Thursday, April 25, 2024

 

Managing meandering waterways in a changing world



UC Santa Barbara researchers connect sediment load to migration rate in meandering rivers worldwide


UNIVERSITY OF CALIFORNIA - SANTA BARBARA

River Erosion 

IMAGE: 

EROSION PULLS THE STEEP BANK OVER AT THE SAME TIME AS DEPOSITION PUSHES THE SAND BAR ON THE OPPOSITE SIDE. TOGETHER, THE MOVE THE RIVER BEND TO THE LEFT.

view more 

CREDIT: MATT PERKO





(Santa Barbara, Calif.) — Just as water moves through a river, rivers themselves move across the landscape. They carve valleys and canyons, create floodplains and deltas, and transport sediment from the uplands to the ocean.

A new paper out of UC Santa Barbara presents an account of what drives the migration rates of meandering rivers. The two authors compiled a global dataset of these waterways, analyzing how vegetation and sediment load effect channel movement. “We find a global-scale trend between the amount of sediment that rivers carry and how quickly they’re migrating, across all variables,” said lead author Evan Greenberg, a doctoral student in the Department of Geography.

Their results, published in the journal Earth and Planetary Science Letters, contrast with previous work that emphasized the stabilizing effect of vegetation. In this paper, the researchers highlight how the activity of meandering rivers emerges from the interplay between sediment deposition and bank stabilization by vegetation. Some of the world's most important waterways are meandering rivers, so properly understanding their behavior is crucial to managing these natural phenomena in a changing world.

Two forces, called bar push and bank pull, act on a river bend. Bar push is caused when deposition on the inside of a bend forms a sandbar, which pushes the curve outward. At the same time, erosion on the opposite bank pulls the bend even farther outward. Sediment load has a stronger effect on the former, while the stabilizing presence of vegetation has more influence on the latter.

Scientists have proposed various hypotheses as to which factor exerts a stronger influence on meander migration. “This is a pretty contentious topic and keeps going back and forth,” said senior author Vamsi Ganti, Greenberg’s advisor and an associate professor in the geography department.

To investigate these dynamics, Greenberg and Ganti collated existing measurements of river migration rates and added data from approximately 60 additional rivers. Altogether, they compiled data on 139 meandering rivers across the globe, spanning different regions, climates, sizes and vegetation regimes. The researchers modeled each river channel as a series of line segments using satellite imagery. They could then track how these segments shifted over time to measure the river’s migration.

The leading paradigm was that vegetation slows down this migration by stabilizing the outer bank against erosion. This contrasted with experimental evidence suggesting that sediment load could be an influential factor. Bank pull is stronger in unvegetated rivers, but as Greenberg and Ganti discovered, these tend to have higher sediment supply as well, making it difficult to distinguish the relative contributions of the two processes.

But Greenberg and Ganti’s analysis revealed a clear trend: Migration was faster for rivers that carried a lot of sediment relative to their size. The model also showed vegetation slowing down river migration, as suggested by previous studies. However, the effect was much more modest, with unvegetated rivers migrating four times faster than similar-sized counterparts, rather than the 10-fold increase reported by some of their colleagues. This suggests that bar push has a stronger influence on meandering rivers than bank pull.

That said, river behavior flows from the confluence of the two processes. “You can’t have one dominate the other in a meandering river,” Ganti said. “If you don’t have enough sediment supply, bank pull will outpace bar push, and you’ll end up with a braided river. And so it’s really the balance between the bar push and the bank pull that creates these stable meandering rivers.”

Dams provide a ready-made case study for investigating the contributions of these two mechanisms, since the structures trap sediment but scarcely affect vegetation. When the authors looked at the movement of three North American rivers above and below notable dams, they found that migration rates slowed downstream, where the river was starved of sediment. They could now be certain that sediment load was driving bend migration.

Greenberg is further investigating the effect dams have not just on meandering rivers, but on all the types of rivers that have floodplains. “We want to know what dams are doing to the migration of rivers,” he said.

Many of the world’s most important waterways are meandering rivers, and hundreds of millions of people live along their floodplains, Ganti said. “So knowing how rivers move is important for managing the risks that come with bank migration.

In previous papers, Ganti has documented how sea-level rise and changes in sediment supply could affect river dynamics in the future. The results paint a picture of more active, less predictable rivers, especially when combined with more extreme weather and changing land use. For instance, scientists predict that many rivers will see increased sediment supply. “More sediment means that rivers can do more stuff,” he remarked.

Ganti plans to broaden the scope of their model. While geographers and Earth scientists have historically focused on meandering rivers, the majority of the planet’s waterways are wandering, multi-threaded rivers, he said. He and Greenberg are working on quantifying river mobility in general, across the many categories of rivers. Ideally, they want to develop a model that can describe a river’s migration as it changes type along the entirety of its length, from headwater to sea.

 

Puzzling link between depression and cardiovascular disease explained at last: they partly develop from the same gene module



Blood gene expression analysis reveal functional module of genes involved in both depression and cardiovascular disease



FRONTIERS





Depression and cardiovascular disease (CVD) are serious concerns for public health. Approximately 280 million people worldwide have depression, while 620 million people have CVD. It has been known since the 1990s that the two diseases are somehow related. For example, people with depression run a greater risk of CVD, while effective early treatment for depression cuts the risk of subsequently developing CVD by half. Conversely, people with CVD tend to have depression as well. For these reasons, the American Heart Association (AHA) advises to monitor teenagers with depression for CVD.

What wasn’t yet known is what causes this apparent relatedness between the two diseases. Part of the answer probably lies in lifestyle factors common in patients with depression and which increase the risk of CVD, such as smoking, alcohol abuse, lack of exercise, and a poor diet. But it’s also possible that both diseases might be related at a deeper level, through shared developmental pathways.

 

Now, scientists have shown that depression and CVD do indeed share part of their developmental programs, having at least one functional ‘gene module’ in common. This result, published in Frontiers in Psychiatry, provides new markers for depression and CVD, and could ultimately help to find drugs to target both diseases.

“We looked at gene expression profile in the blood of people with depression and CVD and found 256 genes in a single gene module whose expression at levels higher or lower than average puts people at greater risk of both diseases,” said first author Dr Binisha H Mishra, a postdoctoral researcher at Tampere University in Finland.

The authors define a gene module as a group of genes with similar expression patterns across different conditions and hence likely to be functionally related.

Young Finns study

Mishra and colleagues studied gene expression data in the blood of 899 women and men between 34 and 49 years old who were participants in the Young Finns study, one of largest studies of cardiovascular risk factors from childhood to adulthood to date. The Young Finns study began in 1980 with a cohort of almost 4,000 children and adolescents, then between three and 18 years old, randomly selected from five cities in Finland. The health of these participants has been followed ever since.

Finland has the highest estimated incidence of mental disorders in the EU, and is the ninth-highest ranking country in the world for the prevalence of depression. In contrast, the country has a relatively low prevalence of CVD, ranking in the bottom 20% worldwide for this class of diseases.

In 2011, the researchers running the Young Finns study tested the participants for symptoms of depression with a tried-and-tested questionnaire: Beck's depression inventory (BDI-II), whose score increases with more severe symptoms. They also tested them for the risk of developing CVD through AHA’s ‘ideal cardiovascular health’ score, on a scale from zero (highest risk) to seven (lowest risk). Mishra et al. further analyzed these data for the present study.

It's all in the blood

In 2011, whole blood had also been taken from each participant, and Mishra and colleagues here analyzed these samples with state-of-the-art gene expression methods.

They used advanced statistics to identify 22 distinct gene modules, of which just one was associated with both a high score for depressive symptoms and a low score for cardiovascular health.

“The top three genes from this gene module are known to be associated with neurodegenerative diseases, bipolar disorder, and depression. Now we have shown that they are associated with poor cardiovascular health as well,” said Mishra.

These genes are involved in biological processes such as inflammation that are involved in pathogenesis of both depression and cardiovascular disease. This helps to explain why both diseases often occur together.

Other genes in the shared module have been shown to be involved in brain diseases such as Alzheimer's, Parkinson's, and Huntington's disease.

“We can use the genes in this module as biomarkers for depression and cardiovascular disease. Ultimately, these biomarkers may facilitate the development of dual-purpose preventative strategies for both the diseases,” said Mishra.

 

Synthetic droplets cause a stir in the primordial soup


A synthetic droplet may give researchers clues on how simplest forms of life on the planet could navigate their surroundings



OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY (OIST) GRADUATE UNIVERSITY

Three figures showing the principles of droplet movement caused by the Marangoni flow 

IMAGE: 

THE SYNTHETIC DROPLETS CONTAIN THE ENZYME UREASE WHICH CATALYZES THE BREAKDOWN OF UREA INTO AMMONIA, WHICH HAS A HIGH PH-VALUE. DROPLETS MIGRATE DUE TO THE PH GRADIENT, FROM LOW TO HIGH, BECAUSE OF THE MARANGONI EFFECT.

view more 

CREDIT: OIST




Our bodies are made up of trillions of different cells, each fulfilling their own unique function to keep us alive.

How do cells move around inside these extremely complicated systems? How do they know where to go? And how did they get so complicated to begin with? Simple yet profound questions like these are at the heart of curiosity-driven basic research, which focuses on the fundamental principles of natural phenomena. An important example is the process by which cells or organisms move in response to chemical signals in their environment, also known as chemotaxis.

A constellation of researchers from three different research units at the Okinawa Institute of Science and Technology (OIST) came together to answer basic questions about chemotaxis by creating synthetic droplets to mimic the phenomena in the lab, allowing them to precisely isolate, control and study the phenomena. Their results, which helps answering questions about the principles of movement in simple biological systems, have now been published in the Journal of The American Chemical Society. “We have shown that it is possible to make protein droplets migrate through simple chemical interactions,” says Alessandro Bevilacqua, PhD student in the Protein Engineering and Evolution Unit and co-first author on the paper. Professor Paola Laurino, head of the unit and leading author, adds that they “have created a simple system that mimic a very complex phenomenon, and which can be modulated through enzymatic activity.” 

Tensions on the surface

While the process of creating droplets might not sound like the most complicated task, mimicking biological processes as close to reality as possible while keeping accurate control over all the variables certainly is. The synthetic, membrane-less droplets contain a very high concentration of the bovine protein BSA to mimic the crowded conditions inside cells, as well as urease, an enzyme that catalyzes the breakdown of urea into ammonia.

Ammonia is basic, meaning it has a high pH-value. As the enzyme gradually catalyzes the production of ammonia, it diffuses into the solution, creating a ‘halo’ of higher pH around the droplet, which in turn enables droplets to detect other droplets and migrate towards each other.

The researchers found that the key to understanding the chemotaxis of the droplets is the pH-gradient, as it facilitates the Marangoni effect, which describes how molecules flow from areas of high surface tension to low. Surface tension is the measure of energy required to keep molecules at the surface together, like glue. When pH increases, this glue weakens, causing molecules to spread out and lowering surface tension, which in turn makes it easier for molecules to move. You can see this by adding soap, which has a high pH, to one end of a bathtub of still water: the water will flow towards the end with soap because of the Marangoni effect. 

When two synthetic droplets are close enough, their halos interact, raising the pH in the environment between them, which makes them move together. Because the surface tension is still strong on the opposite ends of the droplets, they keep their shape until the surfaces touch, and the cohesive forces within the droplets overcome the surface tension, causing them to merge. As larger droplets both produce more ammonia and have a larger surface area (which decreases surface tension), they attract droplets smaller than themselves.

Collaborating on ancient soup and future biotech

Thanks to the development of these droplets, the researchers have made headway in answering basic questions about biological movement – and in doing so, they have gained insight into the directed movement of the earliest forms of life in the primordial soup billions of years ago, as well as a lead on creating new biologically inspired materials. 

Our knowledge of life as it looked billions of years ago is fuzzy at best. A prominent hypothesis is that life originated in the oceans, as organic molecules gradually assembled and became more sophisticated in a ‘primordial soup’ – and this could have been facilitated by chemotaxis through the Marangoni effect. “It would have been beneficial for droplets to have this mechanism of migration in the hypothetical origin of life scenario,” as Professor Laurino puts it.  This migration could have triggered the formation of primitive metabolic pathways whereby enzymes catalyze a variety of substances that ultimately produce a chemical gradient that drives the droplets together, leading to larger and more sophisticated communities.

The research also points ahead in time, providing leads on new technology. “One example is the creation of responsive materials inspired by biology,” suggests Alessandro Bevilacqua. “We have shown how simple droplets can migrate thanks to a chemical gradient. A future application of this could be technologies that sense or react to chemical gradients, for example in micro-robotics or drug delivery.” 

The work to produce and analyze the synthetic droplets is the result of a combination of deeply integrated interdisciplinarity and the human factors undergirding scientific work. The project began during the coronavirus pandemic, when a member of the Protein Engineering and Evolution Unit was in quarantine with a member of the Complex Fluids and Flows Unit. The two began talking, and though the two units are from two disparate fields – biochemistry and mechanics, respectively – the project evolved in tandem. Eventually, members from the Micro/Bio/Nanofluidics Unit joined the project with sophisticated measurements of the droplets’ surface tension.

The unique non-disciplinary research environment at OIST catalyzed the collaboration. As Professor Laurino puts it, “this project could never have existed if we were separated by departments. It hasn’t been an easy collaboration, because we communicate our field in very different ways – but being physically close made it significantly easier.” Alessandro Bevilacqua joins in: “The coffee factor has been very important. Being able to sit down with other unit members made the process much faster and more productive.” Their cooperation doesn’t stop here – rather, this paper is the beginning of a fruitful partnership between the three units. “We see a lot of synergy in our work, and we work effectively and efficiently together. I don’t see a reason why we should stop,” as Professor Laurino states it. It’s thanks to the combined efforts of the three units that we now know more about the minute movements of life at the smallest, earliest, and possibly future scale.

  

合成液滴には、尿素をアンモニアに分解する酵素ウレアーゼが含まれており、この酵素はpH値が高い。マランゴニ効果により、液滴はpH勾配に沿って、低pHから高pHへ移動する。

CREDIT

OIST

 Synthetic droplets driven by e [VIDEO] | 

How do the droplets move, and what determines their direction? Each green droplet is densely packed with proteins as well as an enzyme that increases the pH-value within and around the droplet, which may lead to the answer to these questions. 

Two simulations of droplets me [VIDEO] |

Numerical models showing what happens when the halos of two synthetic droplets interact. pH in the space between the droplets is higher (and surface tension lower), which causes the droplets to migrate towards each other while keeping their spherical shape, as pH is lower within the droplets, until they meet and merge. Larger droplets attract smaller droplets.

 

Enhancing fermented sausage quality: a comprehensive review of gel formation mechanisms and the role of lactic acid bacteria



MAXIMUM ACADEMIC PRESS
Fig.1 

IMAGE: 

THE MECHANISM OF GEL FORMATION IN FERMENTED SAUSAGE.

view more 

CREDIT: THE AUTHORS




A research team reviewed the process of gel formation in fermented sausages, emphasizing the crucial role of myofibrillar proteins and the influence of lactic acid bacteria, temperature, and processing methods on gel properties. They highlighted that while current studies extensively explore protein gel properties, the specific mechanisms by which lactic acid bacteria enhance these properties in fermented sausages are less understood. Future research is suggested to employ advanced spectroscopic methods to delve deeper into these mechanisms, potentially improving the texture and flavor of these products and advancing food science applications.

Fermented sausages, made from microbial fermentation of meat, are renowned for their distinct flavors and textures . It is primarily influenced by the gel properties of meat myofibrillar proteins, which form stable gel structures through collagen denaturation. Current research comprehensively addresses the gel properties of muscle proteins and meat paste, yet the factors influencing gel formation in fermented sausages, such as microbial diversity, processing techniques, and environmental conditions, require further investigation.

study (DOI: 10.48130/fmr-0023-0042) published in Food Material Research on 01 February 2024, delves into the mechanisms of gel formation in fermented sausages to enhance texture and quality, providing a robust theoretical framework for future improvements in sausage production.

This review comprehensively discusses the mechanisms of gel formation in fermented sausage, analyzing the impact of lactic acid bacteria, temperature, and other factors on gel properties. It introduces the methodologies used to evaluate these properties, aiming to establish a basis for the control of process parameters and enhancing the gel quality in fermented sausage production. In exploring gel formation, the review highlights that microorganisms play a critical role during fermentation by producing enzymes that facilitate the breakdown of proteins and fats, release flavor compounds and lower the sausage's pH through lactic acid production. This acidification leads to protein denaturation, which promotes gel formation. Specifically, myosinis critical in the development of gel matrix through denaturation, aggregation and network formation, ultimately stabilizing the gel structure by preventing fat particle aggregation and free radical penetration. Quantitative findings include that lactic acid bacteria enhance gel strength, elasticity and juiciness by lowering pH and increasing ionic strength, with organic acids such as lactic and formic acid significantly accelerating ion concentration, thus promoting actomyosin formation. The review also notes that optimal gel properties are achieved when myofibrillar proteins are treated at specific temperatures, with 70°C identified as ideal for creating a uniform network structure. Advanced imaging techniques such as Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Optical Microscopy (CLSM) are critical in characterizing these microstructures, providing a detailed understanding of the interactions within the gel matrix.

According to the study's lead researcher, Prof. Xinliang Wang, “The ability of lactic acid bacteria to produce acid, enzyme, extracellular polysaccharide and antioxidant properties play an important role in the formation of fermented sausage gel properties. In addition, the gel properties of fermented sausages are also closely related to various factors such as temperature and processing methods.” Overall, the review underscores the complexity of factors influencing gel properties in fermented sausages and the sophisticated methods required to analyze and optimize them.

###

References

DOI

10.48130/fmr-0023-0042

Original Source URL

https://doi.org/10.48130/fmr-0023-0042

Authors

Shiqin Hao1# , Min Qian1# , Yaru Wang1 , Kaiping Zhang2 ,Jianjun Tian1* and Xinliang Wang1*

Affiliations

1 College of Food Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China

2 Department of Cooking & Food Processing, Inner Mongolia Business and Trade Vocational College, Hohhot 010070, China

 

NTU Singapore and Temasek Polytechnic scientists replace fishmeal in aquaculture with microbial protein derived from soybean processing wastewater

Peer-Reviewed Publication

NANYANG TECHNOLOGICAL UNIVERSITY

NTU Singapore and Temasek Polytechnic scientists replace fishmeal in aquaculture with microbial protein derived from soybean processing wastewater 

IMAGE: 

MEMBERS OF THE NTU-TP RESEARCH TEAM INCLUDE (BACK ROW, L-R):  NTU PROFESSOR STEFAN WUERTZ, SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING AND DEPUTY CENTRE DIRECTOR, SCELSE; DR LOO POH LEONG, RESEARCH FELLOW, SCELSE;  DR EZEQUIEL SANTILLAN, SENIOR RESEARCH FELLOW, SCELSE, (FRONT ROW, L-R) DR WOO YISSUE, RESEARCH FELLOW, SCELSE; DR DIANA CHAN, HEAD, AIC AT TEMASEK POLYTECHNIC.

view more 

CREDIT: NTU SINGAPORE

Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Temasek Polytechnic have successfully replaced half of the fishmeal protein in the diets of farmed Asian seabass with a ‘single cell protein’ cultivated from microbes in soybean processing wastewater, paving the way for more sustainable fish farming practices.

The use of a cultivated protein is new to aquaculture production, say the scientists from the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) leading NTU’s efforts in the study, and Temasek Polytechnic’s Aquaculture Innovation Centre (AIC).

Farmed aquaculture species rely heavily on feed made from wild-caught fish, known as fishmeal, which is not sustainable and contributes to overfishing of the seas.

Single cell protein, a sustainable alternative, can be cultivated from food processing wastewater. In particular, the wastewater from soybean processing contains organisms with probiotic potential that are essential for healthy fish growth.

Wastewaters from the food-processing industry are free of pathogens and other contaminants, make them suitable for growing microbes. Normally after processing the wastewater is discharged and flows into a wastewater reclamation plant. Its nutrients are not recovered, resulting in a lost opportunity to maximise resource use.

Co-lead author of the study, Dr Ezequiel Santillan, senior research fellow at SCELSE, said, “Our study represents a significant step forward in sustainable aquaculture practices. By harnessing microbial communities from soybean processing wastewater, we have demonstrated the feasibility of producing single cell protein as a viable alternative protein replacement in fish feed, reducing the reliance on fishmeal and contributing to the sustainability of the aquaculture industry.”

The joint research team said that their waste-to-resource approach tackles food security and waste reduction, supporting the development of a circular economy with zero waste as outlined in the United Nations Paris Agreement.

The study, published in the peer-reviewed science journal Scientific Reports, aligns with the University's research pillar of NTU 2025, a five-year strategic plan that aims to leverage innovative research to mitigate human impact on the environment.

The study is also aligned with AIC’s focus on enhancing food security and resilience. With the aquaculture industry aiming to meet 30 per cent of Singapore’s total nutritional needs by 2030, AIC has been actively championing intensive aquaculture production with innovation and technology.
 

Replacing half of the usual fish feed for Asian seabass

To demonstrate their approach, the team added soybean processing wastewater from a food processing company in Singapore into bioreactors – a controlled environment for biological and chemical reactions – to cultivate single cell protein. The laboratory-scale bioreactors were operated in repeated cycles of controlled nutrient and low air supply (micro-aerobic conditions) for over four months at 30°C. These conditions suggest that the team’s method can be easily reproduced at ambient temperatures in tropical regions like Singapore, further reducing the environmental footprint of fishmeal production.

After producing their single cell protein, the research team fed two groups of young Asian seabass over 24 days. One group received a conventional fishmeal diet, while the other group was fed a diet of half regular fishmeal and half single cell protein. Both diets provided the same amount of nutritional content for the young fish.

At the end of the experiment, the growth of both groups was evaluated, and researchers found that the fish had grown the same amount. Interestingly, the group of fish on the new diet showed more consistent and less variable growth than the traditional diet group.

NTU Professor Stefan Wuertz at the School of Civil and Environmental Engineering and SCELSE’s Deputy Centre Director said, “The findings suggest that diets including single cell protein may help fish grow more uniformly, and exploring how this diet affects fish on a deeper level could be interesting for future research. More importantly, our study has successfully demonstrated the potential for converting soybean processing wastewater into a valuable resource for aquaculture feed, contributing to the transition to a circular bioeconomy.”

Co-principal investigator of the study, Dr Diana Chan, Head, Aquaculture Innovation Centre at Temasek Polytechnic said: “The results of our fish feeding performance trials are promising for the aquaculture industry, offering an alternative protein source to meet the increasing need to replace fishmeal which has become very costly and unsustainable in supply."

For their next steps, the research team will conduct trials over longer growth periods with higher fishmeal replacement levels. Researchers will also expand the study to include additional aquaculture species and different types of food processing wastewater.


The research team cultivated single cell protein from soybean processing wastewater. The cultivated protein was then used to replace half of the fishmeal protein in the diets of farmed Asian seabass.

NTU Singapore and Temasek Polytechnic scientists replace fishmeal in aquaculture with microbial protein derived from soybean processing wastewater (IMAGE)

NANYANG TECHNOLOGICAL UNIVERSITY

 

Experts call for global genetic warning system to combat the next pandemic and antimicrobial resistance



Scientists champion global genomic surveillance using latest technologies and a ‘One Health’ approach to protect against novel pathogens like avian influenza and antimicrobial resistance, catching epidemics before they start



FRONTIERS

Genomic surveillance can help control infectious diseases and antimicrobial resistance 

IMAGE: 

GENOMIC SURVEILLANCE CAN HELP CONTROL INFECTIOUS DISEASES AND ANTIMICROBIAL RESISTANCE

view more 

CREDIT: STRUELENS ET AL/FRONTIERS





The Covid-19 pandemic turned the world upside down. In fighting it, one of our most important weapons was genomic surveillance, based on whole genome sequencing, which collects all the genetic data of a given microorganism. This powerful technology tracked the spread and evolution of the virus, helping to guide public health responses and the development of vaccines and treatments.

But genomic surveillance could do much more to reduce the toll of disease and death worldwide than just protect us from Covid-19. Writing in Frontiers in Science, an international collective of clinical and public health microbiologists from the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) calls for investment in technology, capacity, expertise, and collaboration to put genomic surveillance of pathogens at the forefront of future pandemic preparedness. 

“Epidemic-prone infectious diseases cross borders as fast as people and trade goods travel around the world,” said lead author Prof Marc Struelens of the Université libre de Bruxelles, Belgium, and formerly Chief Microbiologist at the European Centre for Disease Prevention and Control (ECDC). “A local outbreak today may become the world’s next pandemic crisis tomorrow.”

A vital head start

Most illnesses not seen before in humans are zoonoses—diseases found in animals that infect humans. Many diseases in animals are also treated with antibiotics and other antimicrobials that are used for humans. However, the widespread use of antimicrobials in humans and animals has led to resistance, as microbes evolve to survive. So we face two major, overlapping public health threats: one from new infectious diseases that are zoonoses, and one from rising antimicrobial resistance. Tackling these threats requires a collaborative One Health approach—championed by the World Health Organization (WHO)—which recognizes that human health is dependent on the health of our ecosystem. 

The answer, the scientists say, is to repurpose the increased genomic surveillance technology and capacity brought by Covid-19 to act as sentinels. Genomic surveillance that brings together public health agencies, veterinarians, and doctors need to be used to monitor human and animal diseases and antimicrobial resistance. By integrating epidemiological and clinical data from all these fields, we can get a comprehensive picture of pathogens and the risks they pose. 

“Pathogen genomic surveillance is a tool that looks at the interplay between antimicrobial selective pressure on populations of microbes and the adaptive evolution of those microbes towards drug resistance,” said Struelens. “It lets us detect the emergence and disentangle the transmission dynamics of super-fit, multidrug-resistant epidemic clones—'superbugs’. Genomic surveillance can help track both zoonotic and inter-human transmission of viral variants, strains of bacteria, and signs of drug resistance.”

Rapid response

Real-time genomic surveillance of pathogens can allow us to quickly detect new strains of resistant bacteria and new diseases making the jump between humans and animals, and to monitor their spread and evolution. 

This information can inform vaccination campaigns, help design targeted treatments, and guide public health responses—all of which could help prevent epidemics from flaring up.

Monitoring whole genomes would also allow us to study new diseases and the evolution of known diseases in more depth, to gauge how dangerous they are and identify countermeasures. In a globalized world, where pathogens travel quickly, genomic surveillance would make it possible to diagnose and treat infections equally quickly. 

Struelens and his colleagues highlight how new sequencing technologies, including long-read genomic sequencing, ultra-rapid sequencing, and single-cell sequencing, and artificial intelligence are helping to drive progress in surveillance in some parts of the world.

“There are many places where genomic surveillance is already providing crucial protection against the spread of disease,” said Struelens. “This includes foodborne infections in Europe, North America, and Australia, and epidemic viral diseases like avian influenza across many countries worldwide.”

A connected world

To make genomic surveillance effective, the scientists say, we need worldwide, accessible, real-time data. To achieve this, we need massive investment in capacity and expertise that takes into account different levels of infrastructure and training available around the world. During the Covid-19 pandemic, countries that already had access to genomic surveillance expertise and equipment had a major advantage in monitoring the pandemic and tailoring their response.  The authors provide a framework for the equitable implementation of globally interconnected surveillance systems that include lower- and middle-income countries.

“The article by Struelens et al. is a must-read for anyone interested in genomic surveillance as part of epidemic preparedness,” said Prof Marion Koopmans from the Erasmus Medical Center in Rotterdam, Netherlands, in an accompanying editorial. “The tools and ambition are there—the next step is to build equitable, collaborative surveillance infrastructures for future global health. The proposed WHO ‘Pandemic Treaty’ will be key, defining some of the rules of international engagement for better preparedness. Interesting times ahead!”

We also urgently need to invest in collaboration, to build bridges between disciplines in animal health, human, and public health, and to liaise between countries and health agencies. This will be critical to ensure not just that stakeholders can work together but that we reach agreements over data management and regulation, so that patients’ data is anonymized and safeguarded. 

“To ensure universal participation in collaborative systems of genomic surveillance around the world, our critical challenges are sufficient laboratory and sequencing capacity, the training of an expert workforce, and access to validated genomic data analysis and sharing tools within a comprehensive, secure digital health information infrastructure,” said Struelens. “Integrating epidemic pathogen genomic information with epidemiological information must happen at scale, from the local to global level.”


Pandemic preparedness requires globally interconnected One Health surveillance systems 

Pandemic preparedness requires globally interconnected One Health surveillance systems

CREDIT

Please credit infographic to: Struelens et al/Frontiers