Wednesday, April 03, 2024

 

Last chance to record archaic Greek language ‘heading for extinction’



UNIVERSITY OF CAMBRIDGE
Professor Ioanna Sitaridou (right) with a 100 years-old Romeyka speaker in Turkey's Trabzon region 

IMAGE: 

PROFESSOR IOANNA SITARIDOU (RIGHT) WITH A 100 YEARS-OLD ROMEYKA SPEAKER IN TURKEY'S TRABZON REGION.

view more 

CREDIT: PROFESSOR IOANNA SITARIDOU




A new data crowdsourcing platform aims to preserve the sound of Romeyka, an endangered millennia-old variety of Greek. Experts consider the language to be a linguistic goldmine and a living bridge to the ancient world.

 

The initiative, led by Professor Ioanna Sitaridou from the University of Cambridge, contributes to the UN’s International Decade of Indigenous Languages (2022-32), which aims ‘to draw global attention on the critical situation of many indigenous languages and to mobilise stakeholders and resources for their preservation, revitalization and promotion.’

Romeyka is thought to have only a couple of thousand native speakers left in Turkey’s Trabzon region, but the precise number is hard to calculate especially because of the fact that there is also a large number of heritage speakers in the diaspora and the ongoing language shift to Turkish.

Romeyka does not have a writing system and has been transmitted only orally. Extensive contact with Turkish, the absence of support mechanisms to facilitate intergenerational transmission, socio-cultural stigma, and migration have all taken their toll on Romeyka. A high proportion of native speakers in Trabzon are over 65 years of age and fewer young people are learning the language.

The newly launched trilingual Crowdsourcing Romeyka platform invites members of the public from anywhere in the world to upload audio recordings of Romeyka being spoken.

“Speech crowdsourcing is a new tool which helps speakers build a repository of spoken data for their endangered languages while allowing researchers to document these languages, but also motivating speakers to appreciate their own linguistic heritage. At the same time, by creating a permanent monument of their language, it can help speakers achieve acknowledgement of their identity from people outside of their speech community,” said Prof. Sitaridou, who has been studying Romeyka for the last 16 years.  

The innovative tool is designed by a Harvard undergraduate in Computer Science, Mr Matthew Nazari, himself a heritage speaker of Aramaic. Together they hope that this new tool will also pave the way for the production of language materials in a naturalistic learning environment away from the classroom, but based instead around everyday use, orality, and community.

To coincide with the platform’s launch, Sitaridou is unveiling major new findings about the language’s development and grammar at an exhibition in Greece (details below).

Sitaridou’s most important findings include the conclusion that Romeyka descends from Hellenistic Greek not Medieval Greek, making it distinct from other Modern Greek dialects. “Romeyka is a sister, rather than a daughter, of Modern Greek,” said Sitaridou, a Fellow of Queens' College and Professor of Spanish and Historical Linguistics in Cambridge’s Faculty of Modern and Medieval Languages and Linguistics. “Essentially this analysis unsettles the claim that Modern Greek is an isolate language”.

Over the last 150 years, only four fieldworkers have collected data on Romeyka in Trabzon. By engaging with local communities, particularly female speakers, Sitaridou has amassed the largest collection of audio and video data in existence collected monolingually and amounting to more than 29GB of ethically sourced data, and has authored 21 peer-reviewed publications. A YouTube film about Sitaridou’s fieldwork has received 723,000 views to-date.


The valleys of Tonya in Turkey's Trabzon region

CREDIT

Professor Ioanna Sitaridou

Grammar and a new phylogeny for Greek

Sitaridou’s analysis of the Romeyka infinitive is key. All other Greek dialects known today have stopped using the infinitive found in ancient Greek. So speakers of Modern Greek would say I want that I go instead of I want to go. But, in Romeyka, the infinitive lives on and Sitaridou has observed uncontroversial proof that this Ancient Greek infinitive can be dated back to Hellenistic Greek due to its preservation in a structure which became obsolete by early Mediaeval times in all other Greek varieties, but continued to be used in Romeyka while also undergoing a cross-linguistically rare mutation to a negative item.

Sitaridou’s findings have significant implications for our understanding of the evolution of Greek, because they suggest that there is more than one Greek language on a par with the Romance languages (which all derived out of Vulgar Latin rather than out of each other).

 

Historical context and new field work sites

The roots of the Greek presence in the Black Sea are steeped in myth: from the journey of Jason and the Argonauts to Colchis, to the Amazons. But what we know is that the Greeks began to spread around the Black Sea from approximately the 6th Century BCE. Ionians founded Miletus, which, in turn, founded Sinope, which, eventually, colonized Trebizond. In the Pontus, the language of the first Greek colonizers of Trebizond was the Ionic Greek of Sinope.

In the 4th Century BCE, the passage of Alexander the Great’s army contributed to the creation of another Greek-speaking centre, to the South of Pontus, at Cappadocia. It is possible that from Cappadocia, Greek may have also spread northwards towards Pontus.

However, the decisive phase for the expansion of the Greek language seems to be Christianization. The inhabitants of Pontus were among the first converts and are mentioned in the New Testament. The Soumela monastery was founded in 386 CE, around 20 years after the region officially adopted Christianity. The fall of Trebizond to the Ottomans in 1461 led to the city becoming majority Muslim.

Prof. Sitaridou said: “Conversion to Islam across Asia Minor was usually accompanied by a linguistic shift to Turkish, but communities in the valleys retained Romeyka. And because of Islamization, they retained some archaic features while the Greek-speaking communities who remained Christian grew closer to Modern Greek, especially because of extensive schooling in Greek in the 19th and early 20th centuries.”

Recently, Prof. Sitaridou started field working in a new site, Tonya, where no other field worker has ever reached, only to reveal significant grammatical variation between the valleys indicating different Islamisation onset. In a publication, to appear soon, it is argued that both the syntax of subordination and negation systems in Tonya show different patterns and thus diachronic development from the Çaykara variety.

In 1923, under the Greco-Turkish population exchange, Greek-speaking Christians of Pontus were forced to leave Turkey and relocate to Greece while Romeyka-speaking Muslim communities in the Trabzon area remained in their homeland as they professed Islam, explaining why this Greek variety is still spoken in small enclaves in the region. Since 1923 and until very recently the two speech communities were oblivious of each other’s existence.

 

Preservation of heritage languages and why it matters

Speakers are still reluctant to identify Romeyka as one of their languages since, for Turkish nationalists, speaking Greek goes against the very fundamentals of one’s belonging. From a Greek nationalist perspective, these varieties are deemed ‘contaminated’ and/or disruptive to the ideology of one single Greek language spoken uninterruptedly since antiquity, as Sitaridou explains in an article which is about to be published by the Laz Institute in Istanbul.

In Greece, Turkey and beyond, Sitaridou has used her research to raise awareness of Romeyka, stimulate language preservation efforts and enhance attitudes. In Greece, for instance, Sitaridou co-introduced a pioneering new course on Pontic Greek at the Democritus University of Thrace since the number of speakers of Pontic Greek is also dwindling.

“Raising the status of minority and heritage languages is crucial to social cohesion, not just in this region, but all over the world,” Prof. Sitaridou said. “When speakers can speak their home languages they feel “seen” and thus they feel more connected to the rest of the society; on the other hand, not speaking the heritage or minority languages creates some form of trauma which in fact undermines the integration which linguistic assimilation takes pride in achieving”.

The same ethos traverses a new AHRC-funded project about the documentation of a critically endangered language, Sri Lanka Portuguese, among Afrodescent communities in north-western Sri Lanka. Sitaridou  will be documenting and analysing manja, the only remaining linguistic and cultural expression of African heritage for these communities.

 

Exhibition at Mohamed Ali’s historical House in Kavala this April

The Romeyka exhibition runs at the MOHA Research Centre in Kavala, Greece, from 29th March – 28th April 2024.

The exhibition features previously unpublished archival material from Exeter College, Oxford and photographic material from British School of Athens which give us a glimpse into the Greek-speaking communities and language in the southern Black Sea shores 110 years ago taken by R.M. Dawkins, one of the first field workers in the area. This is combined with photographs and video material from Prof. Sitaridou’s own fieldwork, interspersed with panels and audio material to communicate her linguistic findings.

The exhibition aims to generate further reflections on endangered heritages, fragmented and shared identities and collective memory as well as helping us get a better grasp of multilingualism, localised experiences, intergenerational stories of co-existence and displacement, diasporic selves and language loss, and alternative modalities of being and belonging both in Greece and Turkey.

 

These plants evolved in Florida millions of years ago. They may be gone in decades.




FLORIDA MUSEUM OF NATURAL HISTORY

Image_1 

IMAGE: 

THERE ARE 24 SPECIES OF SCRUB MINT NATIVE TO THE SOUTHEASTERN UNITED STATES, AND MORE THAN HALF OF THEM ARE CONSIDERED THREATENED OR ENDANGERED.

view more 

CREDIT: FLORIDA MUSEUM OF NATURAL HISTORY PHOTO BY KRISTEN GRACE




Scrub mints are among the most endangered plants you’ve probably never heard of. More than half of the 24 species currently known to exist are considered threatened or endangered at the state or federal level, and nearly all scrub mints grow in areas that are being rapidly developed or converted to agricultural pasture.

In a new study, researchers analyzed a distinct type of DNA marker, which shows there are likely more scrub mint species waiting to be scientifically described. And at least one species has been left without federal protection because of a technicality.

“The Titusville balm is currently considered to be a recent hybrid,” said lead author Andre Naranjo, who conducted the study while completing a Ph.D. with the Florida Museum of Natural History. “When you describe something as a hybrid, that implies that it’s not a true species, and it can’t be protected under the Endangered Species Act.”

Naranjo found no evidence for recent hybridization in Titusville balms (Dicerandra thinicola), and his results suggest that a group called the calamints may contain cryptic diversity that requires further study.

Scrub mints evolved during a period of rapid climate change

Naranjo and his colleagues conducted the study to learn about the evolutionary history of scrub mints. The group is native to the southeastern United States and originated during a turbulent time in Earth’s past.

Three million years ago, during a period called the Pliocene, temperatures were 2-3 degrees C warmer than they are today, and sea levels were up to 30 meters higher. At the time, the central and southern half of Florida was an archipelago. But as temperatures cooled over the next several million years, the waters receded, and the Florida Peninsula took on its modern-day dimensions.

Much of this newly surfaced habitat wasn’t exactly prime real estate. Where soils did exist, they were primarily composed of sand, and the cooler temperatures resulted in less rainfall. This was particularly true of the elevated areas that had been islands before sea levels fell.

What’s left of these ancient shorelines is now located near the center of the Florida Peninsula and is often referred to as sand pine scrub. Plants and animals that moved into these vacant spaces had to contend with little water, few nutrients and rampant wildfires.

The species that managed to survive tended to do well within this narrow framework of harsh conditions but lost the ability to live just about anywhere else. Today, 40-60% species that live in these areas are endemic, meaning they can be found only in southeastern scrub habitats.

Scrub mints are among the few plants that staked a claim in the new Florida frontier. Originating in the panhandle, the ancestor of modern scrub mints dispersed south as soon as there was land to grow on.

At the height of the ice ages during the Pleistocene, when much of the planet’s reserve of water was locked away in massive glaciers, Florida was up to twice the size it is today, and scrub mints flourished.

“These plants had a much wider range in the past and were readily sharing DNA with one another,” Naranjo said.

But their habitat soon shrank. There were at least 17 ice ages during the Pleistocene, when scrub mints were evolving, and each cold period was separated by warm intervals in which much of Florida was swallowed by the sea.

Widespread scrub environments were repeatedly reduced to islands, severing the connection between mint populations. They began to grow apart, and soon each scrub island contained its own unique mint species. During the cold periods, when sea levels fell, scrub mint populations again overlapped, and these unique species hybridized with each other.

This ancient intermingling created the scrub mints as they’re known today.

The storied history of scrub mints cut short by development

Naranjo sequenced nuclear DNA from scrub mints for the study. Unlike the plastid DNA often used to study plants, which is produced by structures called chloroplasts, the DNA from plant nuclei is especially useful for scientists trying to tease apart historical interactions between species.

According to his results, annual scrub mints in the genus Dicerandra — which grow north into South Carolina and die back during the winter — originated from a back-to-back hybridization event between the ancestors of perennial scrub mints, which have a distribution further south and grow year-round.

Hybridization is a common form of diversification in plants, so much so that nearly every group of plants you might come across has had a hybridization event occur at some point in its evolutionary history.

Crucially, Naranjo’s findings indicate the scrub mints that currently exist have been on separate evolutionary trajectories for hundreds of thousands of years. When modern humans diverged from Neanderthals around 500,000 years ago, scrub mints were already well on their way to becoming separate species.

The study also suggests that calamints are genetically diverse, so much so that new species designations are likely warranted. This is especially true for those with large ranges in the southeastern U.S., including the scarlet calamint (Clinopodium coccineum) and Georgia calamint (Clinopodium georgianum), neither of which is considered to be endangered.

Even if additional species are afforded protection, Naranjo fears it may not be enough to stave off declines and eventual extinction. Lakela’s mint (Dicerandra immaculata), for example, is listed as critically endangered and only grows along a three-mile stretch of scrub, almost all of which is privately owned.

Conditions that once allowed these plants to thrive, such as periodic wildfires, are now impractical, due to nearby urban areas that would be negatively affected. And invasive species are encroaching on what little pristine scrub is left. Work to remove invasives is often done by volunteers, if they’re removed at all.

“If we continue with business as usual, this entire group of plants could go extinct within the next 100 years. And we won’t just lose these species. We’ll lose the scrub, one of the most truly authentic and formerly ubiquitous Florida habitats will just go away,” Naranjo said. 

The study was published in the journal Molecular Phylogenetics and Evolution.

Christine Edwards of the Missouri Botanical Garden, Matthew Gitzendanner of the University of Florida, and Pamela and Douglas Soltis of the Florida Museum of Natural History are also co-authors on the study.

Tree of life for modern birds revealed


The largest and most complete study pinpoints timing of evolution


AUSTRALIAN MUSEUM

Dr Jacqueline Nguyen + Professor Simon Ho with Australian Museum bird specimens 

IMAGE: 

DR JACQUELINE NGUYEN + PROFESSOR SIMON HO WITH AUSTRALIAN MUSEUM BIRD SPECIMENS 

view more 

CREDIT: JAMES ALCOCK




2 April, 2024, Sydney; In a world first, a team of international scientists including three Australians, Al-Aabid Chowdhury and Professor Simon Ho from University of Sydney, and Dr Jacqueline Nguyen from Australian Museum and Flinders University, have determined the family tree of modern birds and pinpointed the timing of their evolution. Their findings have been published today in Nature.

The largest study ever undertaken of modern bird genomes, the scientists combined genomic data of more than 360 bird species with data from nearly 200 bird fossils to reconstruct the most well-supported Tree of Life for modern birds.

The research revealed that most modern bird groups appeared within a very small evolutionary window of only 5 million years. These findings support the hypothesis that birds made the most of opportunities after an asteroid struck earth 66 million years ago wiping out the dinosaurs.

The comprehensive study was led by Assistant Professor Josefin Stiller from the University of Copenhagen, along with Associate Professor Siavash Mirarab from the University of California, San Diego and Professor Guojie Zhang from Zhejiang University.

“Our study has resolved some previous disputes about the bird family tree and added new nuance to the textbook knowledge of bird evolution,” Assistant Professor Stiller said.

Earlier studies had already established that the 10,000 species of living birds form three major groups. About 500 species belong to the flightless ratites group or the landfowl-waterfowl group, however all other birds form a third large and diverse group called Neoaves.

The latest study has been able to establish deeper understanding of relationships in the Neoaves group, which itself contains 10 major sub-groups of birds. These include the colourfully named ‘Magnificent Seven’, including cuckoos, doves, and flamingos, along with three ‘orphan’ groups of birds whose ancestry has long been uncertain.

Professor Ho, who specialises in evolutionary biology at the University of Sydney, said the research has worked out the evolutionary relationships of the major bird groups.

“With such a huge amount of genome data, our study has been able to provide the clearest picture of the bird family tree so far, particularly among the ‘Magnificent Seven’ and three ‘orphan’ bird groups, which make up 95% of bird species,” Professor Ho said.  

Australian Museum and Flinders University avian palaeontologist, Dr Jacqueline Nguyen, said the fossil information was used to work out the timescale of the bird family tree.

“By combining evidence from nearly 200 bird fossils, we were able to pinpoint an extremely important period of bird diversification that happened immediately after the extinction of the dinosaurs,” Dr Nguyen explained.

The genomes also reveal a new grouping of birds that the researchers have named ‘Elementaves’, inspired by the four ancient elements of earth, air, water and fire. The group includes birds that are successful on land, in the sky, and in water. Some birds have names relating to the sun, representing fire. Penguins, pelicans, swifts, hummingbirds and shorebirds are among the birds that have been placed in Elementaves.

Two of the most well-known groups of birds in Australia, the passerines (songbirds and relatives) and parrots, share a very close relationship. Songbirds include familiar birds such as magpies, ravens, finches, honeyeaters and fairy-wrens. They originated in Australia about 50 million years ago and have become the most successful group of birds, making up nearly half of all bird species worldwide.

Despite the enormous scale of the latest genome study, there is one mystery that continues. The researchers were unable to work out the relationships of the hoatzin, a distinctive bird that is only found in South America and is the sole survivor of its entire lineage.

The findings are the outcome of nearly a decade of research involving scientists from across the globe working together on the Bird 10,000 Genomes Project (B10K), which aims to sequence the complete genomes of every living bird species.

Chief scientist and Director of the Australian Museum Research Institute, Professor Kris Helgen, said that genomic tools have precipitated one of the great revolutions in biological sciences.

“The global scientific community has come together to champion impressive genome projects like Bird 10K. Efforts like these can address long-standing questions about evolution, in this case for all living species of birds. They do this by drawing on new genetics techniques, expertise on anatomy and the fossil record, and carefully curated DNA samples, which are stored behind-the-scenes in the collections of natural history museums in Australia and around the world,” Professor Helgen said.

                                                                                                 # Ends #                    


We’ve had bird evolution all wrong


A frozen chunk of genome rewrites our understanding of the bird family tree



Peer-Reviewed Publication

UNIVERSITY OF FLORIDA

Flamingo 

IMAGE: 

A GREATER FLAMINGO IN MALLORCA, SPAIN. UNRAVELING A GENETIC MYSTERY REVEALED THAT FLAMINGOS AND DOVES ARE MORE DISTANTLY RELATED THAN PREVIOUSLY THOUGHT.

view more 

CREDIT: DANIEL J. FIELD




An enormous meteor spelled doom for most dinosaurs 65 million years ago. But not all. In the aftermath of the extinction event, birds — technically dinosaurs themselves — flourished. 

Scientists have spent centuries trying to organize and sort some 10,000 species of birds into one clear family tree to understand how the last surviving dinosaurs filled the skies. Cheap DNA sequencing should have made this simple, as it has for countless other species.

But birds were prepared to deceive us.

In a pair of new research papers released today, April 1, scientists reveal that another event 65 million years ago misled them about the true family history of birds. They discovered that a section of one chromosome spent millions of years frozen in time, and it refused to mix together with nearby DNA as it should have.  

This section, just two percent of the bird genome, convinced scientists that most birds could be grouped into two major categories, with flamingos and doves as evolutionary cousins. The more accurate family tree, which accounts for the misleading section of the genome, identifies four main groups and identifies flamingos and doves as more distantly related.

“My lab has been chipping away at this problem of bird evolution for longer than I want to think about,” said Edward Braun, Ph.D., the senior author of the paper published in the Proceedings of the National Academy of Sciences and a professor of biology at the University of Florida. “We had no idea there would be a big chunk of the genome that behaved unusually. We kind of stumbled onto it.”

Braun supervised an international team of collaborators led by Siavash Mirarab, a professor of computer engineering at the University of California San Diego, to publish their evidence that this sticky chunk of DNA muddied the true history of bird evolution. Mirarab and Braun also contributed to a companion paper published in Nature that outlines the updated bird family tree, which was led by Josefin Stiller at the University of Copenhagen. 

Both papers are part of the B10K avian genomics project led by Guojie Zhang of Zhejiang University, Erich Jarvis of Rockefeller University, and Tom Gilbert of the University of Copenhagen.

Ten years ago, Braun and his collaborators pieced together a family tree for the Neoaves, a group that includes the vast majority of bird species. Based on the genomes of 48 species, they split the Neoaves into two big categories: doves and flamingos in one group, all the rest in the other. When repeating a similar analysis this year using 363 species, a different family tree emerged that split up doves and flamingos into two distinct groups. 

With two mutually exclusive family trees in hand, the scientists went hunting for explanations that could tell them which tree was correct. 

“When we looked at the individual genes and what tree they supported, all of a sudden it popped out that all the genes that support the older tree, they’re all in one spot. That’s what started the whole thing,” Braun said.

Investigating this spot, Braun’s team noticed it was not as mixed together as it should have been over millions of years of sexual reproduction. Like humans, birds combine genes from a father and a mother into the next generation. But birds and humans alike first mix the genes they inherited from their parents when creating sperm and eggs. This process is called recombination, and it maximizes a species’ genetic diversity by making sure no two siblings are quite the same.

Braun’s team found evidence that one section of one bird chromosome had suppressed this recombination process for a few million years around the time the dinosaurs disappeared. Whether the extinction event and the genomic anomalies are related is unclear.

The result was that the flamingos and doves looked similar to one another in this chunk of frozen DNA. But taking into account the full genome, it became clear that the two groups are more distantly related.
“What’s surprising is that this period of suppressed recombination could mislead the analysis,” Braun said. “And because it could mislead the analysis, it was actually detectable more than 60 million years in the future. That's the cool part.” 

Such a mystery could be lurking in the genomes of other organisms as well.

“We discovered this misleading region in birds because we put a lot of energy into sequencing birds’ genomes,” Braun said. “I think there are cases like this out there for other species that are just not known right now.”

This work was supported in part by the National Science Foundation.

  

A wompoo fruit-dove in Queensland, Australia. Unraveling a genetic mystery revealed that flamingos and doves are more distantly related than previously thought.

CREDIT

Daniel J. Field



  

Two mutually exclusive bird family trees. The top family tree lumps flamingos and doves, in blue and teal respectively, closely together, while the bottom family tree does not. The top family tree was built around distortions in bird genomes that date back to the extinction of the dinosaurs. The bottom family tree is likely more accurate, after accounting for these genomic anamolies.

CREDIT

Edward Braun

JOURNAL