Sunday, August 18, 2024

 

Rethinking the dodo


Review of 400 years of scientific literature corrects the record on icon of extinction


Peer-Reviewed Publication

University of Southampton

Dr Neil Gostling with palaeoartist Karen Fawcett’s Dodo sculpture. 

image: 

Dr Neil Gostling with palaeoartist Karen Fawcett’s Dodo sculpture.

view more 

Credit: University of Southampton




Review of 400 years of scientific literature corrects the record on icon of extinction

Researchers are setting out to challenge our misconceptions about the Dodo, one of the most well-known but poorly understood species of bird.

In a paper published today [16 August 2024] in the Zoological Journal of the Linnean Society researchers from the University of Southampton, Natural History Museum (NHM) and Oxford University Museum of Natural History have undertaken the most comprehensive review of the taxonomy of the Dodo and its closest relative, the Rodriguez Island Solitaire.  

They’ve painstakingly gone through 400 years’ worth of scientific literature and visited collections around the UK to ensure this iconic species, embodying humanity’s destructive potential, is correctly classified.

“The Dodo was the first living thing that was recorded as being present and then disappeared,” says Dr Neil Gostling from the University of Southampton, supervising author of the paper. “Before this, it hadn’t been thought possible for human beings to influence God’s creation in such a way.

“This was a time before the scientific principles and systems we rely on to label and classify a species were in place. Both the Dodo and the Solitaire were gone before we had a chance to understand what we were looking at.”

Correcting the record

Much of what was written about the Dodo and the Solitaire was based on accounts from Dutch sailors, representations by artists, and incomplete remains.

The lack of a definitive reference point (type specimen) or convention to label species (zoological nomenclature) led to a series of misidentifications in the centuries following their extinction. New species such as the Nazarene Dodo, the White Dodo, and the White Solitaire were named, but the paper confirms that none of these creatures existed. Still, these erroneous ‘pebbles’ sent ripples through the waters of zoological literature.

“By the 18th and early 19th centuries, the Dodo and the Solitaire were considered to be mythological beasts,” says Dr Mark Young, lead author of the paper from the University of Southampton. “It was the hard work of Victorian-era scientists who finally proved that the Dodo and the Solitaire were not mythological but were giant ground doves.”

“Unfortunately, no one could agree how many species there had been,” continues Dr Young. “Throughout most of the 19th and 20th centuries, researchers thought there were three different species, although some people thought there had been four or even five different species.”

To unpick this confusion, researchers went through all the literature on the Dodo and Rodriguez Solitaire encompassing hundreds of accounts dating back to 1598 and visited specimens around the UK, including the world’s only surviving soft tissue from the Dodo, in the Oxford Museum.

“More has been written about the Dodo than any other bird, yet virtually nothing is known about it in life,” says Dr Julian Hume, an avian palaeontologist at the Natural History Museum and coauthor of the paper.

“Based on centuries of nomenclatural confusion, and some 400 years after its extinction, the Dodo and Solitaire, continue to prompt heated debate. We’ve gone from where the first statements were made, seen how these have developed, and identified various rabbit holes to correct the record, as best we can.”

Through this work, researchers were able to confirm that both birds were members of the columbid (pigeon and dove) family.

“Understanding its wider relationships with other pigeons is of taxonomic importance, but from the perspective of conservation, the loss of the dodo and the solitaire a few decades later means a unique branch of the pigeon family tree was lost,” says Dr Gostling. “There are no other birds alive today like these two species of giant ground dove.”

Challenging our misconceptions

The researchers believe the popular idea of the Dodo as a fat, slow animal, predestined for extinction is flawed.

“Even four centuries later, we have so much to learn about these remarkable birds,” says Dr Young. “Was the Dodo really the dumb, slow animal we’ve been brought up to believe it was? The few written accounts of live Dodos say it was a fast-moving animal that loved the forest.”

Dr Gostling adds: “Evidence from bone specimens suggests that the Dodo’s tendon which closed its toes was exceptionally powerful, analogous to climbing and running birds alive today. The dodo was almost certainly a very active, very fast animal.

“These creatures were perfectly adapted to their environment, but the islands they lived on lacked mammalian predators. So, when humans arrived, bringing rats, cats, and pigs, the Dodo and the Solitaire never stood a chance.

“Dodos held an integral place in their ecosystems. If we understand them, we might be able to support ecosystem recovery in Mauritius, perhaps starting to undo the damage that began with the arrival of humans nearly half a millennium ago.”

Learning ‘valuable lessons’

The study marks the beginning of a wider project to understand the biology of these iconic animals.

"The mystery of the Dodo bird is about to be cracked wide open," says Dr Markus Heller, Professor of Biomechanics at the University of Southampton, a coauthor on the paper.

"We have assembled a fantastic team of scientists to uncover the true nature of this famous extinct bird. But we are not just looking back in time - our research could help save today's endangered birds too."

Dr Heller explains: "Using cutting-edge computer technology, we are piecing together how the Dodo lived and moved. This isn't just about satisfying our curiosity. By understanding how birds evolved in the past, we are learning valuable lessons that could help protect bird species today."

"It's like solving a 300-year-old puzzle, and the solution might just help us prevent more birds from going the way of the Dodo."

The project will include work with palaeoartist Karen Fawcett, who has created a detailed, life-size model of the Dodo to bring the words on the pages of books and journal articles to life. She says: “This work has been the merging of science and art to achieve accuracy and realism so that these creatures come back from the dead, real and tangible for people to touch and see.”

The work is supported by the University of Southampton’s Institute for Life Sciences.  The Institute Director, Professor Max Crispin, says: “The Institute was delighted to support this exciting work which exemplifies Southampton’s strength in interdisciplinary research and advanced scholarship.”

The systematics and nomenclature of the Dodo and the Solitaire (Aves: Columbidae), and an overview of columbid family-group nomina is published in Zoological Journal of the Linnean Society.

Ends

Contact

Steve Williams, Media Manager, University of Southampton, press@soton.ac.uk or 023 8059 3212.

Notes for editors

  1. The systematics and nomenclature of the Dodo and the Solitaire (Aves: Columbidae), and an overview of columbid family-group nomina is published in Zoological Journal of the Linnean Society. An advanced copy of the paper is available on request.
  2. For Interviews with Dr Neil Gostling, Dr Mark Young and palaeoartist Karen Fawcett please contact Steve Williams, Media Manager, University of Southampton press@soton.ac.uk or 023 8059 3212.
  3. Images available to download here: https://safesend.soton.ac.uk/pickup?claimID=HZrZoxsxfXNXpsbX&claimPasscode=qKyNnCMyC5rMvZEu
      1. DSC00006, DSC00007, DSC00010 - Dr Neil Gostling with palaeoartist Karen Fawcett’s Dodo sculpture.
      2. DSC00017, DSC00018, DSC00019 - Palaeoartist Karen Fawcett’s Dodo sculpture. Please credit Karen Fawcett.
      3. Dodo dry forest scene shows the habitat in which the dodo lived along with other species native to Mauritius. Please credit Julian Pender Hume.
      4. Solitaire shows a life reconstruction of the Solitaire of Rodrigues. Please credit Julian Pender Hume.
      5. Dodo extinction factors shows the instruments of the Dodo’s demise, human’s habitat loss, cats and pigs as predators. Please credit Julian Pender Hume.
      6. Solitaire territory shows the habitat on the island of Rodrigues with Solitaires amongst the vegetation. Please credit Julian Pender Hume.
  4. Audio snippets of Dr Neil Gostling discussing the research available here: https://safesend.soton.ac.uk/pickup?claimID=xZUa7m4Hsj4oawnB&claimPasscode=MA5MR7GMRoGzVCAD&emailAddr=187784


Additional information

The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world’s challenges. We are among the top 100 institutions globally (QS World University Rankings 2023). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 22,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. www.southampton.ac.uk

www.southampton.ac.uk/news/contact-press-team.page

Follow us on X: https://twitter.com/UoSMedia

 

Numerous manufacturers use insecure android kernels



In an analysis of smartphones of ten manufacturers, researchers at TU Graz have found that the Android kernels used are vulnerable to known attacks – so-called one-day exploits – despite existing protection mechanisms.



Graz University of Technology

The kernels of many Android smartphones are not as secure as they could be. 

image: 

The kernels of many Android smartphones are not as secure as they could be.

view more 

Credit: Lunghammer - TU Graz




Smartphones are a constant companion and important work tool for many people. In addition to contacts, appointments and emails, the devices are increasingly being used for sensitive tasks such as online banking or official matters. This increases the safety requirements. As Lukas Maar, Florian Draschbacher, Lukas Lamster and Stefan Mangard from the Institute of Applied Information Processing and Communications at Graz University of Technology (TU Graz) have discovered in a comprehensive analysis of the Android kernels of the ten largest and most well-known smartphone manufacturers, there are numerous flaws here that allow one-day exploits using already known attack methods. The researchers presented their findings on 15 August at the Usenix Security Symposium in Philadelphia, USA.

Depending on the manufacturer and model, only between 29 and 55 per cent of the 994 smartphones tested by the research team were able to prevent attacks. In contrast, the Generic Kernel Image (GKI) version 6.1 provided by Google would be able to prevent around 85 per cent of attacks. Compared to the GKI, the manufacturer kernels performed up to 4.6 times worse in defending against attacks. The research team analysed devices from these manufacturers that came onto the market between 2018 and 2023 (listing from the most secure to the least secure): Google, Realme, OnePlus, Xiaomi, Vivo, Samsung, Motorola, Huawei, Oppo und Fairphone. The Android versions used on these smartphones ranged from versions 9 to 14, while the kernels covered the range from versions 3.10 to 6.1, with manufacturers who rely on lower kernel versions also offering less security.

Effective defence mechanisms rarely activated

Another key point of the analysis is that there are already effective defences for a number of the known attack methods, but they are either rarely activated in the manufacturers’ kernels or the kernels are configured incorrectly. As a result, even kernel version 3.1 from 2014 with all security measures activated could provide better protection against known attacks than around 38 per cent of the kernels configured by the manufacturers themselves. The researchers also found that manufacturers’ low-end models were around 24 per cent more at risk than high-end models. One important reason for this is the loss of performance that additional security measures can cause, which is why they are often deactivated in low-end models to conserve resources.

“We hope that our results will help to ensure that more effective security measures can be found in manufacturers’ kernels in the future, making Android more secure,” says Lukas Maar. “We also shared our analysis with the manufacturers investigated and Google, Fairphone, Motorola, Huawei and Samsung have taken note – some have even released patches. We have also suggested that Google update the Android Compatibility Definition Document (CDD), which sets out the framework of requirements for devices to be compatible with Android. Google itself has emphasised that it is aware of the problem and wants to strengthen the integration of kernel security measures step by step. However, it is up to the manufacturers whether they want to sacrifice performance for this.”

This project was funded by the Austrian Research Promotion Agency (FFG) as part of the SEIZE project and is part of the Field of Expertise “Information, Communication & Computing”, one of the five strategic focus areas at TU Graz.

 

Exploring options for the sustainable management of phosphorus



International Institute for Applied Systems Analysis





Focusing on Sweden, a new IIASA study assessed the feasibility of recovering phosphorus from municipal wastewater as an alternative sustainable source of this non-renewable mineral.

Phosphorus is an essential mineral present in many everyday foods and crucial for human health. It is also a critical nutrient for plants, making it a key ingredient in the production of fertilizers. Acquired primarily through mining and processing of phosphate rock, phosphorus is a finite non-renewable resource, and scientists predict that its uneven distribution around the world, as well as growing global food demand, might result in higher prices of fertilizers in the near future. This highlights an urgent need to improve the efficiency of its use.

Previous studies show that recovering phosphorus from municipal wastewater can provide an alternative sustainable source of this mineral, as nearly 98% of the phosphorus consumed by humans in urban areas ends up in sewage sludge. Currently, the most common practice for sewage sludge management in Europe is land application. This practice, which involves spreading treated sewage sludge onto land to improve soil properties and provide nutrients for crops, is becoming increasingly controversial. Sludge often contains both valuable resources and harmful substances, so land application of sludge can introduce both phosphorus and potentially hazardous contaminants into the soil. Effective recovery methods could help to minimize the environmental impacts, promoting healthier water systems and biodiversity.

In their study, former IIASA Young Scientists Summer Program (YSSP) participant, Marzieh Bagheri, and colleagues from IIASA evaluated various phosphorus recovery technologies, their costs, and greenhouse gas emissions to identify economically viable strategies for phosphorus recovery from municipal wastewater.

The study examines different scenarios, including phosphorus recovery technologies in individual plants and hubs, as well as different sludge management strategies including land application, incineration, and hydrochar production under current market conditions. Sweden was selected as the case study, primarily due to its reliance on land application of sewage sludge and potential legislative shifts favoring extraction methods.

“Our study assesses the economic viability of phosphorus recovery in Swedish municipal wastewater treatment plants and identifies the potential challenges that could be encountered as part of this process. We also proposed tailored solutions to those challenges for municipal wastewater treatment plant operators and provided recommendations for guiding future policies to help develop supportive regulations for phosphorus recovery,” explains Bagheri.

The prevalence of smaller, widespread municipal wastewater treatment plants in Sweden has been pinpointed as a central obstacle, creating substantial economic and logistical hurdles that discourage investments in phosphorus recovery.

The researchers discovered that the economic viability of phosphorus recovery varies significantly between individual plants and strategies. Individual plants face high recovery costs, making the recovery less profitable without subsidies. In contrast, hub strategies, which involve collaboration among multiple plants, can reduce costs. In addition, the authors highlight that developing hub networks and converting sludge into marketable products can generate revenue and offset disposal costs, reducing overall management expenses.

The findings of the study emphasize the crucial role of external factors, such as regulatory mandates or long-term increase of fertilizer prices, in making phosphorus recovery economically viable. On the other hand, the authors point out that policies promoting specific phosphorus recovery technologies risk hindering adaptability to diverse conditions, potentially prioritizing high-infrastructure investments and overlooking more sustainable solutions. They also emphasize that comprehensive environmental impact assessments for each recovery technology are required to avoid unintended increases in emissions.

“Phosphorus is essential for food production and the efficient recovery of this mineral from wastewater would help to ensure a sustainable supply, as well as reduce reliance on finite resources, while supporting food security,” notes Adriana Gomez Sanabria, a researcher in the IIASA Pollution Management Research Group. “Understanding phosphorus recovery economics is vital for informed investments. Cost-effective methods and collaborative approaches could play a major role in enhancing financial sustainability and supporting the circular economy by recycling waste into valuable resources.”

Reference:

Bagheri, M., Gómez-Sanabria, A., Höglund-Isaksson, L., (2024) Economic feasibility and direct greenhouse gas emissions from different phosphorus recovery methods in Swedish wastewater treatment plants. Sustainable Production and Consumption, 49, 10.1016/j.spc.2024.07.007. (In Press) [https://pure.iiasa.ac.at/19885]

 

Transforming satellite imagery: innovative fusion method for precision agriculture




Journal of Remote Sensing
Flowchart of StarFusion. 

image: 

Flowchart of StarFusion.

view more 

Credit: Journal of Remote Sensing





Researchers have introduced StarFusion, a cutting-edge spatiotemporal fusion method that significantly improves the temporal resolution and fusion accuracy of high-resolution satellite imagery in agriculture. By fusing data from China's Gaofen-1 and Europe's Sentinel-2 satellites, StarFusion addresses the common problem of infrequent imaging due to long revisit periods and cloud cover interference from high-resolution satellites, which often hinders the effectiveness of high-resolution remote sensing in dynamic agricultural environments. By integrating deep learning with traditional regression models, the method enhances both spatial detail and temporal resolution, making it an invaluable tool for more effective crop monitoring and management.

Remote sensing plays a vital role in monitoring agricultural landscapes, yet current satellite sensors often struggle with the trade-off between spatial and temporal resolution. High spatial resolution images, while detailed, are often limited by infrequent captures and cloud interference, reducing their utility in rapidly changing environments. Conversely, images with better temporal resolution lack the necessary spatial detail for precise analysis. These challenges underscore the need for advanced fusion methods that can better serve agricultural applications.

A team from the State Key Laboratory of Remote Sensing Science at Beijing Normal University, in collaboration with other institutions, has developed StarFusion, a new spatiotemporal fusion method. Published (DOI: 10.34133/remotesensing.0159) on July 22, 2024, in the Journal of Remote Sensing, the study combines deep learning and traditional regression techniques to address the limitations of current fusion methods. StarFusion effectively merges high-resolution Gaofen-1 data with medium-resolution Sentinel-2 data, resulting in significantly enhanced imagery for agricultural monitoring.

StarFusion represents an innovative approach to spatiotemporal image fusion, blending the strengths of deep learning and traditional regression models. By integrating a super-resolution generative adversarial network (SRGAN) with a partial least squares regression (PLSR) model, StarFusion achieves high fusion accuracy while preserving fine spatial details. The method effectively manages challenges like spatial heterogeneity and limited cloud-free image availability, making it highly practical for real-world agricultural applications. Extensive testing across various agricultural sites has shown that StarFusion outperforms existing techniques, particularly in maintaining spatial detail and enhancing temporal resolution. Its capability to function with minimal cloud-free data sets it apart, providing a reliable solution for crop monitoring in regions plagued by frequent cloud cover.

"StarFusion represents an valuable attempt in remote sensing technology for agriculture," said Professor Jin Chen, the study's lead author. "Its ability to generate high-quality images with improved temporal resolution will greatly enhance precision agriculture and environmental monitoring."

StarFusion offers significant advantages for digital agriculture, providing high-resolution imagery essential for detailed crop monitoring, yield prediction, and disaster assessment. Its ability to produce accurate images despite cloud cover and limited data availability makes it particularly valuable for agricultural management in regions with challenging weather conditions. As this technology evolves, StarFusion is expected to play a crucial role in advancing agricultural productivity and sustainability.

###

References

DOI

10.34133/remotesensing.0159

Original Source URL

https://spj.science.org/doi/10.34133/remotesensing.0159

Funding information

This study was supported by High-Resolution Earth Observation System (09-Y30F01-9001-20/22).

About Journal of Remote Sensing

The Journal of Remote Sensingan online-only Open Access journal published in association with AIR-CAS, promotes the theory, science, and technology of remote sensing, as well as interdisciplinary research within earth and information science.

 

PolyU researchers invent intelligent soft robotic clothing for automatic thermal adaptation in extreme heat



The Hong Kong Polytechnic University
PolyU researchers invent intelligent soft robotic clothing for automatic thermal adaptation in extreme heat 

image: 

PolyU researchers invent intelligent soft robotic clothing for automatic thermal adaptation in extreme heat

view more 

Credit: © 2024 Research and Innovation Office, The Hong Kong Polytechnic University. All Rights Reserved.




As global warming intensifies, people increasingly suffer from extreme heat. For those working in a high-temperature environment indoors or outdoors, keeping thermally comfortable becomes particularly crucial. A team led by Dr Dahua SHOU, Limin Endowed Young Scholar in Advanced Textiles Technologies and Associate Professor of the School of Fashion and Textiles of The Hong Kong Polytechnic University (PolyU) has developed first-of-its-kind thermally-insulated and breathable soft robotic clothing that can automatically adapt to changing ambient temperatures, thereby helping to ensure worker safety in hot environments. Their research findings have been published in the international interdisciplinary journal Advanced Science.

Maintaining a constant body temperature is one of the most critical requirements for living and working. High-temperature environments elevate energy consumption, leading to increased heat stress, thus exacerbating chronic conditions such as cardiovascular disease, diabetes, mental health issues and asthma, while also increasing the risk of infectious disease transmission. According to the World Health Organisation, globally, there were approximately 489,000 heat-related deaths annually between 2000 and 2019, with 45% occurring in Asia and 36% in Europe.

Thermal protective clothing is essential to safeguard individuals in extreme high-temperature environments, such as firefighters who need to be present at fires scenes and construction workers who work outdoors for extended periods. However, traditional gear has been limited by statically fixed thermal resistance, which can lead to overheating and discomfort in moderate conditions, while its heat insulation may not offer sufficient protection in extreme fire events and other high-temperature environments. To address this issue, Dr Shou and his team have developed intelligent soft robotic clothing for automatic temperature adaptation and thermal insulation in hot environments, offering superior personal protection and thermal comfort across a range of temperatures.

Their research was inspired by biomimicry in nature, like the adaptive thermal regulation mechanism in pigeons, which is mainly based on structural changes. Pigeons use their feathers to trap a layer of air surrounding their skin to reduce heat loss to the environment. When the temperature drops, they fluff up their feathers to trap a significant amount of still air, thereby increasing thermal resistance and retaining warmth.

The protective clothing developed by the team uses soft robotic textile for dynamic adaptive thermal management. Soft actuators, designed like a human network-patterned exoskeleton and encapsulating a non-toxic, non-flammable, low-boiling-point fluid, were strategically embedded within the clothing. This thermo-stimulated system turns the fluid from a liquid into a gas when the ambient temperature rises, causing expansion of soft actuators and thickening the textile matrix, thereby enhancing the gap of still air and doubling the thermal resistance from 0.23 to 0.48 Km²/W. The protective clothing can also keep the inner surface temperatures at least 10°C cooler than conventional heat-resistant clothing, even when the outer surface reaches 120°C.

This unique soft robotic textile, made by thermoplastic polyurethane, is soft, resilient and durable. Notably, it is far more skin-friendly and conformable than temperature-responsive clothing embedded with shape-memory alloys and is adjustable for a wide range of protective clothing. The soft actuators have exhibited no signs of leakage after undergoing rigorous standard washing tests. The porous, spaced knitting structure of the material can also significantly reduce convective heat transfer while maintaining high moisture breathability. Not relying on thermoelectric chips or circulatory liquid cooling systems for cooling or heat conduction, the light-weighted, soft robotic clothing can effectively regulate temperature itself without any energy consumption.

Dr Shou said, “Wearing heavy firefighting gear can feel extremely stifling. When firefighters exit a fire scene and remove their gear, they are sometimes drained nearly a pound of sweat from their boots. This has motivated me to develop a novel suit capable of adapting to various environmental temperatures while maintaining excellent breathability. Our soft robotic clothing can seamlessly adapt to different seasons and climates, multiple working and living conditions, and transitions between indoor and outdoor environments to help users experience constant thermal comfort under intense heat.”

Looking forward, Dr Shou finds the innovation to have a wide range of potential applications, from activewear, winter jackets, healthcare apparel and outdoor gear, to sustainable textile-based insulation for construction and buildings, contributing to energy-saving efforts. Supported by the Innovation and Technology Commission and the Hong Kong Research Institute of Textiles and Apparel, Dr Shou and his team have also extended the thermo-adaptive concept to develop inflatable, breathable jackets and warm clothing. This soft robotic clothing is suitable for low-temperature environments or sudden temperature drops to aid those who are stranded in the wilderness to maintain normal body temperature.

Design concept of thermally adaptive soft robotic textiles. a) Under normal conditions, the SRT's slim profile and reduced thermal resistance facilitate the transfer of heat and moisture away from the skin. b) Upon exposure to a fire environment, the SRT activates to provide enhanced thermal protection maintaining lightness and breathability. Specifically, outside fire events, SRT layers deflate for low thermal resistance; when activated in a fire scenario, the layers separate, creating an insulating air gap that impedes heat transfer. c) Illustration of the SRT featuring a flame-resistant outer layer, a breathable moisture barrier, a knitted thermal liner, and an STA filled with a low boiling point fluid. d) Construction specifics of the knitted thermal liner with embedded STAs. e) Phase transition of a low boiling point fluid within the STA, characterized by significant volume change: in ambient temperatures, the fluid remains in a liquid state; as temperatures rise, the fluid vaporizes, and then reverts into a liquid upon cooling.

Thermoadaptation of STA embedded in a customized knitted fabric. a,b) Illustrations of the knitted thermal liner (240 mm × 340 mm) featuring a connecting clasp (width:15 mm) and a channel (width:60 mm) for STA. c) The STA within the knitted thermal liner depicted in a fully deflated state, exhibiting minimal thickness. d) The STA encapsulated in the knitted thermal liner shown in a fully inflated state, achieving maximal thickness. e) Comparison of thermal and moisture resistance between traditional liners and present SRTs. f) Cross-sectional views of the SRT in the fully deflated and fully inflated states. g) Images of the SRT in its initial, inactive state progressing to the fully activated state. h) Schematic representation of an SRT-based firefighter garment exposed to radiant heat. i) Side view of the garment in its initial state. j) Side view of the garment once thermally activated.

Credit

© 2024 Research and Innovation Office, The Hong Kong Polytechnic University. All Rights Reserved