Wednesday, July 03, 2024

 

How dust pollution from shrinking Great Salt Lake affects communities disproportionately



Research highlights social justice implications of restoring the Utah lake



UNIVERSITY OF UTAH

Dust pollution from the Great Salt Lake playa 

VIDEO: 

THIS VIDEO, SHOT FROM UNIVERSITY OF UTAH CAMPUS, SHOWS A DUST STORM PASSING THROUGH SALT LAKE CITY ON MAY 17, 2023.

view more 

CREDIT: DEREK MALLIA, UNIVERSITY OF UTAH




New research from the University of Utah demonstrates how wind-carried dust from the exposed bed of Great Salt Lake is disproportionately affecting disadvantaged communities in the Salt Lake metro area.

The findings suggest restoring the lake to a healthy water level would reduce disparities in harmful dust exposure experienced by different racial/ethnic and socioeconomic groups, along with delivering other ecological and economic benefits.⁠

Exposure to particulate pollution arising from dry portions of the playa is highest among Pacific Islanders and Hispanics and lowest among white people compared to other racial/ethnic groups, according to the findings reported June 21 in the journal One Earth. It was also higher for individuals without a high school diploma. ⁠

This is likely because Salt Lake City’s lower-income neighborhoods are more likely to lie in the path of windblown dust from Great Salt Lake, which has shrunk to less than half its historical size, leaving about 800 square miles of lakebed exposed.

More than two decades of drought and unrelenting upstream diversions have contributed to the decline of the saline terminal lake located immediately west and north of Utah’s main population corridor along the Wasatch Front.

“People here in Utah are concerned about the lake for a variety of reasons—the ski industry, the brine shrimp, the migratory birds, recreation—and this study adds environmental justice and the equity implications of the drying lake to the conversation,” said lead author Sara Grineski, a professor of sociology and environmental studies.

Grineski led an interdisciplinary team of U faculty, largely associated with the Wilkes Center for Climate Science and Policy, from both the College of Social and Behavioral Science (CSBS) and the College of Science. Co-authors are Timothy Collins and Malcolm Araos (geography); John Lin, Derek Mallia and Kevin Perry (atmospheric sciences); and William Anderegg (biology).

The study analyzed data from the Utah Department of Environmental Quality’s air-quality monitoring network, which screens for fine particulate matter, or PM2.5. Comprised of ultra tiny particles that can penetrate lung tissue, this pollution is linked to myriad health problems, including cardiovascular disease and asthma.

During dust storms, current levels expose residents to 26 micrograms per cubic meter, or μg/m3, of PM2.5 on average, according to the study,  significantly higher than the World Health Organization’s threshold of 15 μg/m3. Were the lake to dry up completely, exposure could rise to 32 μg/m3, while restoring the lake could reduce exposure to 24 μg/m3 during these wind events, according to the study.

The study examined four such events in 2022 on April 19, 20 and 21 and May 7, when spikes of recorded PM2.5 coincided with high winds.

For the study, which was funded by the National Science Foundation, researcher Derek Mallia developed a model for predicting exposure levels for the three counties abutting the lake’s east and south shores—Salt Lake, Davis and Weber, home to 1.8 million residents—under four different lake level scenarios. It uses a weather model that simulates wind direction and speed, and includes a wind-blown dust model, which measures how much dust is emitted from an erodible surface, such as the Great Salt Lake playa, and is primarily based on the wind speed and soil texture and characteristics.

“We have to use weather models, since we cannot physically go out to the lake and remove/add water to see how much more/less dust it would emit,” Mallia said. “Models like the one that I developed let us run these hypothetical scenarios.”

The study’s scenarios range from a totally dry lake, to very low lake level, to current lake, to ‘healthy’ lake level designated as 4,200 feet above sea level. The lake’s South Arm currently sits at 4,194.4 feet, almost 6 feet higher than the historic low of 4,188.7 registered at the end of 2022.

According to the model, neighborhood disparities in exposure levels would increase when the lake level drops.

“We frame it the converse. Lake levels rise, overall levels of dust go down during the dust events and the gap, especially between Hispanic and Pacific Islander people, narrows with respect to the level of dust exposure for non-Hispanic white people,” Grineski said. “So if we can take better care of the lake, the dust for everyone goes down and the gap in exposure between these groups goes down too.”

Her team’s prior research has previously documented disparities of PM2.5 exposure generally in the Salt Lake Valley

“There is a really strong pattern of inequality with respect to race and ethnicity,” she added. “It’s sort of a hopeful finding that if we can raise the lake to a ‘healthy’ level we can at least with respect to lake dust we can reduce some of that inequality.”

Most dust from the playa is PM10, pollution comprised of much larger particles that are only measured at a few of Utah’s air quality monitoring stations. Without a robust PM10 monitoring network, researchers and regulators are deprived of a key data source that could give a more complete assessment of the lakebed dust threat, according to co-author Kevin Perry. He said the study points to the need for Utah to expand its network of PM10 monitors since windblown lakebed dust contains about six times more PM10 than PM2.5.

“We have to use the PM2.5 data because that’s the network that we have available. It’s not what I would design and not what I would like to do,” he said. “Because of the network being so sparse, I can’t even answer a really basic question, like how many dust events do we have a year that are impacting these communities. And that’s super frustrating.”

A professor of atmospheric science, Perry is known as “Dr. Dust” thanks to his tireless bicycle forays across the vast lakebed gathering sediment samples. These sediments were found to be contaminated with heavy metals in some places.

He noted that potentially harmful dust events typically occur in the spring and fall when cold fronts pass through the Wasatch Front.

“Before a cold front gets here, we have really strong winds from the south that will last for 12 or 18 hours,” Perry said. “And where’s it pushing that dust? It’s pushing it to Layton, Syracuse, Ogden, Brigham City where we have almost no PM10 monitors at all, and then the wind reverses and we’ll get three to four or five hours of stuff coming into Salt Lake Valley where we do have monitors.”

Because of its ability to infiltrate living tissue, PM2.5 is considered more harmful to human health than PM10, which is also classified as a criteria pollutant under the federal Clean Air Act.

The exposed bed of Great Salt Lake, which has shrunk to about half its historic size over the past two decades, has become a source of dust pollution impacting Utah's population centers.

CREDIT

Michael Werner, University of Utah

 

Researchers unlock ‘materials genome’, opening possibilities for next-generation design




UNIVERSITY OF SYDNEY
Simulated 2D atomic images from atom probe 

IMAGE: 

SIMULATED 2D ATOMIC IMAGES FROM ATOM PROBE 

view more 

CREDIT: UNIVERSITY OF SYDNEY




A new microscopy method has allowed researchers to detect tiny changes in the atomic-level architecture of crystalline materials – like advanced steels for ship hulls and custom silicon for electronics. The technique could advance our ability to understand the fundamental origins of materials properties and behaviour.

In a paper published today in Nature Materials, researchers from the University of Sydney’s School of Aerospace, Mechanical and Mechatronic Engineering introduced a new way to decode the atomic relationships within materials. 

The breakthrough could assist in the development of stronger and lighter alloys for the aerospace industry, new generation semiconductors for electronics, and improved magnets for electric motors. It could also enable the creation of sustainable, efficient and cost-effective products.

The study, led by University of Sydney Pro-Vice-Chancellor (Research Infrastructure) Professor Simon Ringer, harnessed the power of atom probe tomography (APT) to unlock the intricacies of short-range order (SRO). The SRO process is key to understanding the local atomic environments essential for development of innovative materials which could underpin a new generation of alloys and semiconductors. 

SRO is sometimes likened to the ‘materials genome’, the arrangement or configuration of atoms within a crystal. This is significant because different local atomic arrangements influence the electronic, magnetic, mechanical, optical, and other properties of materials, which have a bearing on the safety and functionality of a range of products.

Until now, SRO has been challenging for researchers to measure and quantify because atomic arrangements occur at a scale so small that they are difficult to see with conventional microscopy techniques.

The new method using APT, developed by Professor Ringer’s team, overcomes these challenges, paving the way for advances in materials science that could have far-reaching implications across steels for ship hulls and custom silicon for electronics in a range of industries.

"Our research presents a significant breakthrough in materials science," said Professor Ringer, a materials engineer in the School of Aerospace, Mechanical and Mechatronic Engineering (AMME).

"Beyond crystal structure and symmetry, we wanted to know more about the atomic-scale neighbourhood relationships within the crystal—are they random, or non-random? If the latter, we want to quantify that. SRO gives us this information in detail, opening up vast possibilities for materials that are custom-designed, atom-by-atom, with specificneighbourhood arrangements to achieve desired properties like strength."

The study focused on high entropy alloys, which are promising for various advanced engineering applications.

“These alloys are the subject of an enormous worldwide research effort because of the interest in using them in situations requiring high-temperature strength, such as in jet engines and power plants, as well as for neutron irradiation shielding in nuclear reactors, where protection against radiation damage is necessary,” said Professor Ringer. 

The team used advanced data science techniques drawing on data from APT —a sophisticated imaging technique that visualises atoms in 3D, allowing the team to observe and measure SRO, comparing how it changes in alloys under different processing conditions.

The research focused on observations of a cobalt-chromium-nickel high entropy alloy, revealing how different heat treatments can change SRO. 

“This provides a template for future studies in which SRO controls critical material properties. There is lots more to do on various aspects of the analysis of SRO—it’s a hard problem, but this is an important step forward,” said Professor Ringer.

Dr Mengwei He, postdoctoral research fellow in the School of Aerospace, Mechanical and Mechatronic Engineering said: 

"The ability to measure and understand short-range order has transformed our approach to materials design. It gives us a new set of eyes to see how small changes at the atomic level architecture can lead to giant leaps in materials performance."

Critically, the study enhances the capabilities of researchers to computationally simulate, model and ultimately predict materials behaviour because SRO provides the detailed atomic-scale blueprint.

Senior postdoctoral fellow Dr Andrew Breen said: “We have demonstrated that there are regimes where the SRO really can be measured using atom probe tomography.  Not only have we pioneered an experimental approach and computational framework to measuring SRO, we have produced a sensitivity analysis that bounds the precise range of circumstances whereby such measurements are valid, and where they are not valid.”

Dr Will Davids, who completed his doctorate with Professor Ringer and now works for engineering firm Infravue said: “This is an exciting advance because we’ve shown that SRO measurements are possible in multicomponent alloys, which will no doubt be of benefit to the materials science and engineering community. The community are now going to want to learn how to further expand the measurable regime of SRO, so a big space in this research field has just opened up.”

Disclosure

The research was supported by the Australia Research Council’s (ARC) Discovery Program. The team also acknowledge support from the Australia–US Multidisciplinary University Research Initiative (AUSMURI) program supported by the Australian Government. The team acknowledge technical and scientific support for experiments conducted at the following research facilities: Sydney Microscopy and Microanalysis (SMM), Sydney Analytical, Sydney Informatics Hub and Sydney Manufacturing Hub. SMM is a foundational node of Microscopy Australia, the NCRIS supported national microscopy facility. This research team are all members of the School of Aerospace, Mechanical and Mechatronic Engineering in the Faculty of Engineering, and are members of the Australian Centre for Microscopy & Microanalysis. A patent application by Professor Ringer is partly related to this work. 

The team’s research paper, ‘Quantifying short-range order using atom probe tomography’, is published in Nature Materials (DOI: https://www.nature.com/articles/s41563-024-01912-1). 

CONTACTS FOR MEDIA

For interviews with Professor Simon Ringer from the University of Sydney, contact Luisa Low on +61 438 021 390 or at luisa.low@sydney.edu.au

 

Huge study identifies suicide risk factors to improve preventions


In the largest study of its kind, scientists at the University of Warwick have investigated a range of contributing risk factors for suicide – helping to identify individuals who might benefit from interventions



UNIVERSITY OF WARWICK





In the largest study of its kind, scientists at the University of Warwick have investigated a range of contributing risk factors for suicide – helping to identify individuals who might benefit from interventions.

The behavioural and biological predictors, include elevated white blood cells, neuroticism, childhood experiences and reduced grey matter in the brain. Previous research had focussed on much smaller sample groups and on fewer risk factors – potentially overlooking some impactors.

It is hoped that the research will tackle the global challenge of suicide – a leading cause of deaths worldwide. According to the World Health Organisation, more than 700 000 people die from suicide every year.

The study also helps to identify individuals most at risk, who could be targeted for preventive treatments – such as those suffering mental distress and feelings of worthlessness – by GPs. By using data from more than 500,000 participants from the UK biobank, a population-based study cohort, its broader approach provides a wider understanding of risk factors, to contribute to more effective preventions.

The team used a variety of methods investigate suicidal risk factors, including brain scans, blood samples and questionnaires. This led to more than 400 behaviours (including smoking), biological factors (such as amount of grey matter in the brain), and genetics being investigated. A type of artificial intelligence known as machine learning was used to comprehensively analyse the huge dataset.

Factors which associated with suicide included suffering from mental distress, neuroticism, lower grey matter in the brain, size of the emotional regulation areas of the brain and increased white blood cells. The study highlighted how these vastly different influencers could contribute to suicidal behaviours.

Study author Professor Jianfeng Feng, Department of Computer Science, University of Warwick, said: “Our study developed a machine learning model based on behavioural factors. The top 16 predictors showed high accuracy in distinguishing individuals, both with and without suicide attempts. This may be useful in identifying people at high risk of suicide in the future.

“The top behavioural predictors, in addition to the few related to mental illness and depression, are childhood experiences and survivors of sexual assault. These factors provide potential actionable targets for clinicians to develop better prevention strategies.”

Co-Author Dr Bei Zhang, Fudan University, added: “Suicide is a major public health concern that arises from a complex interplay of various factors. While existing research has often focused on a narrow set of behavioural hypotheses often within small clinical samples, our study fills the gap by systematically assessing a broad range of risk factors for suicide attempts in large, community-based samples. By identifying and understanding these factors, we hope to improve predictive models, better identify those at risk, and inform more effective prevention and intervention strategies, ultimately reducing the global burden of suicide.”

Professor Barbara Sahakian from the University of Cambridge commented, "Suicide is a tragic loss of life, but it also leaves family and friends devastated. By identifying key risk factors for suicide, this study brings us closer to understanding how we might identify vulnerable individuals and intervene to save lives."

For future research, the team emphasised the need for a similar determination of the risk factors for suicide in adolescents, especially as suicide in adolescence is on the increase.

Read the study here: https://www.nature.com/articles/s41562-024-01903-xLink opens in a new window


Notes to Editors

The University of Warwick signed a Memorandum of Understanding with Fudan University in 2022 and the two Universities work together designing and developing new research projects and run staff and student exchanges.

The UK Biobank is a population-based cohort comprising over 500,000 participants in the United Kingdom aged between 37 and 73 years and recruited between 2006 and 2010 (http://www.ukbiobank.ac.uk).
 

 

RecombinHunt: predicting new pandemics through data analysis



POLITECNICO DI MILANO





Milan, July 2, 2024 - Combating future pandemics through data analysis of recombinant virus genomes. A study published in the prestigious journal Nature Communication presents the promising results of RecombinHunt, a new data-driven method developed by the Department of Electronics, Information and Bioengineering of the Politecnico di Milano and the University of Milan, which can identify, with high accuracy and computational efficiency, recombinant SARS-CoV-2 genomes with one or two breakpoints.

Recombination, that is, the composition of two or more viral genomes to form a new genome, is an efficient molecular mechanism for virus evolution and adaptation.

Exploiting the incentive of the COVID-19 pandemic, several methods have been proposed to detect recombinant genomes of SARS-CoV-2 virus; however, so far, none has been able to faithfully confirm the manual analyses of experts in the field.

ReconbinHunt shows high specificity and sensitivity, is more effective than all other methods already developed, and faithfully confirms manual expert analyses.

The method, developed under the PRIN PNRR 2022, SENSIBLE project (Small-data Early warNing System for viral pathogens In puBLic hEalth), also identifies recombinant viral genomes from the recent monkeypox epidemic with high concordance with analyses manually curated by experts, suggesting that the approach is robust and can be applied to any epidemic or pandemic virus, representing an important tool to combat future pandemics.

Prof. Stefano Ceri notes that "the research was possible thanks to the extraordinary contribution of laboratories from all over the world, which made more than 15 million viral sequences available to the international community." Dr. Anna Bernasconi, SENSIBLE project leader, notes, "Our goal is to build warning tools to anticipate and combat new viral epidemics and pandemics."

"The study demonstrates how the development of innovative and efficient computational methods allows us to more accurately and rigorously appreciate the evolution of pathogens, and any implications for human health," adds Prof. Matteo Chiara, professor of Molecular Biology at the University of Milan and co-leader of the SENSIBLE project.

A main contribution to the study was given by Dr. Tommaso Alfonsi, who recently earned a doctorate "cum laude" in Information Engineering, presenting this and other timely research.

 

HKUST identifies novel host factors that facilitates SARS-CoV-2 entry


Paving new therapeutic strategies for COVID-19



HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Prof. GUO Yusong (center) and his research team at HKUST 

IMAGE: 

PROF. GUO YUSONG (CENTER) AND HIS RESEARCH TEAM AT HKUST

view more 

CREDIT: HKUST



A research team led by Prof. GUO Yusong, Associate Professor of the Division of Life Science at the Hong Kong University of Science and Technology (HKUST), recently made a novel discovery related to the coronavirus (SARS-CoV-2) that causes COVID-19. The team identified new host factors that interact with the receptor binding domain of the SARS-CoV-2 spike protein to promote viral entry. This finding offers valuable mechanistic insights and potential therapeutic strategies against SARS-CoV-2 infection.

It is generally believed that SARS-CoV-2 enters host cells through the interaction between its spike protein's receptor-binding domain (CoV2-RBD) and the host cell receptor ACE2, facilitating viral invasion. However, most evidence is based on the overexpression of ACE2 to promote viral entry, with few studies conducted on whether completely knocking out ACE2 inhibits viral entry. To address this, the HKUST research team, led by Prof. Guo, in collaboration with research teams from the University of Hong Kong (HKU) and the Hong Kong Polytechnic University (PolyU), has identified other novel surface-located host factors, apart from ACE2, that also bind to CoV2-RBD using the GST pull-down method.

The experiment demonstrates that among the factors, one in particular called SH3BP4, regulates the internalization of CoV2-RBD and mediates the entry of SARS-CoV-2 pseudovirus in a manner that is dependent on integrins and the clathrin, but not on ACE2, implying that SH3BP4 promotes viral entry via the endocytic pathway. Many identified factors, including SH3BP4, ADAM9, and TMEM2, show a stronger affinity for CoV2-RBD compared to the RBD of the less infectious SARS-CoV, indicating their specific usage for SARS-CoV-2.  Moreover, this study uncovers factors that preferentially bind to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry.

“These findings identify novel host cell surface factors involved in the invasion of SARS-CoV-2 and highlight the crucial role of integrins in mediating viral internalization, establishing new research foundations for treating COVID-19,” Prof. Guo said.

The study was recently published in the international academic journal, Journal of Biological Chemistry. The research team also consists of Prof. CHEN Honglin from Department of Microbiology at HKU; and Prof. YAO Zhongping, from Department of Applied Biology and Chemical Technology at PolyU; and their team members.

A model demonstrating how SARS-CoV-2 gains entry into host cells

CREDIT

HKUSTJOURNAL

ARACHNOLOGY

Invasive brown widow spiders host novel bacteria related to chlamydia




BEN-GURION UNIVERSITY OF THE NEGEV





SDE BOKER, Israel, July 2, 2024 – Invasive brown widow spiders across three continents were highly infected with a single strain of Rhabdochlamydia, a bacterium that is related to major pathogens of humans and animals, including chlamydia. A bite from these spiders, however, will not infect people with chlamydia. Up until now, Rhabdochlamydia was found in only a few organisms – a tick, an isopod, a cockroach, and one other spider – and even then, was a rare occurrence in all these organisms.

Dr. Monica Mowery and colleagues at Ben-Gurion University of the Negev compared microbial communities in populations of brown widow spiders collected in South Africa (the likely native range of the spider) and invasive populations in Israel and the United States. The overwhelmingly predominant bacteria, Rhabdochlamydia, was found in 86% of spiders surveyed. It was also found in the female spider’s eggs, indicating that mother spiders transmit the bacteria to their offspring.

“Our results suggest that this dominant, widely prevalent chlamydial bacteria has an important role in the invasive brown widow spider,” explained Dr. Monica Mowery, an assistant professor at the City University of New York and a former post-doctoral researcher at BGU.

The study was published recently in Scientific Reports.

Characterizing potentially important and widespread bacterial symbionts is a step towards understanding their relevance to ecological interactions and responses to rapid environmental changes. The high prevalence of Rhabdochlamydia in all spider populations tested suggests it may have an important functional role and could contribute to the spider’s invasion success.

The brown widow spider, Latrodectus geometricus, is an urban invasive species that outcompetes native spider species found in warm climates worldwide. These spiders have neurotoxic venom and can be dangerous to young children and the elderly.

Microbial associates can influence a species’ invasive spread and success in a new environment and can shift or be lost during the invasion process. The South African brown widow spiders had overall more distinct strains of bacteria compared to newer arrivals in Israel, where brown widows were first found in Tel Aviv in 1980 and in the United States, where spiders expanded from southern Florida in the 2000s. This higher microbial diversity supports the idea that the invasive brown widow spider originated in southern Africa.

Additional researchers included Prof. Yael Lubin and Prof. Michal Segoli from Ben-Gurion University of the Negev, Prof. Jennifer White, Dr. Eric Chapman, and Laura Rosenwald from the University of Kentucky, Thembile Khoza from the South African National Biodiversity Institute, and Robin Lyle from the Agricultural Research Council, South Africa.

Funding was provided by a Zuckerman STEM Postdoctoral fellowship to Dr. Monica Mowery and by a National Science Foundation grant to Prof. Jennifer White.