Sunday, May 17, 2020


Four species of Elvis worm identified on the deep sea floor

by Bob Yirka , Phys.org 

MAY 15, 2020 REPORT

Credit: ZooKeys (2020). DOI: 10.3897/zookeys.932.48532

A team of researchers from the University of California and CNRS-Sorbonne Université has identified four species of deep-sea worms that until now have been referred to as Elvis worms. In their paper published in the journal ZooKeys, the group describes the worms, how they were named, and some odd behavior they managed to capture on video.


The researchers described the worms as a few among many that they have been collecting from the seabed over a period of years. Known officially as scale worms, the team had taken to describing them collectively as Elvis worms because their iridescent plated covered shells reminded them of Elvis's sequined jumpsuits. It was only recently that they used genetics to distinguish between four of the most common. In so doing, they formally identified four species: Peinaleopolynoe goffrediae, P. mineoi, P. orphanage and P. elvisi—the first was named in honor of a noted marine biologist, the second after the father of one of the researchers, the man who paid for the research effort, the third was named for a noted geobiologist and the fourth for the famous singer. All four live on the seafloor at depths of 3,000 feet. Several specimens of each species were collected from the bottom of the ocean using a remotely operated vehicle, allowing the team to study the worms in their lab. In the wild, the worms tend to gather around dead whale carcasses or other organic matter as a source of food.

The researchers noted that the worms live in water that is too deep for light to penetrate, thus, other creatures that may live down there with them would not be able to see their shiny, purple, blue and pink iridescent shells, nor would they be able to see each other—they have no eyes. This raises the question of why have a colorful shell. The researchers were not able to answer that question, but suggest that there may be specialty bioluminescent creatures that seek them out. They also note that they were puzzled by notches on the worms' shells until they captured video of two of them fighting, which included dancing jigs in-between dashing over to take a bite out of an opponent's shell.



Explore further  Your sushi may serve up parasitic worms

More information: Avery S. Hatch et al. Hungry scale worms: Phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species, ZooKeys (2020). DOI: 10.3897/zookeys.932.48532

Journal information: ZooKeys


© 2020 Science X Network

Virus 'eminently capable' of spreading through speech: study






LANGUAGE IS A VIRUS

SARS-CoV-2 AKA 2019-nCoV DNA CODE
This scanning electron microscope image shows SARS-CoV-2 (yellow)—also known as 2019-nCoV, the virus that causes COVID-19—isolated from a patient, emerging from the surface of cells (blue/pink) cultured in the lab. Credit: NIAID-RML

Microdroplets generated by speech can remain suspended in the air in an enclosed space for more than ten minutes, a study published Wednesday showed, underscoring their likely role in spreading COVID-19.



Researchers at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) had a person loudly repeat the phrase "Stay healthy" for 25 seconds inside a closed box.

A laser projected into the box illuminated droplets, allowing them to be seen and counted.

They stayed in the air for an average of 12 minutes, the study published in the journal Proceedings of the National Academy of Sciences (PNAS) showed.

Taking into account the known concentration of coronavirus in saliva, scientists estimated that each minute of loudly speaking can generate more than 1,000 virus-containing droplets capable of remaining airborne for eight minutes or more in a closed space.

"This direct visualization demonstrates how normal speech generates airborne droplets that can remain suspended for tens of minutes or longer and are eminently capable of transmitting disease in confined spaces," the researchers conclude.

The same team had observed that speaking less loudly generates fewer droplets, in a work published in the New England Journal of Medicine in April.

If the level of infectiousness of COVID-19 through speech can be confirmed, it could give a scientific boost to recommendations in many countries to wear a face mask, and help explain the virus's rapid spread.


Explore further

Study finds breathing and talking contribute to COVID-19 spread

More information: Valentyn Stadnytskyi et al. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.2006874117


Journal information: Proceedings of the National Academy of Sciences , New England Journal of Medicine

© 2020 AFP


AFTER CORONAVIRUS PANDEMIC WE WILL ALL SPEAK IN SIGN LANGUAGE 
May 10, 2018 - BSL and American Sign Language are not even in the same language ... 250 certified sign language interpreters, and between 1.8 million and ...

Continuously active surface disinfectants may provide additional barrier against the spread of viruses



A technician is pictured in 2018 applying Allied BioScience's first generation antimicrobial coating product
A technician is pictured in 2018 applying Allied BioScience's first generation antimicrobial coating product
In the battle to slow or prevent the transmission of viruses, such as the novel coronavirus, continuously active disinfectants could provide a new line of defense, according to a recent University of Arizona study released on the health sciences preprint server MedRxiv.

While disinfecting high-contact surfaces is an important practice to prevent the spread of pathogens, these surfaces can be easily re-contaminated after the use of conventional surface disinfectants. Alternatively, continuously active disinfectants work to actively kill microorganisms and provide continued protection over an extended period of time.
"During the course of respiratory illnesses such as COVID-19, aerosols released during sneezing and coughing contain  that will eventually settle onto various surfaces," said Luisa Ikner, associate research professor in the Department of Environmental Science and lead author of the study. "Factors including temperature, humidity and surface type can affect how long viruses such as SARS-CoV-2 will remain infectious after surface deposition."
"The only tools we have currently in reducing the environmental spread of viruses via surfaces are hand sanitizer, hand washing and the disinfection of surfaces," said Charles Gerba, a microbiologist and professor of environmental science in the College of Agriculture and Life Sciences. "This technology creates a new barrier in controlling the spread of viruses in indoor environments."
Gerba and his research team designed and conducted the study—which was funded by Allied BioScience, a company that manufactures antimicrobial surface coatings—to evaluate continuously active antimicrobial technology and its potential use against the transmission of viruses.
"We evaluated this technology by testing a modified antimicrobial coating against the human coronavirus 229E, which is one of the viruses that causes the common cold," Gerba said. "Even two weeks after the coating was applied, it was capable of killing more than 99.9% of the coronaviruses within two hours."
Human coronavirus 229E is similar in structure and genetics to SARS-CoV-2 but causes only mild respiratory symptoms. It can therefore be safely used as a model for SARS-CoV-2 to evaluate antiviral chemistries. The results from these experiments may provide new opportunities for controlling the environmental transmission of COVID-19.
"The standard practice of surface disinfection using liquid-based chemistries according to product label instructions can render many viruses—including the coronaviruses—noninfectious," Ikner said. "In contrast, high-touch surfaces treated with continuously active disinfectants are hostile environments to infectious viruses upon contact and demonstrate increasing effectiveness over time."
Continuously active disinfectant technology has been around for almost a decade but has been focused primarily on controlling hospital-acquired bacterial infections, such as invasive methicillin-resistant Staphylococcus aureus, or MRSA.
UArizona researchers from the Mel and Enid Zuckerman College of Public Health investigated the impact of antimicrobial surface coatings in reducing health care-associated infections in two urban hospitals. The results of that study were published in October and found a 36% reduction in hospital-acquired infections with the use of a continually active antimicrobial.
"As communities are reopening after weeks of stay-at-home restrictions, there is significant interest in minimizing surface contamination and the indirect spread of viruses," Gerba said.
Previous research on the environmental spread of viruses through contaminated surfaces modeled the spread of germs and the risk of infection in an office workplace. In that study, a contaminated push-plate door at the entrance of an office building led to the contamination of 51% of commonly touched surfaces and 38% of office workers' hands within just four hours. With the use of disinfecting wipes, environmental contamination was reduced to 5% of surfaces and 11% of workers' hands.
"Antimicrobial coatings could provide an additional means of protection, reducing the spread of coronaviruses in indoor environments and public places where there is continuous contamination," Gerba said. "We're evaluating a number of products right now and believe it may be the next major breakthrough.

I HAVE POSTED ANOTHER VERSION OF THIS EARLIER IN MY BLOG FROM ANOTHER SOURCE



WHAT IS DARK ENERGY? PHYSICISTS AREN'T EVEN SURE

15-Minute Listen Download Transcript


MADDIE SOFIA, HOST:
Hey, Maddie Sofia here with a quick note ahead of today's show. We know that there are a lot of things people need right now, and information is one of them. Today is Giving Tuesday Now, which makes it a great day to support public radio's mission to keep you informed. And when you donate to a local NPR station, you're making all the news and information that you rely on from this podcast available to everyone free of charge. To help us do that, visit donate.npr.org/short. Thanks.
(SOUNDBITE OF MUSIC)
SOFIA: You're listening to SHORT WAVE...
(SOUNDBITE OF MUSIC)
SOFIA: ...From NPR.
Going out into nature - hiking, paddling, looking up at the stars - has always helped me center myself. It reminds me that I'm just Madeline Kelly (ph) Sofia, one human among millions of critters and trees and galaxies that don't care about me or acknowledge me at all. I'm just a group of random atoms - matter taking up space. And it turns out that matter as we normally think of it is a tiny, tiny portion of the universe, meaning your genes, the ocean, trees, computers, all the stars and planets - all of that is only 5% of the universe.
SARAFINA NANCE: And the rest of the stuff is dark matter and dark energy.
SOFIA: Right, which is wild. That's so much. (Laughter) That's so much of it. That's too much of it. Honestly, it's too much.
NANCE: (Laughter) Yeah. It's like a very uncomfortable place to be in when you think about - oh, you know, we study the universe, and theoretically we understand, you know, on some scale, how the universe works. And then all of a sudden, you're like - oh, wait; we actually do not understand, like, over 95% of our universe. What?
SOFIA: The large majority of our universe is made up of this mysterious thing called - I kid you not - dark energy.
(SOUNDBITE OF MUSIC)
SOFIA: And get this - it's how we know that our universe is expanding. I learned about dark energy, honestly, like, three weeks ago. And it blew my mind.
NANCE: Dark energy is intrinsic to the fabric of space-time that is somehow pushing galaxies apart.
SOFIA: This is Sarafina Nance's day job.
NANCE: I am a Ph.D. student at UC Berkeley studying supernova and cosmology.
SOFIA: Supernova, meaning an exploding star that can help us understand how our universe is changing. You know, no big deal.
NANCE: It's a really phenomenal thing in sort of the scale of the universe to see something change. And that's this class of astronomy called transience, where things change in the night sky and you can learn about them through their changes.
(SOUNDBITE OF MUSIC)
SOFIA: So today we explore one of the universe's biggest mysteries - dark energy - from the days of Einstein to the exploding stars that help us understand the very fabric of our universe.
(SOUNDBITE OF MUSIC)
SOFIA: So. OK, Sarafina, to really understand dark energy, we have to go back to Einstein. Right?
NANCE: Yeah. So Einstein came up with this theory of general relativity, which is basically his version of gravity, in the early 1900s. And the only way to make his equations work and satisfy what he thought was a static universe, he introduced this fudge factor - in his words - called the cosmological constant.
SOFIA: So Einstein actually thought that the universe was static, not that it was expanding.
NANCE: That's right. And over the next 10 years, people sort of manipulated these equations and tried to find solutions and started hinting at perhaps the universe wasn't static.
(SOUNDBITE OF MUSIC)
SOFIA: Well, it's nice to see that, you know, Einstein can get things wrong. That's cool.
NANCE: (Laughter) So the funny thing is this cosmological constant, he called it his biggest blunder.
SOFIA: Honestly, it's just nice to hear Einstein say I messed up, you know what I mean?
NANCE: I know. Well, the fun fact...
SOFIA: We can all mess up.
NANCE: The fun fact is that he ended up actually being right.
SOFIA: Right (laughter). Dang it.
NANCE: So it turns out that that cosmological constant is exactly what we think dark energy is...
SOFIA: (Laughter).
NANCE: ...And is necessary to actually describe our universe.
SOFIA: I feel like that's classic Einstein. Him being wrong...
NANCE: Yep.
SOFIA: ...Is being more right than I've ever been in my entire life.
NANCE: Exactly. Yes (laughter).
SOFIA: OK. So after Einstein introduces this idea that the universe is static, we figure out, actually, that the universe is expanding. Right?
NANCE: Yeah. So in 1929, Edwin Hubble showed that the universe is not static; it's actually expanding. So what he did is he measured, basically, galaxies and how far away they are. And he found that galaxies are actually moving away from us. So that means that the universe is not static. It's, in fact, expanding.
SOFIA: And at this point, we think that the universe is expanding but that that expansion is slowing down. Is that correct?
NANCE: Exactly. So we think that the expansion comes from the Big Bang and it comes from inflation, which was right after the Big Bang, which is this rapid expansion of space. But because there's gravity in the universe and there's mass in the universe, we would think that gravity starts to take over and the expansion decelerates because gravity starts to pull things back in.
SOFIA: And then in the late '90s, we get turned on our head again, right? There's another big discovery. And we're like - oh, wait, wait wait...
NANCE: (Laughter).
SOFIA: ...Maybe she's not slowing down.
NANCE: That's right. So in 1998 and in 1999, there were two teams that were studying a specific type of supernova. And they found that these supernova that were super far away from us were fainter than what we would have expected if the universe was in fact expanding but decelerating that expansion. And the only way to explain away that faintness is if the universe was instead accelerating its expansion.
SOFIA: Wild. So we went from, the universe is static - OK, it's not static; it's expanding, but it's slowing down that expansion to - wait, wait, wait - not only is it expanding but it's expanding faster than we thought it was and it's speeding up. And what...
NANCE: That's right.
SOFIA: And the explanation for that is dark energy?
NANCE: You killed it. That's right.
SOFIA: I nailed it. OK. So yes, we have finally gotten to the point where I can ask you - Sarafina, what is dark energy? (Laughter).
NANCE: So I think the only answer to that question is we don't know.
SOFIA: Oh, come on, Sarafina. You brought me all the way here. You told me Einstein's story, and we don't know.
NANCE: I know. It's really uncomfortable to sit with.
(LAUGHTER)
NANCE: We can see dark energy through its effects on the expansion of the universe, but we don't actually know what it is.
SOFIA: Wow. I don't even know - I don't even know what to say about that. That's - so - 'cause it's wild. We don't know what dark energy is, but we know it exists.
NANCE: Yes.
SOFIA: And - so what are you doing over there, astronomers?
NANCE: (Laughter).
SOFIA: This is what we've got - 4% to 5%? No, I'm just teasing you. So that - I mean, that's wild. And the amount of dark energy is staying the same, right?
NANCE: So that's an interesting question. So I like to kind of describe dark energy and the expansion of the universe in - the way that I think about it is sort of picture a loaf of bread and picture a bunch of raisins in the bread. And the raisins are like our universe's galaxies. And the bread itself is like space-time.
SOFIA: OK.
NANCE: And so as you bake the bread, the bread rises and the raisins get farther and farther apart. They're sort of carried along the fabric of space-time, which means that the distance between galaxies increases with time.
SOFIA: OK. I'm with you. I'm with you.
NANCE: And the introduction of dark energy is like - imagine you have this special type of yeast that you can put into a bread and the bread starts to rise with yeast. And then all of a sudden, it starts to rise a lot, and it gets bigger and bigger and bigger over time. And that's dark energy.
SOFIA: So dark energy is the weird yeast that causes...
NANCE: Exactly.
SOFIA: ...Our universe to grow and push our galaxies farther and farther apart from each other.
NANCE: Exactly. And it causes it to grow exponentially.
SOFIA: Well, I totally get it now.
NANCE: (Laughter) Great. We'll...
SOFIA: Now that we put...
NANCE: We'll publish a paper.
SOFIA: Now that we started talking about carbs, I'm starting to understand.
NANCE: (Laughter).
SOFIA: OK. OK. So we actually figured a lot of this out by studying a particular type of exploding star - a supernova.
NANCE: Right.
SOFIA: Tell me about that.
NANCE: So when dark energy was first basically discovered, it was discovered through a specific type of supernova that forms when you have a binary system of a really big star or a really small star and another small star, which is called a white dwarf. And basically, the white dwarf accretes matter from the companion star - the binary star - and ignites an explosion. And the really interesting thing about this particular type of supernova is that all of them blow up with the same brightness.
(SOUNDBITE OF MUSIC)
NANCE: And that makes them what we call standard candles. So if you can imagine a lightbulb and you have a lightbulb right next to you and you have a lightbulb a hundred feet away from you, the one that's right next to you seems to be way brighter. And the one that's farther away from you is way fainter. And so by using the intrinsic brightness of the sort of lightbulb or, in the universe, of the supernova and comparing it to what is observed, we can determine the distance to the supernova and determine how fast that galaxy that hosts the supernova is expanding away from us.
(SOUNDBITE OF MUSIC)
SOFIA: Wild. That's wild. That's your job.
NANCE: Yes, it's really cool.
SOFIA: I mean, it's very cool. That is very cool. OK. So basically studying these supernovae help us understand how fast the universe is expanding because we can kind of try to calculate how far those explode-y stars are away from us. Is that fair?
NANCE: Yeah, that's exactly right.
SOFIA: OK. And tell me if I'm overselling this, but all of this potentially gives us clues into how the universe could end.
NANCE: That's exactly right.
SOFIA: So what is our best guess as far as, like, how the universe could end?
NANCE: So right now, we think that dark energy stays constant with time, which means that the universe is going to continue to accelerate its expansion. Distances between galaxies are going to get further and further apart with time. And so it's going to accelerate forever, and it's going to be a cold, dark universe.
SOFIA: I mean, that sounds about right to me, you know?
NANCE: (Laughter) You know, it's kind of where we're at right now.
(LAUGHTER)
SOFIA: So what's the coolest thing about all of this to you, Sarafina? Because this is objectively very cool.
NANCE: Well, thanks. I love it. I think it kind of goes back to what drew me to astronomy in the first place, which is we are trying to understand some of the most fundamental aspects of our universe and human existence. And we can derive some sort of meaning about, you know - how did we get here? what is the fate of the universe? how does that change with time? - and learn some really profound things about what it means to exist here.
(SOUNDBITE OF MUSIC)
SOFIA: Sarafina Nance studies supernova and cosmology at UC Berkeley.
This episode was produced by Rebecca Ramirez, edited by Geoff Brumfiel and was fact-checked by Emily Vaughn I'm Maddie Sofia, and we are all in awe of our universe. Thanks for listening to SHORT WAVE from NPR. See you tomorrow.
(SOUNDBITE OF MUSIC)
Copyright © 2020 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.
NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.

SEE 
https://plawiuk.blogspot.com/search?q=DARK+ENERGY
https://plawiuk.blogspot.com/search?q=ETHER
https://plawiuk.blogspot.com/search?q=DARK+MATTER




The supernova that keeps on giving

Illustration by Sandbox Studio, Chicago
04/28/20
By Shannon Hall

Supernova 1987A, the closest supernova observed with modern technology, excited the world more than 30 years ago—and it remains an intriguing subject of study even today.

Astronomer Robert Kirshner didn’t believe the news. It was early one morning in February 1987 and a colleague was recounting an unthinkable rumor: A star had exploded in a galaxy next door.

If it were a prank, it wouldn’t be the first time, so Kirshner wasn’t alone in his skepticism. “It was so unexpected and outrageous that I think for a few hours, we discounted it,” says Stan Woosley, an astronomer at UC Santa Cruz. “But then the messages kept pouring in from all over the world. It was clear that it was real and our lives were all going to change.”

Although astronomers now spot thousands of supernovae every year, an explosion close enough to be seen with the unaided eye is still a rare event. In fact, the cosmic explosion—dubbed SN1987A or just 87A for short—remains the closest supernova that has been seen in nearly four centuries. Its proximity, plus the use of modern technology, allowed astronomers across the globe to catch an incredible show—one that continues today.

Supernovae change the fate of entire galaxies, altering the chemical make-up of the interstellar medium and prompting the formation of new stars. They have even had quite an effect on you; the calcium in your bones, the oxygen you breathe and the iron in your hemoglobin were all elements originally unleashed in these massive stellar explosions.

We know this now. Before 1987, however, much of our understanding of supernovae was based solely on theory. So astronomers around the world scrambled to observe the live event.

The Russian space station literally rocked back and forth to catch gamma-rays from the explosion. NASA looked for gamma-rays as well, launching high-altitude balloons from Australia to observe them. The Japanese satellite GINGA successfully detected X-rays. Observatories in South Africa, Chile and Australia kept track of the supernova’s light curve. And huge underground detectors in Japan, the United States and Russia detected subatomic particles known as neutrinos.

“It was a big party, a worldwide party, and stayed that way all year long,” Woosley says.

But it didn’t end there. Nearly any time a new observatory has come online over the last 33 years, it has swiveled toward the dying explosion. “All the instruments of modern astronomy have been used, by and large,” says Adam Burrows from Princeton University. “There isn't any class of instrumentation that hasn't been employed to study 87A.”
Early insights

A type II supernova erupts when a heavyweight star runs out of fuel and can no longer support itself against gravity. The bulk of the star comes crashing down toward its core, forcing it to collapse into one of the densest astrophysical objects known, a neutron star. A neutron star squeezes a few solar masses’ worth of star into an orb the size of a city. Meanwhile, the onrush of gas from the rest of the star rebounds against that core, sending a shock wave back toward the surface, which ultimately tears the star apart.

At least that was the theory. If true, the action would release a huge stream of particles called neutrinos. And because they would pass through the bulk of the star unimpeded, they would arrive at Earth even before the explosion could be seen as a blast of light. (In fact scientists now think that it’s not the bounce that blows up the star, but the neutrinos.)


Illustration by Sandbox Studio, Chicago

To check, scientists began poring over data from the Kamiokande II neutrino detector in Japan as soon as they heard about the eruption. It was painstaking work, but after a few days they spotted nearly a dozen neutrinos that had arrived a few hours before the flash of light—a Nobel Prize-winning discovery that confirmed a neutron star had formed within the blast. “It was the best time so far in my life,” says Masayuki Nakahata, who as a graduate student helped make the detection.

In total, the Kamiokande II detector in Japan counted 11 neutrinos, the IMB facility in Ohio reported eight and the Baksan Neutrino Observatory in Russia reported five more. Neutrino detectors haven’t seen so many particles at once since.

But while the observation of neutrinos confirmed theories, the observation of the type of star that went supernova went against them. Before SN1987A, textbooks asserted that only puffy red stars known as red supergiants could end their lives in such an explosion. But when scientists peered through past images of the location of the supernova, they found that 87A’s progenitor was a hotter and more compact blue supergiant.

Astronomers were baffled until the Hubble Space Telescope was launched in 1990. Its early images revealed what other telescopes had only hinted at: a thin ring of glowing gas that encircled the dying ember that 87A left behind, with two fainter rings above and below. These were clues that the star had dumped a lot of gas into space tens of thousands of years before it exploded. A previous outburst, likely from a red supergiant, could have whittled the star down to expose its hotter, bluer innards. Or perhaps two stars had collided together; this would have shed a lot of gas and left behind a hot mess.
An ongoing event

To this day, astronomers continue to pivot the Hubble Space Telescope toward SN1987A nearly every year—and for good reason. As the ejecta from the explosion continue to expand outward, they slam into the surrounding medium, lighting up previously unseen material that was emitted in winds before the supernova eruption. “We see something new every time we take an image,” says Josefin Larsson from the KTH Royal Institute of Technology in Sweden.

They’re not the only ones. The Atacama Large Millimeter/submillimeter Array (ALMA) in Chile recently claimed to have spotted telltale evidence of the “missing” neutron star.

Although the detection of neutrinos indicated that a neutron star had formed within the embers, there was one major snag: Scientists have yet to actually spot the star itself. That’s a problem, given that the neutron star should finally be visible—unless of course there is too much dust surrounding the explosion. “It’s like trying to observe something through a Sahara Desert storm,” Woosley says.

Finally, there is a hint that the neutron star is there. Using ALMA, Phil Cigan, an astronomer from Cardiff University in the United Kingdom, and his colleagues spotted a small bright patch—affectionally dubbed “the blob”—within the dust of 87A consistent with where scientists predicted the neutron star should be.

They’re not calling the case closed, though; without being able to see the star directly, no one can prove that the supernova had the predicted effect. “It’s only tantalizing,” Burrows says. “We have to watch for a much longer time to see what’s left emerge.”

One hypothesis suggests that perhaps a neutron star formed but that it was only short-lived. If more material rained down in the aftermath of the explosion, the star could have gained so much weight that it collapsed further to form a black hole. “Suppose that happened, let’s say, in five days after the explosion,” says Kirshner, who is still at Harvard University and also works full-time as head of science philanthropy for the Gordon and Betty Moore Foundation. “I don’t think we would have any way to know whether that was true or not.”

Mikako Matsuura, an astronomer who worked on the ALMA observations at Cardiff, agrees that we cannot exclude this hypothesis. But Woosley says he doubts it, arguing that the most natural time to make a black hole would have been within seconds—a hypothesis that’s discounted by the length of the neutrino arrival.

Whether or not the supernova created a neutron star is “the biggest remaining question in 1987A right now,” Burrows says. And that means that observations won’t stop anytime soon, he says. “It has been a moveable feast—and continues to be.”

Astronomers hope it’s just a taste of what’s to come. Supernovae likely erupt every 50 years in a galaxy like ours, yet one hasn’t been seen since 1604 (SN1987A was not actually in our galaxy; it was nearby). “We feel as if we’re due for one,” Kirshner says.

It’s an exciting prospect, given the number of new observatories that have come online in recent years or are scheduled to begin operation soon. The James Webb Space Telescope would be able to image a supernova in the infrared. Radio telescopes like the upcoming Square Kilometer Array in South Africa and ALMA would collect radio waves. The Athena X-ray observatory, which is scheduled to be launched by the European Space Agency in the early 2030s, would image the energetic emission from the supernova. Gravitational wave facilities such as LIGO in North America, Virgo in Europe and KAGRA in Asia would detect ripples in space-time from such a supernova. Neutrino facilities such as IceCube at the South Pole, the NOvA detector (and an even larger upcoming project, the DUNE detector) in the United States, and the Super-Kamiokande detector (and an even larger upcoming project, the Hyper-Kamiokande detector) in Japan would be much more sensitive to the influx of neutrinos.

Nakahata, who owes his career to 87A and today works as a neutrino physicist, notes that the Hyper-Kamiokande detector alone would be able to witness tens of thousands of the particles in such an instance, a major upgrade from Kamiokande II’s previous record of 11. That would allow scientists to pin down further details behind the neutron star, like how much energy it might emit and the mass of the star itself. While the Hyper-Kamiokande detector would primarily be sensitive to antimatter particles—antineutrinos—the DUNE detector is complementary in that it would primarily be sensitive to matter particles—neutrinos. And additional observations from other detectors across the spectrum would provide even further insights.

“We should be treated to an incredible show,” Burrows says. “It would dwarf 87A in importance.”