Tuesday, January 16, 2024

THE HAGFISH

Researchers sequence the first genome of myxini, the only vertebrate lineage that had no reference genome


Such finding, published in ‘Nature Ecology & Evolution’, is the work of an international consortium of more than 30 institutions from 7 countries around the world


Peer-Reviewed Publication

UNIVERSITY OF MALAGA

Researchers sequence the first genome of myxini, the only vertebrate lineage that had no reference genome 

VIDEO: 

AN INTERNATIONAL SCIENTIFIC TEAM MADE UP OF MORE THAN 40 AUTHORS FROM SEVEN DIFFERENT COUNTRIES, LED BY THE RESEARCHER AT THE UNIVERSITY OF MALAGA JUAN PASCUAL ANAYA, HAS MANAGED TO SEQUENCE THE FIRST GENOME OF THE MYXINI –ALSO KNOWN AS ‘HAGFISH’–, THE ONLY LARGE GROUP OF VERTEBRATES FOR WHICH THERE WAS NO REFERENCE GENOME OF ANY OF ITS SPECIES YET.

view more 

CREDIT: UNIVERSITY OF MALAGA




An international scientific team made up of more than 40 authors from seven different countries, led by the researcher at the University of Malaga Juan Pascual Anaya, has managed to sequence the first genome of the myxini –also known as ‘hagfish’–, the only large group of vertebrates for which there was no reference genome of any of its species yet.

This finding, published in the scientific journal ‘Nature Ecology & Evolution’, has allowed deciphering the evolutionary history of genome duplications –number of times a genome is completely duplicated– that occurred in the ancestors of vertebrates, a group that comprises the human beings.

“This study has important implications in the evolutionary and molecular field, as it helps us understand the changes in the genome that accompanied the origin of vertebrates and their most unique structures, such as the complex brain, the jaw and the limbs”, explains the scientist of the Department of Animal Biology of the UMA Pascual Anaya, who has coordinated the research.

Thus, this study, which has taken almost a decade, has been carried out by an international consortium that includes more than 30 institutions from Spain, United Kingdom, Japan, China, Italy, Norway and the United States, including the University of Tokyo, the Japan research institute RIKEN, the Chinese Academy of Science and the Centre for Genomic Regulation in Barcelona, among others.

Ecological link

The myxini or ‘hagfish’ are a group of animals that inhabit deep ocean areas. Known for the amount of mucosa they release when they feel threatened –a focus of research of cosmetic companies– and, also, for their role as an ecological link in the seabed –since they are scavengers and are responsible for eliminating, among other things, the corpses of whales that end up at the bottom of the sea after dying–; hitherto their genome had not been sequenced due to its complexity, since they are composed of a large number of microchromosomes, which, in turn, are composed of repetitive sequences. This is in addition to the difficulty of accessing biological material.

“Besides, these microchromosomes are lost during the development of the animal, so that only the genital organs maintain a whole genome,” says Juan Pascual Anaya.

Genome duplications

To be more specific, for this study, in collaboration with the Chinese Academy of Science, the genome that has been sequenced is that of the Eptatretus burgeri, which lives in the Pacific, on the coasts of East Asia. To achieve this, the researchers generated data up to 400 times the size of its genome, using advanced techniques –Hi-C– of chromosomal proximity and managing to assemble it at chromosome level.

“This is important because it allowed us to compare, for example, the order of genes between this and the rest of vertebrates, including sharks and humans, and, thus, solve one of the most important open debates in genomic evolution: the number of genome duplications, and when these occurred during the origin of the different vertebrate lineages,” says the UMA scientist, who adds that thanks to this we now know that the common ancestor of all vertebrates derived from a species which genome was completely duplicated once.

Later, according to Pascual Anaya, the lineages that gave rise to modern mandibular and non-mandibular vertebrates separated, and each of these re-multiplied its genome independently: while the former, which include humans, duplicated it, the latter tripled it.

Evolutionary impact

An analysis of the functionality of genomes, based on extremely rare samples of myxini embryos, carried out in the prestigious laboratory of Professor Shigeru Kuratani of RIKEN; and a study on the possible impact of genome duplications on each vertebrate, developed together with the Professor at the University of Bristol and member of the Royal Society Phil Donoghue, complete this multidisciplinary research that is key to understanding the evolutionary history of vertebrates, since it provides perspectives on the genomic events that, probably, drove the appearance of important characteristics of vertebrates, such as brain structure, sensory organs or neural crest cells, among them, an increase in regulatory complexity, that is, a greater number of switches that turn genes on/off.

Juan Pascual Anaya is a scientist of the Department of Animal Biology of the University of Malaga. He studies the evolution of innovative structures that appear in different animal lineages, mainly vertebrates, for example, blood cells and the process by which they are produced, as well as other structures such as the origin of legs, hands or jaws.

He holds a degree in Biology from the University of Malaga and a PhD in Genetics from the University of Barcelona (2010). He held a postdoctoral position for 5 years, until 2015, at the RIKEN center in Japan, in the laboratory of Professor Shigeru Kuratani, where he became independent as a Permanent Scientific Researcher until 2021, year in which he returned to the UMA as a senior researcher of the ‘Beatriz Galindo’ grant program.

To be more specific, for this study, in collaboration with the Chinese Academy of Science, the genome that has been sequenced is that of the Eptatretus burgeri, which lives in the Pacific, on the coasts of East Asia. To achieve this, the researchers generated data up to 400 times the size of its genome, using advanced techniques –Hi-C– of chromosomal proximity and managing to assemble it at chromosome level.


An international scientific team made up of more than 40 authors from seven different countries, led by the researcher at the University of Malaga Juan Pascual Anaya, has managed to sequence the first genome of the myxini –also known as ‘hagfish’–, the only large group of vertebrates for which there was no reference genome of any of its species yet.

An international scientific team made up of more than 40 authors from seven different countries, led by the researcher at the University of Malaga Juan Pascual Anaya, has managed to sequence the first genome of the myxini –also known as ‘hagfish’–, the only large group of vertebrates for which there was no reference genome of any of its species yet.

CREDIT

University of Malaga








No One Is Prepared for Hagfish Slime

It expands by 10,000 times in a fraction of a second, it’s 100,000 times softer than Jell-O, and it fends off sharks and Priuses alike.
A car is covered in hagfish, and slime, after an accident on Highway 101. (Reuters)

ATLANTIC
JANUARY 23, 2019

At first glance, the hagfish—a sinuous, tubular animal with pink-grey skin and a paddle-shaped tail—looks very much like an eel. Naturalists can tell the two apart because hagfish, unlike other fish, lack backbones (and, also, jaws). For everyone else, there’s an even easier method. “Look at the hand holding the fish,” the marine biologist Andrew Thaler once noted. “Is it completely covered in slime? Then, it’s a hagfish.”

Hagfish produce slime the way humans produce opinions—readily, swiftly, defensively, and prodigiously. They slime when attacked or simply when stressed. On July 14, 2017, a truck full of hagfish overturned on an Oregon highway. The animals were destined for South Korea, where they are eaten as a delicacy, but instead, they were strewn across a stretch of Highway 101, covering the road (and at least one unfortunate car) in slime.

Typically, a hagfish will release less than a teaspoon of gunk from the 100 or so slime glands that line its flanks. And in less than half a second, that little amount will expand by 10,000 times—enough to fill a sizable bucket. Reach in, and every move of your hand will drag the water with it. “It doesn’t feel like much at first, as if a spider has built a web underwater,” says Douglas Fudge of Chapman University. But try to lift your hand out, and it’s as if the bucket’s contents are now attached to you.

The slime looks revolting, but it’s also one of nature’s more wondrous substances, unlike anything else that’s been concocted by either evolution or engineers. Fudge, who has been studying its properties for two decades, says that when people first touch it, they are invariably surprised. “It looks like a bunch of mucus that someone just sneezed out of their nose,” he says. “That’s not at all what it’s like.”

For a start, it’s not sticky. If there wasn’t so damn much of it, you’d be able to wipe it off your skin with ease. The hagfish themselves scrape the slime off their skin by tying a knot in their bodies and sliding it from head to tail.

The slime also “has a very strange sensation of not quite being there,” says Fudge. It consists of two main components—mucus and protein threads. The threads spread out and entangle one another, creating a fast-expanding net that traps both mucus and water. Astonishingly, to create a liter of slime, a hagfish has to release only 40 milligrams of mucus and protein—1,000 times less dry material than human saliva contains. That’s why the slime, though strong and elastic enough to coat a hand, feels so incorporeal.

Indeed, it’s one of the softest materials ever measured. “Jell-O is between 10,000 and 100,000 times stiffer than hagfish slime,” says Randy Ewoldt from the University of Illinois at Urbana-Champaign, who had to invent new methods for assessing the substance’s properties after conventional instruments failed to cope with its nature. “When you see it in a bucket, it almost still looks like water. Only when you stick your hand in and pick it up do you find that it’s a coherent thing.”

The proteins threads that give the slime cohesion are incredible in their own right. Each is one-100th the width of a human hair, but can stretch for four to six inches. And within the slime glands, each thread is coiled like a ball of yarn within its own tiny cell—a feat akin to stuffing a kilometer of Christmas lights into a shoebox without a single knot or tangle. No one knows how the hagfish achieves this miracle of packaging, but Fudge just got a grant to test one idea. He thinks that the thread cells use their nuclei—the DNA-containing structures at their core—like a spindle, turning them to wind the growing protein threads into a single continuous loop.
A microscope image of a hagfish’s coiled slime thread (Courtesy of Douglas Fudge)

Once these cells are expelled from the slime glands, they rupture, releasing the threads within them. Ewoldt’s colleague Gaurav Chaudhury found that despite their length, the threads can fully unspool in a fraction of a second. The pull of flowing water is enough to unwind them. But the process is even quicker if the loose end snags on a surface, like another thread, or a predator’s mouth.

Being extremely soft, the slime is very good at filling crevices, and scientists had long assumed that hagfish use it to clog the gills of would-be predators. That hypothesis was only confirmed in 2011, when Vincent Zintzen from the Museum of New Zealand Te Papa Tongarewa finally captured footage of hagfish sliming conger eels, wreckfish, and more. Even a shark was forced to retreat, visibly gagging on the cloud of slime in its jaws.

“We were blown away by those videos,” Fudge says, “but when we really looked carefully, we noticed that the slime is released after the hagfish is bitten.” So how does the animal survive that initial attack? His colleague Sarah Boggett showed that the answer lies in their skin. It’s exceptionally loose, and attaches to the rest of the body at only a few places. It’s also very flaccid: You could inject a hagfish with an extra 40 percent of its body volume without stretching the skin. The animal is effectively wearing a set of extremely loose pajamas, Fudge says. If a shark bites down, “the body sort of squishes out of the way.”

That ability makes hagfish not only hard to bite, but also hard to defend against. Calli Freedman, another member of Fudge’s team, showed that these animals can wriggle through slits less than half the width of their bodies. In the wild, they use that ability to great effect. They can hunt live fish by pulling them out of sandy burrows. And if disturbed by predators, they can dive into the nearest nook they find. Perhaps that’s why, in 2013, the Italian researcher Daniela Silvia Pace spotted a bottlenose dolphin with a hagfish stuck in its blowhole.

More commonly, these creatures burrow into dead or dying animals, in search of flesh to scavenge. They can’t bite; instead, they rasp away at carcasses with a plate of toothy cartilage in their mouths. The same traveling knots they use to de-slime themselves also help them eat. They grab into a cadaver, then move a knot from tail to head, using the leverage to yank out mouthfuls of meat. They can also eat by simply sitting inside a corpse, and absorbing nutrients directly through their skin and gills. The entire hagfish is effectively a large gut, and even that is understating matters: Their skin is actually more efficient at absorbing nutrients than their own intestines.

Hagfish on display at a seafood market (Elizabeth Beard / Getty)

Hagfish are so thoroughly odd that biologists have struggled to clearly work out how they’re related to other fish, and to the other backboned vertebrates. Based on their simple anatomy, many researchers billed the creatures as primitive precursors to vertebrates—an intermediate form that existed before the evolution of jaws and spinal columns.

But a new fossil called Tethymyxine complicates that story. Hailing from a Lebanese quarry, and purchased by researchers at a fossil show in Tucson, Arizona, the Cretaceous-age creature is clearly a hagfish. It has a raspy cartilage plate in its mouth, slime glands dotting its flanks, and even chemicals within those glands that match the composition of modern slime. By comparing Tethymyxine to other hagfish, Tetsuto Miyashita from the University of Chicago concluded that these creatures (along with another group of jawless fish, the lampreys) are not precursors to vertebrates, but actual vertebrates themselves.

Such work is always contentious, but it fits with the results of genetic studies. If it’s right, then hagfish aren’t primitive evolutionary throwbacks at all. Instead, they represent a lineage of vertebrates that diverged from all the others about 550 million years ago, and lost several traits such as complex eyes, taste buds, scales, and perhaps even bones. Maybe those losses were adaptations to a life spent infiltrating carcasses in the dark, deep ocean, much like their flaccid, nutrient-absorbing skins are. “Hagfishes might look primitive; they’re actually very specialized,” Miyashita adds.

Their signature slime might have also evolved as a result of that lifestyle, as a way of fending off predators that were competing for cadavers. “Everything about hagfish is weird,” says Fudge, “but it all kind of fits.”


Ed Yong is a former staff writer at The Atlantic. He won the Pulitzer Prize for Explanatory Reporting for his coverage of the COVID-19 pandemic.

 

Candida evolution disclosed: new insights into fungal infections


Peer-Reviewed Publication

INSTITUTE FOR RESEARCH IN BIOMEDICINE (IRB BARCELONA)

Candida evolution disclosed: new insights into fungal infections 

IMAGE: 

CANDIDA ALBICANS CELL FORMING A HYPHAL EXTENSION

view more 

CREDIT: IRB BARCELONA




Barcelona, 12 January 2024 – Global fungal infections, which affect one billion people and cause 1.5 million deaths each year, are on the rise due to the increasing number of medical treatments that heighten vulnerability. Patients undergoing chemotherapy or immunosuppressive treatments after organ transplant often present compromised immune systems. Given the emergence of resistant strains, the limited variety of current antifungal drugs as well as their cost and side effects, the treatment of these infections is challenging and brings about an urgent need for more effective treatments.

In this context, a team from the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS), led by the ICREA researcher Dr. Toni Gabaldón, has identified hundreds of genes subject to recent, clinically-relevant selection in six species of the fungal pathogen Candida.

“This work highlights how these pathogens adapted to humans and antifungal drugs and provides valuable knowledge that could lead to better treatments for Candida infections,” explains Dr. Gabaldón, head of the Comparative Genomics lab at IRB Barcelona and the BSC.

 

More than 2,000 genomes from 6 different species

The study delves into the evolutionary landscape of Candida pathogens by analysing approximately 2,000 genomes from clinical samples of six major Candida species. These genomes are stored in public databases. The researchers compared these genomes to a reference, creating a comprehensive catalogue of genetic variants.

Building on previous work addressing drug-resistant strains, the researchers conducted a Genome-Wide Association Study (GWAS) to identify genetic variants linked to antifungal drug resistance in clinical isolates. This approach provided insights into both known and novel mechanisms of resistance towards seven antifungal drugs in three Candida species. “Additionally, a concerning finding has arisen from the study: the potential spread of resistance through mating between susceptible and resistant strains, contributing to the prevalence of drug-resistant Candida pathogens,” explains Dr. Miquel Àngel Schikora-Tamarit, a postdoctoral researcher in the same lab and first author of the study.

In addition, by focusing on variants acquired recently among clinical strains, the researches detected shared and species-specific genetic signatures of recent selection that inform on which adaptations might be needed to thrive and spread in human-related environments.

 

Beyond the novel insights into the adaptation of Candida, the study provides a valuable resource, namely a comprehensive catalogue of variants, selection signatures, and drivers of drug resistance. This knowledge not only contributes to our understanding of these infections but also lays the groundwork for future experiments and potential advancements in the development of more effective treatments for Candida infections.

This work was funded by the Spanish Ministry of Science, Innovation and Universities, The European Research Council, and “la Caixa” Foundation. 

 

How fruit flies smell CO2


Peer-Reviewed Publication

RUHR-UNIVERSITY BOCHUM

Research Team 

IMAGE: 

PAUL ZIEMBA (LEFT) AND KLEMENS STÖRTKUHL HAVE ANALYSED THE RECEPTORS OF THE FRUIT FLY IN DETAIL.

 

view more 

CREDIT: © RUB, KRAMER



Mosquitoes in search of blood as well as fruit flies looking for a place to lay their eggs navigate using CO2, which is produced during respiration or in fermentation processes. A complex of various odor receptors that can detect CO2 has already been identified in mosquitoes. Researchers at Ruhr University Bochum, Germany, have now shown that individual receptors found in fruit flies can also detect CO2.  They also identified molecules that blocked the CO2 receptors. The team headed by Dr. Paul Ziemba, Alina Mück and Professor Klemens Störtkuhl from the Sensory Neuroscience research group reported their findings in the journal PLOS ONE, published online on December 29, 2023.

Individual receptors are also able to detect CO2

In mosquitoes, a receptor complex containing among others the receptors Gr21a and Gr63a is responsible for CO2 detection. However, it was unclear whether CO2 binds directly to the receptors or whether CO2 sensitivity results from the interaction with other proteins. The Bochum-based team was determined to find the answer. To this end, the researchers employed a measuring system that has been established at Ruhr University Bochum for many years. It can be used to examine individual receptors without animal testing and to quickly screen for various odorants.

The researchers injected the isolated receptors into frog egg cells. Using electrophysiological measurements, they recorded the response of the receptors when they came into contact with CO2. They demonstrated in the process that individually Gr21a and Gr63a can detect the CO2 molecule directly, albeit somewhat less effectively than when embedded in a protein complex.

Citronellol blocks receptors

The team also tested a number of potential receptor blockers. In addition to already known blockers, the researchers discovered that the substance citronellol suppresses the ability of the Gr21a and Gr63a receptors to detect CO2. “Citronellol is found in a number of insect repellents,” explains Störtkuhl. “It could make you virtually invisible to mosquitoes.”

Biosensor in the works

The new findings are to be incorporated into the development of a CO2 biosensor, which the Bochum team is researching in cooperation with the Institute of Aircraft Systems in Stuttgart. “This should enable us to detect CO2 in liquid media, which is something that as yet can’t be done,” says Störtkuhl. CO2 sensors are used on the International Space Station, for example, where they must consume as little energy as possible. Given that physical measurement methods are not very energy-efficient, a biosensor could be a great alternative. It may also be possible to detect other volatile substances with the sensor in the future.

 UK

Ten per cent treatment boost needed to shift NHS Covid backlog


Peer-Reviewed Publication

UNIVERSITY OF EDINBURGH





The NHS must treat at least 10 per cent more non-emergency hospital cases a month if it is to successfully start reducing the hefty backlog caused by the pandemic, according to new analysis. 

From February 2020 to October 2022, the waiting list for non-urgent care grew by 2.6 million cases – a projected 1.8 million more than if the pandemic had not hit.

Experts say the build-up of cases will not be cleared before the end of 2025 even if capacity is increased by the 30 per cent compared to pre-pandemic levels outlined in NHS England’s recovery plan.

In the early stages of the pandemic, the NHS was forced to postpone elective, or non-urgent, treatments to focus resource on patients seriously unwell with Covid-19. This has led to a backlog of people waiting to receive care, with many requiring several referrals for multiple conditions.

To estimate the extent of disruption, researchers from the Universities of Edinburgh and Strathclyde looked at the number of referrals waiting to be treated each month in England, from January 2012 to October 2022.

The waiting list rose from 2.4 million in January 2012 to 4.6 million at the start of the pandemic in February 2020, increasing by about 275,000 referrals per year. This steady rise suggests the service was already gradually declining before the pandemic.

Covid-19 then intensified the decline, researchers say. By October 2022, there were more than 7.2 million referrals waiting to receive non-urgent treatment.

Experts warn this is likely to be a substantial under-estimate of the backlog because of the anticipated large numbers of people yet to come forward for care following the pandemic.

An estimated 10.2 million fewer referrals were made to elective care from the beginning of the pandemic to 31 October 2022, according to the study.

How many of these missing patients return for care is one of the biggest unknowns when predicting future waiting list numbers.

The research team simulated a range of scenarios based on between 25 per cent and 75 per cent of missing patients seeking health care. This allowed scientists to model the outcome of several increases in capacity on waiting list numbers.

The findings illustrate the importance of resilience within the healthcare system to minimise the impact of any future emergencies on the provision of routine care, researchers say.

The letter is published in The Lancethttps://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)02744-7/fulltext [URL will become active after embargo lifts].

Dr Syed Ahmar Shah from the University of Edinburgh’s Usher Institute, who led the study, said: “The healthcare system was struggling to keep up with the demand many years before the pandemic and the COVID-19 pandemic only aggravated the problem. Moving ahead, it is evident that we cannot afford to leave our healthcare systems strained; instead, we must enhance their resilience to ensure better preparedness for any future emergencies.”

Research letters published in the Correspondence section include research findings and are externally peer-reviewed. Letters published in the Correspondence section represent the views of the authors and not necessarily the views of The Lancet journals.

 

Human activity facilitates invasive plants’ colonization in Mediterranean ecosystems


How do invasive plants spread?


Peer-Reviewed Publication

UNIVERSITY OF BARCELONA

Human activity facilitates invasive plants’ colonization in Mediterranean ecosystems 

IMAGE: 

THE STUDY WARNS THAT ONLY PREVENTIVE ACTIONS AND CONSERVATION OF THE NATURAL ENVIRONMENT COULD PREVENT THE SPREAD OF INVASIVE PLANTS THAT ARE DIFFICULT TO ERADICATE IN THE MEDITERRANEAN.

view more 

CREDIT: SERGI MUNNÉ-BOSCH, UNIVERSITY OF BARCELONA





Some invasive plants can form persistent banks of seeds that remain under the soil for years, and this makes their eradication practically impossible. Over time, this invisible population of large quantities of living, buried plants — in seed form —, will reoccupy ecosystems and displace the typical flora of the natural environment.

This is the case of the invasive plants that are common in the Mediterranean habitats, according to an article published in the journal Trends in Plant Science, signed by Professor Sergi Munné-Bosch, from the Faculty of Biology, the Biodiversity Research Institute (IRBio) and the Institute for Research in Nutrition and Food Safety (INSA) of the University of Barcelona.

How do invasive plants spread?

The great resistance and dispersal capacity of the invasive plants has completely transformed the flora on the Mediterranean coasts. The native flora, on the other hand, does not have such efficient spreading mechanisms as the invasive plants.  

The new study, focused on CarpobrotusAcaciaAgave, and Opuntia, reveals the sophisticated strategies of invasive plants to occupy new habitats successfully and move the native flora.

"The most paradigmatic case is that of the genus Carpobrotus, which includes several plant species; some are already capable of forming hybrids so specially adapted to Mediterranean habitats that they can colonize areas as specific as the coastline of the coasts of Catalonia", says Sergi Munné-Bosch, who has been featured as one of the most influential experts in the world according to the prestigious Clarivate Analytics list of 2023.

"They are very resistant to changing conditions associated with climate change and show a perfect combination of clonal and sexual reproduction to be able to colonize new spaces quickly. In addition, one of the most important characteristics of this genus is its ability to create persistent seed banks that remain buried for years”.

Today, one only needs to walk along the coastal paths of the Costa Brava and other parts of the coast to see the effects of these plants. "The case of the Opuntia genus is also very evident along the coastline of the Alt Empordà and southern France, among many other places with fragmented habitats, which are the areas most susceptible to colonization by invasive plants", stresses the author, member of the Department of Evolutionary Biology, Ecology and Environmental Sciences.

Human activity and biological invasions

The author notes: "These biological invasions have been caused by ourselves, humans, by creating a high propagule pressure (number of seeds or plant components arriving in a given area) in these fragmented habitats”.

"All these areas show a significant characteristic: the footprint left by humans. Human activities (gardening, urban planning, tourism, etc.) end up fragmenting natural habitats and facilitate the introduction of new species that then adapt extraordinarily to the spaces that we have modified forever", says Sergi Munné-Bosch. 

"After all, it is our lack of knowledge that has led us to have Mediterranean habitats particularly threatened by the presence of invasive plants that will never return to the way they were before”.

Prevention to protect the environment

Historical records show that many invasive species have benefited greatly from human-driven reintroductions. Thus, conserving natural areas away from the threat of invasive species and preventing future colonization is the only effective strategy to preserve the natural environment.

"We have to prevent the invasion of colonizing plants where they have not yet been introduced by human action. Even if there are many awareness campaigns, likely, we will never manage to eradicate them, at least in some areas", says the researcher. 

"We must be aware that the unintentional introduction of a single plant (in landscaping or as a result of the construction of a road or a new development) in a place that is unsuitable from a nature conservation point of view can lead to major changes in our natural ecosystems. Our activity can greatly influence natural ecosystems and lead to their degradation. Preserving nature is the best investment to preserve the existence of our species, and that is why the protection of natural areas must be a priority", concludes the expert.

 

 

HI-TEK-INFRASTRUCTURE

Rice researchers revolutionizing 5G network testing


$1.9 million federal grant supports development of innovative product testing framework

Grant and Award Announcement

RICE UNIVERSITY




With the potential to transform the future of global wireless networks, Rice University engineers are developing a cutting-edge testing framework to assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs).

As 5G networks evolve toward more software-centric architectures, there is a critical need for advanced testing methods to ensure robust real-time performance. Funded by a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration (NTIA), the project aims to address this need by focusing on both communication and computing dimensions, considering the challenges posed by the inherent indeterministic behavior of such environments.

“Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Rahman Doost-Mohammady, assistant research professor of electrical and computer engineering and the project’s principal investigator. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing. 

“Our answer to this critical challenge is ETHOS, an innovative testing framework that not only evaluates communication performance but also considers the impact of computing environments and the intricacies of machine learning on RAN software.”

On Jan. 10, NTIA announced nearly $80 million in the third round of grants from the $1.5 billion Public Wireless Supply Chain Innovation Fund, which supports the development of open and interoperable wireless networks. Open and interoperable wireless equipment will help drive competition, strengthen global supply chain resilience and lower costs for consumers and network operators, according to federal officials.

“As part of President Biden’s Investing in America Agenda, the research and innovation supported by the Wireless Innovation Fund will bolster America’s global technology leadership,” U.S. Secretary of Commerce Gina Raimondo said. “The awards today will help stand up new facilities to usher in new wireless networks, ultimately leading to more jobs and lower costs for Americans.”

Following the creation of the new testing framework, the Rice researchers will conduct extensive testing on its efficacy and implement and deploy novel machine learning algorithms for 5G RAN on the NVIDIA-supported Aerial Research Cloud (ARC) platform — a fully programmable 5G network research sandbox designed to rapidly benchmark solutions through over-the-air networks.

In addition to working with NVIDIA, a global leader in visual and accelerated computing, the research team plans to engage existing industry contacts for feedback and fine-tuning of the framework, with a vision to expand collaborations as the project progresses.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” said Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering, chair of the Department of Electrical and Computer Engineering and the co-principal investigator of the project. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.” 

As key members of Rice Wireless, the researchers have extensive expertise in the latest wireless technologies. Doost-Mohammady is the technical lead for the Rice RENEW project, the world’s first fully programmable and open-source massive-MIMO platform. MIMO, or multiple-input multiple-output, is a wireless technology that uses multiple transmitters and receivers to transfer more data at the same time. Sabharwal is leading the Rice RENEW project and previously led the development of WARP, the world’s first software-defined MIMO research platform. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-PI on the project.