STILL SCIENCE FICTION
Tokamak Energy Announces Triple Product on the Path to Commercial Fusion Energy – Presented at the American Physical Society Plasma Physics Conference
Tokamak Energy today announces that its ST40 spherical tokamak has achieved a triple product¹ result of 6×1018 keV.s.m-3. This result was achieved earlier this year at a plasma temperature of 100 million degrees Celsius, the threshold required for commercial fusion energy, in a spherical tokamak with a plasma volume of less than one cubic meter; 15 times less volume than any other tokamak which has achieved this temperature.
The triple product achieved is the highest by a private fusion energy company. Triple product¹ is a widely recognised fusion industry measure of plasma density, temperature and confinement, collectively a key measure of progress in the path to realising commercial fusion conditions. The company has been invited to present the results today at the 64th Annual Meeting of the American Physical Society’s Division of Plasma Physics in Washington, USA.
Chris Kelsall, CEO of Tokamak Energy said: “High performance in smaller spherical tokamaks is the key to commercial fusion power. Our latest achievement further substantiates this optimal route to clean, secure, low cost, scalable and globally deployable commercial fusion energy. We are proud to have achieved this result in collaboration with the Princeton and Oak Ridge National Laboratories.”
The ST40 spherical tokamak is now undergoing an upgrade and will further develop operational experience and efficient technologies for future devices which the company will be announcing soon.
NOTE
¹triple product (nTš¯¯‰E) Any device that is going to make fusion energy a commercial reality requires a plasma (an ionized gas of charged particles / hydrogen nuclei) with a high triple product. nTš¯¯‰E is a widely recognized measure of progress towards commercial fusion. There are three plasma conditions that must be met simultaneously:
- Temperature – is the device capable of heating the plasma so that the particles move fast enough to fuse with each other when they collide?
- Density – can the device contain a dense enough plasma so that plenty of collisions occur?
- Confinement – can the device keep the charged particles within the plasma for long enough to sustain the fusion reaction?
No comments:
Post a Comment