Wednesday, March 13, 2024

 SPACE

Giant volcano discovered on Mars


A deeply eroded giant volcano, active from ancient through recent times and with possible remnants of glacier ice near its base, had been hiding near Mars’ equator in plain sight



SETI INSTITUTE

NoctisVolcano-NewsRelease-Pic1-FINAL-3500px 

IMAGE: 

FIGURE 1: A GIANT VOLCANO HIDING IN PLAIN SIGHT IN ONE OF MARS’ MOST ICONIC REGIONS.
THE NEWLY DISCOVERED GIANT VOLCANO ON MARS IS LOCATED JUST SOUTH OF THE PLANET’S EQUATOR, IN EASTERN NOCTIS LABYRINTHUS, WEST OF VALLES MARINERIS, THE PLANET’S VAST CANYON SYSTEM. THE VOLCANO SITS ON THE EASTERN EDGE OF A BROAD REGIONAL TOPOGRAPHIC RISE CALLED THARSIS, HOME TO THREE OTHER WELL-KNOWN GIANT VOLCANOES: ASCRAEUS MONS, PAVONIS MONS, AND ARSIA MONS. ALTHOUGH MORE ERODED AND LESS HIGH THAN THESE GIANTS, THE NEWLY DISCOVERED VOLCANO RIVALS THE OTHERS IN DIAMETER, WHICH IS ABOUT 450 KM (280 MILES) (RED DASHED CIRCLE IN THIS PICTURE). POSSIBLE BURIED GLACIER ICE IS ALSO REPORTED UNDER A RELATIVELY RECENT VOLCANIC DEPOSIT WITHIN THE PERIMETER OF THE ERODED VOLCANO, MAKING THE AREA ATTRACTIVE FOR THE SEARCH FOR LIFE AND FUTURE ROBOTIC AND HUMAN EXPLORATION.

view more 

CREDIT: BACKGROUND IMAGE: NASA/USGS MARS GLOBE. GEOLOGIC INTERPRETATION AND ANNOTATIONS BY PASCAL LEE AND SOURABH SHUBHAM 2024




March 13, 2024, Mountain View, California – In a groundbreaking announcement at the 55th Lunar and Planetary Science Conference held in The Woodlands, Texas, scientists revealed the discovery of a giant volcano and possible sheet of buried glacier ice in the eastern part of Mars’ Tharsis volcanic province, near the planet’s equator. Imaged repeatedly by orbiting spacecraft around Mars since Mariner 9 in 1971 - but deeply eroded beyond easy recognition, the giant volcano had been hiding in plain sight for decades in one of Mars’ most iconic regions, at the boundary between the heavily fractured maze-like Noctis Labyrinthus (Labyrinth of the Night) and the monumental canyons of Valles Marineris (Valleys of Mariner) (Fig. 1).

Provisionally designated “Noctis volcano” pending an official name, the structure is centered at 7° 35' S, 93° 55' W. It reaches +9022 meters (29,600 feet) in elevation and spans 450 kilometers (280 miles) in width. The volcano’s gigantic size and complex modification history indicate that it has been active for a very long time. In its southeastern part lies a thin, recent volcanic deposit beneath which glacier ice is likely still present. This combined giant volcano and possible glacier ice discovery is significant, as it points to an exciting new location to study Mars’ geologic evolution through time, search for life, and explore with robots and humans in the future (Fig.2).

 

“We were examining the geology of an area where we had found the remains of a glacier last year when we realized we were inside a huge and deeply eroded volcano,” said Dr. Pascal Lee, planetary scientist with the SETI Institute and the Mars Institute based at NASA Ames Research Center, and the lead author of the study.

Several clues, taken together, give away the volcanic nature of the jumble of layered mesas and canyons in this eastern part of Noctis Labyrinthus. The central summit area is marked by several elevated mesas forming an arc, reaching a regional high and sloping downhill away from the summit area. The gentle outer slopes extend out to 225 kilometers (140 miles) away in different directions. A caldera remnant – the remains of a collapsed volcanic crater once host to a lava lake – can be seen near the center of the structure. Lava flows, pyroclastic deposits (made of volcanic particulate materials such as ash, cinders, pumice and tephra) and hydrated mineral deposits occur in several areas within the structure’s perimeter (Figs. 3, 4 and 5).

“This area of Mars is known to have a wide variety of hydrated minerals spanning a long stretch of Martian history. A volcanic setting for these minerals had long been suspected. So, it may not be too surprising to find a volcano here,” explained Sourabh Shubham, a graduate student at the University of Maryland’s Department of Geology and the study’s co-author. “In some sense, this large volcano is a long-sought ‘smoking gun’”.

In addition to the volcano, the study reports the discovery of a large, 5000 square kilometer (1930 square mile) area of volcanic deposits within the volcano’s perimeter presenting a large number of low, rounded and elongated, blister-like mounds. This “blistered terrain” is interpreted to be a field of “rootless cones,” mounds produced by explosive steam venting or steam swelling when a thin blanket of hot volcanic materials comes to rest on top of a water or ice-rich surface (Figs. 3 and 6).

Just a year ago, Lee, Shubham and their colleague John W. Schutt had identified the spectacular remains of a glacier - or “relict glacier” - through a sizeable erosional opening in the same volcanic blanket, in the form of a light-toned deposit (LTD) of sulfate salt with the morphologic traits of a glacier. The sulfate deposit, made mainly of jarosite, a hydrous sulfate, was interpreted to have formed when the blanket of volcanic pyroclastic materials came to rest on a glacier and reacted chemically with the ice. Breached rootless cones identified in the current study show similar occurrences of polyhydrated sulfates, further suggesting the blistered volcanic blanket may be hiding a vast sheet of glacier ice underneath it (Fig. 6).

The Noctis volcano presents a long and complex history of modification, possibly from a combination of fracturing, thermal erosion, and glacial erosion. Researchers interpret the volcano to be a vast shield made of layered accumulations of pyroclastic materials, lavas, and ice, the latter resulting from repeated buildups of snow and glaciers on its flanks through time. As fractures and faults eventually developed, in particular in connection with the uplift of the broader Tharsis region on which the volcano sits, lavas began to rise through different parts of the volcano, leading to thermal erosion and removal of vast amounts of buried ice and the catastrophic collapse of entire sections of the volcano.

Subsequent glaciations continued their erosion, giving many canyons within the structure their present distinctive shape. In this context the “relict glacier” and the possible buried sheet of glacier ice around it, might be remnants of the latest glaciation episode affecting the Noctis volcano.

But much about the newly discovered giant volcano remains a mystery. Although it is clear that it has been active for a long time and began to build up early in Mars’ history, it is unknown how early exactly. Similarly, although it has experienced eruptions even in modern times, it is unknown if it is still volcanically active and might erupt again. And if it has been active for a very long time, could the combination of sustained warmth and water from ice have allowed the site to harbor life?

As mysteries surrounding the Noctis volcano continue to puzzle scientists, the site is already emerging as an exciting new location to study Mars’ geologic evolution, search for life, and plan future robotic and human exploration. The possible presence of glacier ice at shallow depths near the equator means that humans could potentially explore a less frigid part of the planet while still being able to extract water for hydration and manufacturing rocket fuel (by breaking down H2O into hydrogen and oxygen).

“It’s really a combination of things that makes the Noctis volcano site exceptionally exciting. It’s an ancient and long-lived volcano so deeply eroded that you could hike, drive, or fly through it to examine, sample, and date different parts of its interior to study Mars’ evolution through time. It has also had a long history of heat interacting with water and ice, which makes it a prime location for astrobiology and our search for signs of life. Finally, with glacier ice likely still preserved near the surface in a relatively warm equatorial region on Mars, the place is looking very attractive for robotic and human exploration,” said Lee.

This study was conducted using data from NASA’s Mariner 9, Viking Orbiter 1 and 2, Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter missions, as well as ESA’s Mars Express mission. Special appreciation is expressed to their instrument teams for acquiring the various datasets used in this study. Use of the open NASA Planetary Data System, Mars Quickmap, Mars Trek, and Google Mars online data visualization tools was also key in enabling the study.

About the SETI Institute
Founded in 1984, the SETI Institute is a non-profit, multidisciplinary research and education organization whose mission is to lead humanity’s quest to understand the origins and prevalence of life and intelligence in the universe and share that knowledge with the world. Research at the SETI Institute encompasses the physical and biological sciences and leverages expertise in data analytics, machine learning and advanced signal detection technologies. The SETI Institute is a distinguished research partner for industry, academia and government agencies, including NASA and NSF.

About Mars Institute
The Mars Institute is a non-profit research organization dedicated to the advancement of Mars science, exploration, and the public understanding of Mars. Research at the Mars Institute focuses Mars and other planetary destinations that may serve as stepping-stones to Mars, in particular Mars’ moons, our Moon, and near-Earth objects. The Mars Institute investigates the technologies and strategies that will enable and optimize the future human exploration of Mars. The Mars Institute operates the Haughton-Mars Project Research Station on Devon Island, High Arctic.

Figure 2. Newly discovered giant volcano is located in the “middle of the action” on Mars. Topographic map showing the iconic location of the Noctis volcano between the largest volcanic and canyon provinces on Mars.

CREDIT

Background image: NASA Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) digital elevation model. Geologic interpretation & annotations by Pascal Lee and Sourabh Shubham 2024

Figure 3: Topographic map of the Noctis volcano.
The Noctis volcano does not present the conventional cone shape of a typical volcano because a long history of deep fracturing and erosion has modified it. However, upon close inspection, key features indicative of a volcano are recognizable. Within the “inner zone” delineating the highest elevation remains of the volcano, an arc of high mesas marks the central summit area, culminating at +9022 m (29,600 ft). Preserved portions of the volcano’s flanks extend downhill in different directions to the outer edge of the “outer zone,” 225 km (140 miles) away from the summit area. A caldera remnant – the remains of a collapsed volcanic crater once host to a lava lake – can be seen near the center of the structure. Lava flows, pyroclastic deposits (made of volcanic particulate materials such as ash, cinders, pumice and tephra) and hydrothermal mineral deposits occur in several areas within the perimeter of the volcanic structure. The map also shows the rootless cone field and possible extent of shallow buried glacier ice reported in this study, in relation to the “relict glacier” discovered in 2023. Noctis Landing, a candidate landing site for future robotic and human exploration, is also shown. 

CREDIT

Background images: NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) mosaic and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) digital elevation model. Geologic interpretation & annotations by Pascal Lee & Sourabh Shubham 2024

NoctisVolcano-NewsRelease-Pic4-FINAL-2200px 

Figure 4: Detailed Mars data analysis revealed the Noctis volcano.
Detailed analysis of the altimetry of the region using NASA’s Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data, in combination with high resolution imaging data from NASA’s Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Imager (CTX), and from the European Space Agency’s Mars Express (MEX) High Resolution Stereo Camera (HRSC) enabled the discovery of the Noctis volcano. In addition to the volcano’s summit, caldera remnant, and inner and outer zones, the topographic map on the right shows the “relict glacier” discovered in 2023 and Noctis Landing, a candidate landing site for future robotic and human exploration. 

CREDIT

Left: Mars Express HRSC color mosaic © ESA/DLR/FU Berlin CC BY-SA 3.0 IGO; Right: Background image: same as Left; NASA MGS MOLA digital elevation model. Geologic interpretation and annotations by Pascal Lee and Sourabh Shubham 2024

Figure 5: Noctis volcano in 3D.
Anaglyph image showing portions of the Noctis volcano’s 250 km (155 mile) diameter inner zone of high elevation remains, and 450 km (280 mile) diameter outer zone of other remains associated with the volcano. In addition to the volcano’s summit, caldera remnant, and inner and outer zones, this 3D map shows the “relict glacier” discovered in 2023 and Noctis Landing, a candidate landing site for future robotic and human exploration.  

CREDIT

Background image: Mars Express anaglyph (3D) mosaic © ESA/DLR/FU Berlin CC BY-SA 3.0 IGO. Geologic interpretation and annotations by Pascal Lee and Sourabh Shubham 2024

Figure 6: Possible buried glacier ice near the base of the Noctis volcano.
A well-preserved volcanic lava flow and pyroclastic deposit in the southeastern part of the Noctis volcano suggest that the volcano remained active even in relatively recent times. The pyroclastic deposit presents “blisters” at its surface, interpreted as “rootless cones” or steam vents produced when the hot pyroclastic materials came in contact with H2O ice. Breaches in the pyroclastic deposit reveal light-toned deposits (LTDs) of sulfate salts, expected products of chemical reactions between pyroclastic materials and H2O ice. The largest LTD of sulfates in this area had already been described as a “relict glacier,” as it presents a wide range of morphologic traits specific to glaciers, suggesting that glacier ice might still be preserved, only protected under a thin layer of sulfate salts. By extension, the rootless cones and other sulfate deposits in this area may be blanketing even more glacier ice.

CREDIT

Background images: NASA Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Geologic interpretation and annotations by Pascal Lee and Sourabh Shubham 2024

Cheers! NASA’s Webb finds ethanol, other icy ingredients for worlds


Peer-Reviewed Publication

NASA/GODDARD SPACE FLIGHT CENTER

image at a wavelength of 15 microns was taken by MIRI 

IMAGE: 

THIS IMAGE AT A WAVELENGTH OF 15 MICRONS WAS TAKEN BY MIRI (THE MID-INFRARED INSTRUMENT) ON NASA’S JAMES WEBB SPACE TELESCOPE, OF A REGION NEAR THE PROTOSTAR KNOWN AS IRAS 23385. IRAS 23385 AND IRAS 2A (NOT VISIBLE IN THIS IMAGE) WERE TARGETS FOR A RECENT RESEARCH EFFORT BY AN INTERNATIONAL TEAM OF ASTRONOMERS THAT USED WEBB TO DISCOVER THAT THE KEY INGREDIENTS FOR MAKING POTENTIALLY HABITABLE WORLDS ARE PRESENT IN EARLY-STAGE PROTOSTARS, WHERE PLANETS HAVE NOT YET FORMED.

 

view more 

CREDIT: NASA, ESA, CSA, W. ROCHA (LEIDEN UNIVERSITY)




What do margaritas, vinegar, and ant stings have in common? They contain chemical ingredients that NASA’s James Webb Space Telescope has identified surrounding two young protostars known as IRAS 2A and IRAS 23385. Although planets are not yet forming around those stars, these and other molecules detected there by Webb represent key ingredients for making potentially habitable worlds.

An international team of astronomers used Webb’s MIRI (Mid-Infrared Instrument) to identify a variety of icy compounds made up of complex organic molecules like ethanol (alcohol) and likely acetic acid (an ingredient in vinegar). This work builds on previous Webb detections of diverse ices in a cold, dark molecular cloud.

What is the origin of complex organic molecules (COMs) ?

“This finding contributes to one of the long-standing questions in astrochemistry,” said team leader Will Rocha of Leiden University in the Netherlands. “What is the origin of complex organic molecules, or COMs, in space? Are they made in the gas phase or in ices? The detection of COMs in ices suggests that solid-phase chemical reactions on the surfaces of cold dust grains can build complex kinds of molecules.”

As several COMs, including those detected in the solid phase in this research, were previously detected in the warm gas phase, it is now believed that they originate from the sublimation of ices. Sublimation is to change directly from a solid to a gas without becoming a liquid. Therefore, detecting COMs in ices makes astronomers hopeful about improved understanding of the origins of other, even larger molecules in space.

Scientists are also keen to explore to what extent these COMs are transported to planets at much later stages of protostellar evolution. COMs in cold ices are thought to be easier to transport from molecular clouds to planet-forming disks than warm, gaseous molecules. These icy COMs can therefore be incorporated into comets and asteroids, which in turn may collide with forming planets, delivering the ingredients for life to possibly flourish.

The science team also detected simpler molecules, including formic acid (which causes the burning sensation of an ant sting), methane, formaldehyde, and sulfur dioxide. Research suggests that sulfur-containing compounds like sulfur dioxide played an important role in driving metabolic reactions on the primitive Earth.

Similar to the early stages of our own solar system?

Of particular interest is that one of the sources investigated, IRAS 2A, is characterized as a low-mass protostar. IRAS 2A may therefore be similar to the early stages of our own solar system. As such, the chemicals identified around this protostar were likely present in the first stages of development of our solar system and later delivered to the primitive Earth.

“All of these molecules can become part of comets and asteroids and eventually new planetary systems when the icy material is transported inward to the planet-forming disk as the protostellar system evolves,” said Ewine van Dishoeck of Leiden University, one of the coordinators of the science program. “We look forward to following this astrochemical trail step-by-step with more Webb data in the coming years.”

These observations were made for the JOYS+ (James Webb Observations of Young ProtoStars) program. The team dedicated these results to team member Harold Linnartz, who unexpectedly passed away in December 2023, shortly after the acceptance of this paper.

This research has been accepted for publication in the journal Astronomy & Astrophysics.

The James Webb Space Telescope is the world's premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.


Study brings scientists a step closer to successfully growing plants in space



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, NEWS BUREAU

Scientists a step closer to growing plants in space 

IMAGE: 

RESEARCH LED BY THE UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN USES POLYMER-BASED STRETCHABLE ELECTRODES TO REMOTELY MONITOR PLANT GROWTH, BRINGING SCIENTISTS A STEP CLOSER TO GROWING PLANTS IN SPACE TO FEED ASTRONAUTS DURING LONG MISSIONS.

view more 

CREDIT: NASA MARSHALL SPACE FLIGHT CENTER




New, highly stretchable sensors can monitor and transmit plant growth information without human intervention, report University of Illinois Urbana-Champaign researchers in the journal Device.

The polymer sensors are resilient to humidity and temperature, can stretch over 400% while remaining attached to a plant as it grows and send a wireless signal to a remote monitoring location, said chemical and biomolecular engineering professor Ying Diao, who led the study with plant biology professor and department head Andrew Leakey.

The study details some of the early results of a NASA grant awarded to Diao to investigate how wearable printed electronics will be used to make farming possible in space.

“This work is motivated by the needs of astronauts to grow vegetables sustainably while they are on long missions,” she said.

Diao’s team approached this project using an Earth-based laboratory to create a highly dependable, stretchable electronic device – and its development did not come easily, she said.

“Honestly, we began this work thinking that this task would only take a few months to perfect. However, we quickly realized that our polymer was too rigid,” said Siqing Wang, a graduate student and first author of the study. “We had to reformulate a lot of the components to make them more soft and stretchable and adjust our printing method to control the assembly of the microstructures inside the device so that they did not form large crystals during the printing and curing process.”

The team landed on a very thin film device that helps restrain the crystal growth during assembly and printing.

“After addressing the stretchability and assembly issues, we had to tackle the problems that come with working with wearable electronics in high humidity and under rapid growth rates,” Wang said. “We needed reproducible results so we could not have the sensors fall off or electronically fail during the growth experiments. We finally came up with a seamless electrode and interface that was not affected by the demanding conditions.”

The ‘Stretchable-Polymer-Electronics-based Autonomous Remote Strain Sensor,’ or SPEARS2 – is the product of three years of hard work, proving that applied science rarely experiences eureka moments. 

“It is an exciting technical advance in our ability to perform precise, noninvasive measurements of plant growth in real-time. I look forward to seeing how it can complement the latest tools for interrogating genomic and cellular processes,” Leakey said.

Diao also said she is excited to uncover all of the ways this research will continue to progress.

For example, this study looks at plants like corn that grow primarily upward. However, the researchers plan to advance their electronics printing methodology to create a system that can monitor upward and outward growth.

The team said they are also working toward the ability to sense and monitor chemical processes remotely. 

“I think the wearable electronics research community has ignored plants for too long,” Diao said. “We know that they are experiencing a lot of stress during climate adaptation, and I think soft electronics can play a bigger role in advancing our understanding so we can ensure that plants are healthy, happy and sustainable in the future – whether that is in space, on other planets or right here on Earth.”

Researchers at NASA and Illinois researchers from bioengineeringcrop sciencesmaterial science and engineering, the Carl R. Woese Institute for Genomic Biology and the Beckman Institute for Advanced Science and Technology contributed to this study.

NASA and Beckman supported this study.

Editor’s notes:

To reach Ying Diao, email yingdiao@illinois.edu.

The paper “Highly stretchable, robust and resilient wearable electronics for remote, autonomous plant growth monitoring” is available online. DOI:10.1016/j.device.2024.100322