Preprint in eLife, researchers developed a high-throughput behavioural assay to test spontaneous swimming and differences in the sense of smell of individual Mexican cavefish larvae. eLife editors described the work as important, presenting compelling evidence that the surface and cave morphs of the fish show different olfactory preferences and odour sensitivities, and that individual fish show substantial variability in their spontaneous activity that is relevant for olfactory behaviour.

“With more than 26,000 species representing half of all vertebrates, bony fishes are extremely diverse and have colonised all possible ecological niches, through their ability to adapt their sensory systems,” says lead author Maryline Blin, a Research Engineer at Paris-Saclay Institute of Neuroscience (NeuroPSI – CNRS, Université Paris-Saclay), France. Yet, although the comparative anatomy of fish brains is well documented, behavioural studies have mainly focused on a few model species such as zebrafish. The links between how fish sensory systems evolve and resulting fish behaviour remain poorly understood and hinder cross-species comparisons.

To study the evolution of smell-driven behaviours in a laboratory setting, the researchers chose two closely related fish of the Mexican tetra species – the blind cave-dwelling subtype, and its sighted surface river-dwelling counterpart. Cavefish have larger olfactory pits (the ‘nose’ tissue) and different nerve composition than their surface-dwelling relatives, but their genetic make-up related to smell is thought to be similar. This led the team to test a hypothesis that the superior sense of smell in the cave-dwelling fish is an adaptive trait that facilitated their survival in their extreme subterranean habitat. To test this, they observed behaviours of individual fish in response to different food odours, comparing the swimming patterns of the surface and cave-dwelling subtypes.  

After studying baseline swimming patterns, the team tested their response to different amino acid ‘foods’. Alanine, a potent food cue for most fish species, induced a strong behavioural response in cave-dwelling fish, decreasing the number of back-and-forth swims, slowing down swimming and shifting swimming activity towards the source of the amino acid. By contrast, the surface-dwelling fish responses were more subtle and displayed by only some individuals; there was no major shift in terms of back-and-forth swimming or swimming speed. Together, this suggests the detection threshold for the food source and subsequent behavioural response have significantly evolved in the cave-dwelling fish.

In addition to studying population-level behaviour changes by the fish, the team also studied how individual fish responded to food sources. Although cave-dwelling fish all behaved in a stereotypical manner for the strong odorant alanine, the team observed individual differences in the response of both cave and surface-dwelling fish in response to other amino acid odours. They explored this further by looking at how behaviour changed relative to individual baseline swimming preferences. This revealed that surface-dwelling fish with a lower baseline swimming speed were better able to smell several of the odours. This was not the case for cave-dwelling fish. For them, a special swimming pattern all around the test box was predictive of good olfactory scores for sense of smell. This suggests that each fish’s swimming personality has an influence on its response to smell and the personality traits that predict a strong sense of smell differ between fish within the same species.

“We have developed a high-throughput, specific sense-of-smell test to compare the individual behavioural responses of blind and sighted fish to different odours. In doing so, we have ruled out the possibility that, when within a group, one ‘good-smeller’ individual could drive others to respond,” concludes senior author Sylvie Rétaux, Research Director at NeuroPSI – CNRS, Université Paris-Saclay. “Instead, our recordings of several hundred individual fish highlight an often-overlooked aspect of fish behavioural analyses: that fish may have a ‘personality’ or ‘temperament’ that influences their behaviour and, consequently, their success at responding to environmental cues. Moreover, the good sense of smell in cavefish is a genetically-encoded trait, so we will now actively search for the genetic underpinnings of this sensory specialisation.”

##

Media contacts 

Emily Packer, Media Relations Manager

eLife

e.packer@elifesciences.org

01223 855373

George Litchfield, Marketing and PR Assistant

eLife

g.litchfield@elifesciences.org

About eLife

eLife transforms research communication to create a future where a diverse, global community of scientists and researchers produces open and trusted results for the benefit of all. Independent, not-for-profit and supported by funders, we improve the way science is practised and shared. In support of our goal, we have launched a new publishing model that ends the accept/reject decision after peer review. Instead, papers invited for review will be published as a Reviewed Preprint that contains public peer reviews and an eLife assessment. We also continue to publish research that was accepted after peer review as part of our traditional process. eLife receives financial support and strategic guidance from the Howard Hughes Medical InstituteKnut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Evolutionary Biology research published in eLife, visit https://elifesciences.org/subjects/evolutionary-biology.

And for the latest in Neuroscience, see https://elifesciences.org/subjects/neuroscience.

 

A malaria drug treatment could save babies’ lives


Human organ chip research shows that a common antimalarial combination could reverse the negative effects of malnutrition in the female digestive tract that lead to low birth weight infants


Peer-Reviewed Publication

WYSS INSTITUTE FOR BIOLOGICALLY INSPIRED ENGINEERING AT HARVARD



Wars, drought, displacement, and instability are causing a dramatic increase in the number of pregnant and breastfeeding women around the world who suffer from malnutrition. Without access to sufficient nutrients in the womb, babies born to these women are more likely to die due to complications like pre-term birth, low birth weight, and susceptibility to diseases like malaria. To try to reduce the risk of malarial infection, the WHO recommends that pregnant women in low-income countries be treated with a combination of the antimalarial drugs sulfadoxine and pyrimethamine (SP). Curiously, a recent study found that this treatment also seemed to increase the birth weight of treated mothers’ babies, regardless of whether they contracted malaria.

 

Intrigued by this finding, which was brought to their attention by members of the Bill and Melinda Gates Foundation, a team of scientists at the Wyss Institute decided to investigate the phenomenon using its human Intestine Chip. With support from the Foundation, the team found that chips exposed to malnutrition conditions displayed classic features of intestinal dysfunction, and that these issues were almost fully resolved by the addition of SP. The research is published in eBioMedicine.

 

"Our primary goal in conducting this study was to find ways to promote maternal health and improve birth outcomes,” said first author Seongmin Kim, Ph.D., a Postdoctoral Fellow at the Wyss Institute. “I’m driven to pursue meaningful research that benefits women, including my beloved mother, wife, and daughter who is still in utero. I hope that this work galvanizes future clinical studies to significantly improve human health worldwide."

 

Modeling malnutrition

When Kim read the study suggesting that SP improved infant birth weight by counteracting malnutrition, he searched for more clinical data about the drug’s effects on the human intestine. But he found nothing. “Very few clinical trials include pregnant women for ethical reasons, and there was no existing human in vitro model to use for studying this drug. But I knew we could use our Intestine Chip to create the missing model and generate some useful data,” says Kim.

 

The Wyss Institute’s Organ Chip technology faithfully replicates many functions of human organs inside a device about the size and shape of a USB memory stick. The chip has two parallel channels separated by a porous membrane. One channel is coated with human blood vessel cells to mimic the vascular system, while the other channel is coated with living human organ cells. In the case of the Intestine Chip, rhythmic stretching is applied to the device to replicate the conditions that human intestines experience due to muscular waves of peristalsis during digestion.

 

In previous work, the team built a version of the Intestine Chip that replicated pediatric environmental enteric dysfunction (EED), a devastating childhood disease caused by long-term malnutrition. Kim sought to extend the team’s demonstrated approach in modeling pediatric EED to newly model the intestine of mothers, investigating how malnutrition affected them. He and his coauthors obtained tissue biopsy samples from healthy young women and cultured the cells inside the Intestine Chip, creating miniature versions of their small intestines in the lab.

 

To mimic healthy intestine, they flowed a nutrient-rich medium through the blood vessel channel to mimic the delivery of nutrients through the bloodstream, and confirmed that the cells in the intestinal channel were healthy and functional, as the team had previously demonstrated in the pediatric EED chips. They spontaneously developed villi-like structures that replicate the tiny projections found on human intestinal cells, produced mucus, and maintained an intact intestinal barrier between the cells.

 

Then, the team switched out the medium for a nutrient-deficient version that lacked niacinamide (a vitamin) and tryptophan (an essential amino acid). The result was similar to that observed in the pediatric EED chips: the villi were noticeably shorter, there was less mucus production, and the connections between the cells had begun to break down, creating a “leaky gut.” These changes were detectable on the genetic level as well, with lower activity of genes associated with villi formation and mucus production. The researchers had created a functional Organ Chip model of the intestinal effects of malnutrition in adults for the first time. 

 

SP to the rescue

The team could now use this new model to investigate how SP might affect these negative hallmarks of malnutrition. First, they added the drug combination to the Intestine Chip along with the nutrient-rich medium for three days and observed no significant changes. Then, they added SP to chips that had only received the nutrient-deficient medium and looked malnourished. The results were clear: the villi grew taller, mucus production went up, and the intestinal barrier function improved.

 

But just because the SP-treated Intestine Chips looked more normal didn’t necessarily mean that they were getting better nutrition. Thus, the team went further to look specifically at how SP affected nutrient absorption from the chips. They analyzed the RNA molecules that were present in healthy, malnourished, and SP-treated malnourished chips. They found that genetic pathways that are critical for digestion; the metabolism of triglycerides, fatty acids, and vitamins; and intestinal absorption of vital nutrients were suppressed in their nutrient-deficient chips.

 

When those chips were treated with SP, the same analysis showed a reactivation of many metabolic and absorption pathways. Another experiment using a fluorescently labeled fatty acid found that malnourished chips absorbed 3.5 times less of the fatty acid compared to healthy chips, but this effect was reversed when the malnourished chips were treated with SP.

 

“Our research shows that SP treatment does indeed have multiple direct effects on the human adult female intestine, which could help explain why pregnant mothers who are prophylactically treated with SP as an antimalarial therapy had babies with healthier birth weights,” said co-author Girija Goyal, Ph.D., a Senior Scientist at the Wyss Institute. “The increased surface area of the villi in Intestine Chips treated with SP increases the surface area available to absorb nutrients from the blood, the thicker mucus layer protects the intestinal cells from pathogens, and the increased expression of genes that are crucial for nutrient and fatty acid absorption helps maintain health.”

 

Another known effect of malnutrition is increased inflammation in the intestine, which can cause a host of problems. Consistent with these previous results, the team detected higher levels of multiple pro-inflammatory cytokines in malnourished Intestine Chips compared to healthy chips. When the chips were given SP, their cytokine levels went down, and the level of a specific protein called LCN2 increased. LCN2 is known to maintain a healthy intestinal microbiome and protect against inflammation.

 

Finally, because immune cells can also mediate inflammation, the researchers introduced human peripheral blood mononuclear cells (PBMCs) into the blood vessel channel of the Intestine Chip. They found that in malnourished chips, these immune cells stuck to the surface of the intestinal channel, indicating a potential immune response. This behavior was also significantly reduced by SP treatment. 

 

Hope for mothers and babies in the future

 

While they are excited about their results, the researchers caution that their human Intestine Chip model does not replicate pregnancy, so it does not provide direct evidence of how the treatment of maternal malnutrition with SP impacts their babies’ health. Pregnancy introduces many new factors into a mother’s biology including hormonal changes and immune responses, so further in-depth clinical trials of SP are required to establish its safety and efficacy for pregnant women.

 

“This work makes a clear argument that SP should be further explored as a potential treatment for the serious global health problem of malnutrition, which will only get worse as climate change and related conflicts affect the poorest and most vulnerable populations around the world,” said senior author and Wyss Founding Director Don Ingber, M.D., Ph.D. “We also hope our Intestine Chip can help answer other important questions related to intestinal health and disease on the global scale.” Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children’s Hospital, and the Hansjörg Wyss Professor of Bioinspired Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

 

Additional co-authors include Abidemi Junaid from the Wyss Institute; former Wyss Institute members Arash Naziripour, Pranav Prabhala, and Viktor Horváth; and David Breault from Harvard Medical School, BCH, and the Harvard Stem Cell Institute. 

 

This research was supported by the Bill and Melinda Gates Foundation, the Wyss Institute at Harvard University, and the National Institutes of Health through grant P30 DK034854. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation.

 

Toxic chemicals found in oil spills and wildfire smoke detected in killer whales


Peer-Reviewed Publication

UNIVERSITY OF BRITISH COLUMBIA




Toxic chemicals produced from oil emissions and wildfire smoke have been found in muscle and liver samples from Southern Resident killer whales and Bigg’s killer whales.

A study published today in Scientific Reports is the first to find polycyclic aromatic hydrocarbons (PAHs) in orcas off the coast of B.C., as well as in utero transfer of the chemicals from mother to fetus.

“Killer whales are iconic in the Pacific Northwest—important culturally, economically, ecologically and more. Because they are able to metabolically process PAHs, these are most likely recent exposures. Orcas are our canary in the coal mine for oceans, telling us how healthy our waters are,” said senior author Dr. Juan José Alava, principal investigator of the UBC Ocean Pollution Research Unit and adjunct professor at Simon Fraser University.

PAHs are a type of chemical found in coal, oil and gasoline which research suggests are carcinogenic, mutagenic, and have toxic effects on mammals. Their presence in the ocean comes from several sources, including oil spills, burning coal and forest fire smoke particles.

Researchers analyzed muscle and liver samples from six Bigg’s, or transient, killer whales and six Southern Resident killer whales (SRKWs) stranded in the northeastern Pacific Ocean between 2006 and 2018. They tested for 76 PAHs and found some in all samples, with half the PAHs appearing in at least 50 per cent of the samples. One compound, a PAH derivative called C3-phenanthrenes/anthracenes, accounted for 33 per cent of total contamination across all samples. These forms of PAHs, known as alkylated PAHs, are known to be more persistent, toxic, and to accumulate more in the bodies of organisms or animals than parental PAHs.

No one has studied PAHs in killer whales in B.C. before. However, the researchers noted the average level of contamination in their study was lower than previous studies of cetaceans in the Gulf of California, and almost two times higher than that found in blood samples of captive killer whales from Icelandic waters.

SRKW contaminants largely from human emissions

The contaminants in Bigg’s killer whales were mostly those produced by burning coal and vegetation, as well as forest fires. In SRKWs, they were the kind produced by oil spills and burning of fossil fuels like gasoline. The researchers say this could be due to the animals’ differing habitats. Bigg’s killer whales range from California to southeastern Alaska and into the North Pacific Ocean, while SRKWs stay closer to more polluted urban environments around the Salish Sea.

Feeding preferences, behaviour and metabolism could also impact the amount of contaminants accumulating in the animals. 

“B.C.’s coast is experiencing oil pipeline developments, oil tanker traffic, industrial effluents, forest fires, stormwater runoff and wastewater,” said first author Kiah Lee, who conducted the work as an undergraduate student at UBC’s Institute for the Oceans and Fisheries (IOF) and is now a masters student at the University of Oslo. “These activities put toxic PAHs into the marine food web and, as we saw here, they can be found in orcas, the apex predator.”

Improve pollution management

There’s only a small population to draw from—74 individuals in the case of the Southern Residents,” said co-author Dr. Stephen Raverty, IOF adjunct professor and veterinary pathologist with the B.C. Ministry of Agriculture and Food. “There are many potential causes for their decline, pollution being one.”

One of the whales examined was ‘Luna’, an orca separated from his mother as a calf who had extensive human contact and lived in variable habitats, which may be why Luna showed a mixture of hydrocarbon contaminants.

The preliminary findings from this study will add key information to inform management approaches in killer whale habitats,” said Paul Cottrell of Fisheries and Oceans Canada. “The source of the PAHs is often from human activity and it is important we have baseline data on current PAH levels in killer whales to monitor those trends and impacts in marine ecosystems into the future.”

Ultimately, humans need to reduce and eventually eliminate fossil fuel consumption to help combat climate change and conserve marine biodiversity, said Dr. Alava. “This would also serve to bolster the resilience and health of marine ecosystems, benefiting communities that rely on them such as coastal First Nations peoples as well as future generations.”

3D material found to break down antidepressant that contaminates water bodies worldwide


Brazilian researchers tested a photocatalyst based on zinc oxide and found it to perform well in degrading sertraline, an emerging pollutant.


Peer-Reviewed Publication

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO




An article published in the Chemical Engineering Journal describes a strategy to produce a material based on zinc oxide (ZnO) capable of degrading sertraline, an antidepressant that has been detected, like other drugs, in groundwater worldwide and is considered an emerging pollutant. This kind of substance has certain physicochemical properties that hinder removal by conventional wastewater treatment methods.

The research was supported by FAPESP and conducted in Brazil by scientists at the Center for Development of Functional Materials (CDMF), the Brazilian Agricultural Research Corporation (EMBRAPA), the Federal University of Alfenas (UNIFAL) and the Federal University of Paraíba (UFPB). CDMF is a Research, Innovation and Dissemination Center (RIDC) funded by FAPESP and hosted by the Federal University of São Carlos (UFSCar).

The strategy described in the article involved experimental design and microwave-assisted solvothermal synthesis (MASS) to produce hierarchical 3D ZnO photocatalysts capable of degrading sertraline with a high level of efficiency in only ten minutes. The researchers deployed principal component analysis (PCA), hitherto little used in materials synthesis, to correlate the physicochemical and photocatalytic properties of the materials with the synthetic conditions investigated. The results showed that chemometric tools yield excellent results in the study of synthetic systems that generate large amounts of experimental data.

The samples with the most potential for environmental remediation were identified. The photocatalytic activity of 3D ZnO efficiently degraded an organic dye and the emerging pollutant sertraline in natural water. The results confirmed that the 3D ZnO absorbed light energy (ultraviolet A and C) to promote efficient water photo-oxidation, producing oxidizing species that degrade organic contaminants.

Degradation performance remained high in up to five cycles of application, conserving crystal structure, morphology and other properties, while phytotoxicity assays showed that byproducts formed in the sertraline degradation process were not toxic to the organisms tested, confirming the safety of the photocatalyst for wastewater treatment.

The results of the study were competitive with other materials reported in the literature, the article concludes, showing that the materials obtained in advantageous synthetic conditions offer a genuine route to the development of novel technologies for environmental remediation of emerging pollutants in natural water.

According to Ailton Moreira, a researcher at CDMF and corresponding author of the article, improper disposal of pharmaceuticals is causing widespread contamination, he added, noting the current relevance of the topic in light of the risks to human health and the environment. The choice of sertraline was significant, he explained, because the number of studies involving the application of heterogeneous photocatalysis for sertraline degradation is very limited, and the researchers’ review of the literature found none on the use of ZnO for this purpose.

Next steps include analyzing the performance of the photocatalyst in real wastewater treatment systems to see if it breaks down sertraline and other emerging pollutants individually or in more complex mixtures such as hospital or domestic wastewater processed by sewage treatment plants. These and other researchers plan to focus on a treatment plant in Gavião Peixoto, São Paulo state.

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

 

Socialization for success: Two recent studies expand our understanding of how early social housing helps dairy calves thrive


Two articles in JDS Communications® explore potential housing advancements for dairy calves and their impact on behavior, personality, and future well-being


Peer-Reviewed Publication

ELSEVIER




Philadelphia, December 19, 2023 – Dairy industry professionals continuously work to ensure the highest possible welfare for dairy calves, including fine-tuning their housing to improve overall health, well-being, and performance. Two new studies in JDS Communications are illuminating our understanding of paired housing in the critical newborn and pre-weaned stages of dairy lives by showing that housing designed to facilitate early socialization can build behavior skills, shape calf personalities, and ultimately, set up animals for success in the herd.

Dairy cows are social creatures—they seek contact with fellow calves after birth, and their eventual social status within herds can play a role in their access to water and food. Competitive access to resources was the focus of a new study from Marina A.G. von Keyserlingk, PhD, of the University of British Columbia in Vancouver, Canada, and her team. During this first-of-its-kind competition study for this age group, the team focused on how paired housing might particularly impact the social competition skills of preweaning dairy calves.

Dr. von Keyserlingk explained, “We know from previous research that adoption of social housing—or pairing two or more calves together—can positively impact future resilience and behavior. We wanted to understand the effect of early social housing on dairy calves’ competitive skills, meaning their willingness and speed to take action toward consuming milk when another calf is in contention for the same bottle.”

To do so, the research team observed a group of 18 three-week-old bull and heifer calves who had been divided equally into either individual or pair housing at 11 days old. At the start of the study, the calves were personality tested to control for the influence of naturally bold personalities on their competitive abilities. Once the team identified their personalities, calves from each housing group were paired together for a competition over a single milk bottle.  

Over five days of testing, the results showed that pair-housed calves spent, on average, more time drinking from the bottle and were faster to approach the milk than individually housed calves.

Dr. von Keyserlingk said, “Our findings add to the growing evidence that early social housing is beneficial for dairy calves and boosts the behavioral development—such as competition skills—that builds toward future success.”

Similarly, a new study from the Department of Animal Sciences at the University of Florida led by Emily Miller-Cushon, PhD, examined how group housing impacts dairy calf personality traits.

Dr. Miller-Cushon noted, “There is growing adoption of social housing for calves in the dairy industry, yet the age of introduction can vary widely, despite evidence across species that indicates social isolation early in life can result in long-term adverse consequences to the calf’s development.”

Dr. Miller-Cushon and her team set out to understand how social housing after birth and during the early preweaning period can influence a calf’s eventual personality traits.

Dr. Miller-Cushon said, “Personality is of growing interest in dairy cattle as it may be associated with outcomes related to an animal’s performance and welfare, including feeding behavior and weight gain for calves and milk production in adult cows.”

In order to fill in research gaps in the understanding of how early socialization influences personality traits, the team studied 32 heifer and bull calves for four weeks, starting at birth. For the first two weeks, the calves were split into two groups (either individually housed or housed in pairs) before they all moved to group housing at four weeks old. The team then tested the calves’ reactions to standardized tests for assessing personality traits: an open field, a novel object, an unfamiliar calf, and an unfamiliar human test.

Dr. Miller-Cushon explained, “We found that calves housed in pairs were bolder compared with calves housed individually before grouping when it came to novel objects and unfamiliar calves, which suggests that early-life social contact does have the potential to influence personality traits in group-housed calves.”

While both research teams were quick to advocate for further research into social housing to better understand its benefits over time and implications for management, their combined work provides important guidance on the positive impacts of socialization for dairy calves early in life.

 

Gentle x-ray imaging of small living specimens


KIT researchers present new method of high dose efficiency and micrometer resolution for biology and biomedicine


Peer-Reviewed Publication

KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)

Living organisms can be observed for longer times with the new method. Here, you can see a parasitic Trichogramma wasp that developed in the egg of a grain moth and emerges from it. (Image: Rebecca Spiecker, KIT) 

IMAGE: 

LIVING ORGANISMS CAN BE OBSERVED FOR LONGER TIMES WITH THE NEW METHOD. HERE, YOU CAN SEE A PARASITIC TRICHOGRAMMA WASP THAT DEVELOPED IN THE EGG OF A GRAIN MOTH AND EMERGES FROM IT. (IMAGE: REBECCA SPIECKER, KIT)

view more 

CREDIT: (IMAGE: REBECCA SPIECKER, KIT)




X-ray imaging visualizes hidden structures and processes in living cells and organisms. The radiation that consists of highly energy-rich electromagnetic waves, however, has an ionizing effect and may damage the genetic material. This limits the possible observation period. While conventional X-ray images of soft tissue are of low contrast, phase contrast methods produce far better image contrasts at a reduced radiation dose. With higher resolution, however, gentle imaging becomes increasingly difficult, as a higher dose is required. Moreover, the efficiency of the usually applied high-resolution detectors decreases, as a result of which radiation exposure is further increased. So far, high-resolution X-ray phase contrast imaging of living biological specimens has been possible for a few seconds to minutes only, before severe damage is caused by the radiation.  

Researchers from KIT’s Laboratory for Applications of Synchrotron Radiation (LAS), Institute for Photon Science and Synchrotron Radiation, and Physikalisches Institut have now developed a method that uses radiation more efficiently and produces images of micrometer resolution. The method is suited for both living specimens and sensitive materials and opens up new opportunities in biology, biomedicine, and materials sciences. The new system combines X-ray phase contrast with a so-called Bragg magnifier and a photon-counting detector. 

Directly Enlarged X-ray Image

“Instead of converting the X-ray image into an image with visible light and enlarging it afterwards, we enlarge it directly,” LAS doctoral researcher Rebecca Spiecker says. “Thanks to this approach, we can use highly efficient large-area detectors.” The researchers use a photon-counting detector with a pixel size of 55 micrometers. Before, the X-ray image of the specimen is enlarged with a so-called Bragg magnifier, as a result of which the resolution of the specimen proper reaches about 1 micrometer. The Bragg magnifier consists of two perfect silicon crystals, whose enlarging effect results from asymmetric diffraction in the silicon crystal lattice. Another big advantage of the Bragg magnifier is the very good optical image transmission. It allows for the nearly loss-free reproduction of all spatial frequencies up to the resolution limit. 

Parasitic Wasps Observed for 30 Minutes

Thanks to the combination of propagation-based X-ray phase contrast with a Bragg magnifier and a photon-counting detector, all of which are optimized for an X-ray energy of 30 kiloelectron-volts (keV), the method reaches about the maximum possible dose efficiency for X-ray phase contrast. This allows for far longer observation times of small living organisms with micrometer resolution. Together with scientists from all over Germany, the researchers demonstrated the method in a pilot study of smallest parasitic wasps. For more than 30 minutes, they observed the wasps in their host eggs and how they emerged from them. “The method is also suited for biomedical applications, an example being the gentle three-dimensional histological investigation of biopsy samples,” Spiecker says. The researchers now plan to further improve the setup, to enlarge the field of view, and to increase mechanical stability for even longer measurements. 

Original Publication (Open Access): 
Rebecca Spiecker, Pauline Pfeiffer, Adyasha Biswal, Mykola Shcherbinin, Martin Spiecker, Holger Hessdorfer, Mathias Hurst, Yaroslav Zharov, Valerio Bellucci, Tomas Farago, Marcus Zuber, Annette Herz, Angelica Cecilia, Mateusz Czyzycki, Carlos Dias, Dmitri Novikov, Lars Krogmann, Elias Hamann, Thomas van de Kamp, and Tilo Baumbach: Dose-efficient in vivo X-ray phase contrast imaging at micrometer resolution. Optica, 2023. DOI 10.1364/OPTICA.500978
https://doi.org/10.1364/OPTICA.500978

Experimental setup of the dose-efficient X-ray imaging method: The specimen is
X-rayed (right), the X-ray wave field downstream of the specimen is enlarged by a
Bragg magnifier that consists of two silicon crystals (center) and recorded with
an efficient photon-counting detector (left). (Photo: Rebecca Spiecker, KIT)

CREDIT

(Photo: Rebecca Spiecker, KIT)


JOURNAL

Optica