Thursday, July 13, 2023

AI

How an “AI-tocracy” emerges

In China, the use of AI-driven facial recognition helps the regime repress dissent while enhancing the technology, researchers report

Peer-Reviewed Publication

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



CAMBRIDGE, MA -- Many scholars, analysts, and other observers have suggested that resistance to innovation is an Achilles’ heel of authoritarian regimes. Such governments can fail to keep up with technological changes that help their opponents; they may also, by stifling rights, inhibit innovative economic activity and weaken the long-term condition of the country. 

But a new study co-led by an MIT professor suggests something quite different. In China, the research finds, the government has increasingly deployed AI-driven facial-recognition technology to suppress dissent; has been successful at limiting protest; and in the process, has spurred the development of better AI-based facial-recognition tools and other forms of software.

“What we found is that in regions of China where there is more unrest, that leads to greater government procurement of facial-recognition AI, subsequently, by local government units such as municipal police departments,” says MIT economist Martin Beraja, who is co-author of a new paper detailing the findings. 

What follows, as the paper notes, is that “AI innovation entrenches the regime, and the regime’s investment in AI for political control stimulates further frontier innovation.”

The scholars call this state of affairs an “AI-tocracy,” describing the connected cycle in which increased deployment of the AI-driven technology quells dissent while also boosting the country’s innovation capacity.

The open-access paper, also called “AI-tocracy,” appears in the August issue of the Quarterly Journal of Economics. An abstract of the uncorrected proof was first posted online in March. The co-authors are Beraja, who is the Pentti Kouri Career Development Associate Professor of Economics at MIT; Andrew Kao, a doctoral candidate in economics at Harvard University; David Yang, a professor of economics at Harvard; and Noam Yuchtman, a professor of management at the London School of Economics. 

To conduct the study, the scholars drew on multiple kinds of evidence spanning much of the last decade. To catalogue instances of political unrest in China, they used data from the Global Database of Events, Language, and Tone (GDELT) Project, which records news feeds globally. The team turned up 9,267 incidents of unrest between 2014 and 2020. 

The researchers then examined records of almost 3 million procurementcontracts issued by the Chinese government between 2013 and 2019, from a database maintained by China’s Ministry of Finance. They found that local governments’ procurement of facial-recognition AI services and complementary public security tools — high-resolution video cameras — jumped significantly in the quarter following an episode of public unrest in that area.

Given that Chinese government officials were clearly responding to public dissent activities by ramping up on facial-recognition technology, the researchers then examined a follow-up question: Did this approach work to suppress dissent?

The scholars believe that it did, although as they note in the paper, they “cannot directly estimate the effect” of the technology on political unrest. But as one way of getting at that question, they studied the relationship between weather and political unrest in different areas of China. Certain weather conditions are conducive to political unrest. But in prefectures in China that had already invested heavily in facial-recognition technology, such weather conditions are less conducive to unrest compared to prefectures that had not made the same investments. 

In so doing, the researchers also accounted for issues such as whether or not greater relative wealth levels in some areas might have produced larger investments in AI-driven technologies regardless of protest patterns. However, the scholars still reached the same conclusion: Facial-recognition technology was being deployed in response to past protests, and then reducing further protest levels. 

“It suggests that the technology is effective in chilling unrest,” Beraja says. 

Finally, the research team studied the effects of increased AI demand on China’s technology sector and found the government’s greater use of facial-recognition tools appears to be driving the country’s tech sector forward. For instance, firms that are granted procurement contracts for facial-recognition technologies subsequently produce about 49 percent more software products in the two years after gaining the government contract than they had beforehand. 

“We examine if this leads to greater innovation by facial-recognition AI firms, and indeed it does,” Beraja says.

Such data — from China’s Ministry of Industry and Information Technology — also indicates that AI-driven tools are not necessarily “crowding out” other kinds of high-tech innovation.

Adding it all up, the case of China indicates how autocratic governments can potentially reach a near-equilibrium state in which their political power is enhanced, rather than upended, when they harness technological advances.

“In this age of AI, when the technologies not only generate growth but are also technologies of repression, they can be very useful” to authoritarian regimes, Beraja says. 

The finding also bears on larger questions about forms of government and economic growth. A significant body of scholarly research shows that rights-granting democratic institutions do generate greater economic growth over time, in part by creating better conditions for technological innovation. Beraja notes that the current study does not contradict those earlier findings, but in examining the effects of AI in use, it does identify one avenue through which authoritarian governments can generate more growth than they otherwise would have. 

“This may lead to cases where more autocratic institutions develop side by side with growth,” Beraja adds. 

Other experts in the societal applications of AI say the paper makes a valuable contribution to the field. 

“This is an excellent and important paper that improves our understanding of the interaction between technology, economic success, and political power,” says Avi Goldfarb, the Rotman Chair in Artificial Intelligence and Healthcare and a professor of marketing at the Rotman School of Management at the University of Toronto. “The paper documents a positive feedback loop between the use of AI facial-recognition technology to monitor suppress local unrest in China and the development and training of AI models. This paper is pioneering research in AI and political economy. As AI diffuses, I expect this research area to grow in importance.”

For their part, the scholars are continuing to work on related aspects of this issue. One forthcoming paper of theirs examines the extent to which China is exporting advanced facial-recognition technologies around the world — highlighting a mechanism through which government repression could grow globally.

###    

Support for the research was provided in part by the U.S. National Science Foundation Graduate Research Fellowship Program; the Harvard Data Science Initiative; and the British Academy’s Global Professorships program.

 

 

Could AI-powered robot “companions” combat human loneliness?


Companion robots may help socially isolated people avoid the health risks of being alone

Peer-Reviewed Publication

DUKE UNIVERSITY

AUKLAND, NZ and DURHAM, N.C. – Companion robots enhanced with artificial intelligence may one day help alleviate the loneliness epidemic, suggests a new report from researchers at Auckland, Duke, and Cornell Universities.

Their report, appearing in the July 12 issue of Science Robotics, maps some of the ethical considerations for governments, policy makers, technologists, and clinicians, and urges stakeholders to come together to rapidly develop guidelines for trust, agency, engagement, and real-world efficacy.

It also proposes a new way to measure whether a companion robot is helping someone.

“Right now, all the evidence points to having a real friend as the best solution,” said Murali Doraiswamy, MBBS, FRCP, professor of Psychiatry and Geriatrics at Duke University and member of the Duke Institute for Brain Sciences. “But until society prioritizes social connectedness and eldercare, robots are a solution for the millions of isolated people who have no other solutions.”

The number of Americans with no close friends has quadrupled since 1990, according to the Survey Center on American Life. Increased loneliness and social isolation may affect a third of the world population, and come with serious health consequences, such as increased risk for mental illness, obesity, dementia, and early death. Loneliness may even be as pernicious a health factor as smoking cigarettes, according to the U.S. Surgeon General Vivek H. Murthy, M.D.

While it is increasingly difficult to make new friends as an adult to help offset loneliness, making a companion robot to support socially isolated older adults may prove to be a promising solution.

“AI presents exciting opportunities to give companion robots greater skills to build social connection,” said Elizabeth Broadbent, Ph.D., professor of Psychological Medicine at Waipapa Taumata Rau, University of Auckland. “But we need to be careful to build in rules to ensure they are moral and trustworthy.”

Social robots like the ElliQ have had thousands of interactions with human users, nearly half related to simple companionship, including company over a cup of tea or coffee. A growing body of research on companion robots suggests they can reduce stress and loneliness and can help older people remain healthy and active in their homes.

Newer robots embedded with advanced AI programs may foster stronger social connections with humans than earlier generations of robots. Generative AI like ChatGPT, which is based on large language models, allows robots to engage in more spontaneous conversations, and even mimic the voices of old friends and loved ones who have passed away.

Doctors are mostly on board, too, the authors point out. A Sermo survey of 307 care providers across Europe and the United States showed that 69% of physicians agreed that social robots could provide companionship, relieve isolation, and potentially improve patients’ mental health. Seventy percent of doctors also felt insurance companies should cover the cost of companion robots if they prove to be effective friendship supplement. How to measure a robot’s impact, though, remains tricky.

This lack of measurability highlights the need to develop patient-rated outcome measures, such as the one being developed by the authors. The “Companion Robot Impact Scale” (Co-Bot-I-7) aims to establish the impact on physical health and loneliness, and is showing that companion machines might already be proving effective.

Early results from Broadbent’s lab, for example, find that amiable androids help reduce stress and even promote skin healing after a minor wound.

“With the right ethical guidelines,” the authors conclude in their report, “we may be able to build on current work to use robots to create a healthier society.”

In addition to Dr. Doraiswamy and Professor Broadbent, study authors include Mark Billinghurst, Ph.D., and Samantha Boardman, M.D.

Professor Broadbent and Dr. Doraiswamy have served as advisors to Sermo and technology companies. Dr. Doraiswamy, Professor Broadbent, and Dr. Boardman are co-developers of the Co-Bot-I-7 scale.

CITATION: “Enhancing Social Connectedness With Companion Robots Employing AI,” Elizabeth Broadbent, Mark Billinghurst, Samantha G. Boardman, P. Murali Doraiswamy. Science Robotics, July 12, 2023. DOI: 10.1126/scirobotics.adi6347

3D glasses for topological materials


Peer-Reviewed Publication

UNIVERSITY OF WÃœRZBURG




They are seen as a beacon of hope for energy-saving electronics and the high-tech of the future: topological quantum materials. One of their properties is the conduction of spin-polarized electrons on their surface - even though they are actually non-conductive inside. To put this into perspective: In spin-polarized electrons, the intrinsic angular momentum, i.e. the direction of rotation of the particles (spin), is not purely randomly aligned.

To distinguish topological materials from conventional ones, scientists used to study their surface currents. However, an electron’s topology is closely linked to its quantum mechanical wave properties and its spin. This relationship has now been demonstrated directly by means of the photoelectric effect – a phenomenon in which electrons are released from a material, such as metal, with the aid of light.

Visualizing the topology of electrons with “3D glasses”

Prof. Giorgio Sangiovanni, a founding member of ct.qmat in Würzburg and one of the theoretical physicists in the project, likened this discovery to using 3D glasses to visualize the topology of electrons. As he explains: “Electrons and photons can be described quantum mechanically as both waves and particles. Therefore, electrons have a spin that we can measure thanks to the photoelectric effect.”

To do this, the team used circularly polarized X-ray light – light particles possessing a torque. Sangiovanni elaborates: “When a photon meets an electron, the signal coming from the quantum material depends on whether the photon has a right- or a left-handed polarization. In other words, the orientation of the electron’s spin determines the relative strength of the signal between left- and right-polarized beams. Therefore, this experiment can be thought of like polarized glasses in a 3D cinema, where differently oriented beams of light are also used. Our ‘3D glasses’ make electrons’ topology visible.”

Headed by the Würzburg-Dresden Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter – this ground-breaking experiment, along with its theoretical description, is the first successful attempt at characterizing quantum materials topologically. Sangiovanni points out the essential role of a particle accelerator in the experiment, stating: “We need the synchrotron particle accelerator to generate this special X-ray light and to create the ‘3D cinema’ effect.”

Quantum matter, particle accelerators and supercomputers

The journey to this monumental success spanned a period of three years for the researchers. Their starting point was the kagome metal TbV6Sn6, a quantum material. In this special class of materials, the atomic lattice has a mixture of triangular and honeycomb lattices in a structure reminiscent of a Japanese basket weave. Kagome metals play an important role in ct.qmat’s materials research.

“Before our experimental colleagues could start the synchrotron experiment, we needed to simulate the results to make sure we were on the right track. In the first step, we devised theoretical models and ran calculations on a supercomputer,” says Dr. Domenico di Sante, the project lead and a theoretical physicist, who is also an associate member of the Würzburg Collaborative Research Center (SFB) 1170 ToCoTronics. The findings from the measurements lined up perfectly with the theoretical predictions, enabling the team to visualize and confirm the topology of the kagome metals.

International research network

The research project involved scientists from Italy (Bologna, Milan, Trieste, Venice), the UK (St. Andrews), the USA (Boston, Santa Barbara), and Würzburg. The supercomputer used for the simulations is in Munich, and the synchrotron experiments were performed in Trieste. “These research findings perfectly illustrate the remarkable results theoretical and experimental physics can produce when working in tandem,” concludes Prof. Sangiovanni.

Search for dark matter at Jülich


Peer-Reviewed Publication

FORSCHUNGSZENTRUM JUELICH

COSY 

IMAGE: IN THEIR EXPERIMENT, THE JEDI SCIENTISTS UTILIZED A SPECIAL FEATURE OF THE JÃœLICH PARTICLE ACCELERATOR COSY: THE USE OF POLARIZED BEAMS. view more 

CREDIT: FORSCHUNGSZENTRUM JÃœLICH / RALF-UWE LIMBACH



About 80 % of the matter in the universe consists of an unknown and invisible substance. This “dark matter” had already been postulated about 90 years ago. “This was the only way to reconcile the velocity distribution of visible matter within galaxies with existing knowledge,” explains Jörg Pretz, one of the study’s co-authors, who is also deputy director at Forschungszentrum Jülich’s Nuclear Physics Institute and professor at RWTH Aachen University. “A ‘dark’ form of matter, previously unobserved, must additionally stabilize the galaxies.”

Physicists have been searching for this matter since the 1930s. Science has no shortage of theories, but no one has yet succeeded in actually detecting dark matter. “This is because the nature of dark matter is still completely unclear,” says Dr. Volker Hejny, who is also from Jülich’s Nuclear Physics Institute and, like his colleague Jörg Pretz, is a member of the international JEDI collaboration that conducted the experiment. JEDI stands for Jülich Electric Dipole moment Investigations and scientists involved in the collaboration have been working on the measurement of the electric dipole moments of charged particles since 2011. “Dark matter is not visible and has so far only revealed itself indirectly through its gravity. Its effect is comparatively tiny, which is why it only really becomes apparent in the case of enormously large masses – such as entire galaxies."

Theoretical physicists have already proposed a number of hypothetical elementary particles that dark matter could be composed of. Depending on the properties of these particles, various methods could be used to detect them – methods that do not require the highly complex detection of gravitational effects. These methods include axions and axion-like particles. “Originally, axions were intended to solve a problem in the theory of the strong interaction of quantum chromodynamics,” explains Pretz. “The name axion can be traced back to the winner of the Nobel Prize in Physics, Frank Wilczek, and refers to a brand of detergent: the existence of the particles was supposed to ‘clean up’ the theory of physics, so to speak.”

To detect the axions, scientists in the JEDI collaboration used the spins of particles. “Spin is a unique property of quantum mechanics that makes particles behave like small bar magnets,” explains Hejny. “This property is utilized, for example, in medical imaging for magnetic resonance imaging, or MRI for short. As part of this process, the spins of atomic nuclei are excited by strong external magnetic fields.”

MRI technology is also used to search for dark matter. While in normal MRI the atoms are at rest, in an accelerator the particles move almost at the speed of light. This makes the examinations in some areas much more sensitive and the measurements more accurate.

In their experiment, the JEDI scientists utilized a special feature of the Jülich particle accelerator COSY, namely the use of polarized beams. “In a conventional particle beam, the spins of the particles point in random directions,” says Pretz. “In a polarized particle beam, however, the spins are aligned in one direction.” There are only a few accelerators worldwide that have this capability.

If, as the scientists suspect, a background field of axions surrounds us, then this would influence the motion of the spins – and could therefore ultimately be detected in the experiment. However, the anticipated effect is tiny. The measurements are not yet accurate enough. However, although the JEDI experiment has not yet found evidence for dark matter particles, the researchers have managed to further narrow down the possible interaction effect. And perhaps even more significant, they were able to establish a new and promising method in the search for dark matter.

Original publication: First Search for Axionlike Particles in a Storage Ring Using a Polarized Deuteron Beam, S. Karanth et al. (JEDI Collaboration), Phys. Rev. X 13, 031004 – Published 12 July 2023, DOI: 10.1103/PhysRevX.13.031004

New toxin facilitates disease infection and spread in wheat


Peer-Reviewed Publication

AMERICAN PHYTOPATHOLOGICAL SOCIETY

Fig 2 

IMAGE: FIGURE 2 FROM THE AUTHORS’ STUDY, DEPICTING FUSARIUM HEAD BLIGHT (FHB) SYMPTOMS IN WHEAT HEADS POINT INOCULATED WITH FUSARIUM GRAMINEARUM ∆TRI5 MUTANTS AND THEIR RESPECTIVE PARENT STRAINS. SPIKELETS OF WHEAT CV. NORM WERE POINT-INOCULATED WITH A CONIDIA SUSPENSION. PHOTOGRAPHS WERE TAKEN AT 21 DAYS POSTINOCULATION. view more 

CREDIT: GUIXIA HAO ET AL., THE AMERICAN PHYTOPATHOLOGICAL SOCIETY, AND THE INTERNATIONAL SOCIETY FOR MOLECULAR PLANT-MICROBE INTERACTIONS



Although wheat was among the first domesticated food crops, it remains a global dietary staple several millennia later. Grown on every continent except Antarctica, wheat is the second highest produced grain worldwide, with nearly 800,000 metric tons grown each year (Food and Agriculture Organization). However, a fungal pathogen named Fusarium graminearum causes the devastating disease Fusarium head blight (FHB) on wheat and contaminates grains with harmful toxins called trichothecenes. One such trichothecene, called deoxynivalenol (DON), is produced by most F. graminearum strains in the United States, and it is an essential virulence factor that increases the pathogen’s spread within a wheat head. This tiny yet powerful fungus threatens the economic security of millions of people and the food security/safety of billions more.   

Currently, there are no known wheat (or barley) varieties that can completely resist Fusarium infection, prompting continual studies on FHB virulence factors. Recent studies have identified an F. graminearum population that produces a new trichothecene, called NX, with a slightly different chemical structure than DON. Dr. Guixia Hao and colleagues from the USDA-Agricultural Research Service investigated whether these NX trichothecenes contribute to FHB of wheat like DON. The results of their study, published in the journal Molecular Plant-Microbe Interactions (MPMI), reveal that NX trichothecenes play an important role in F. graminearum initial infection as well as FHB spread.

By deleting the first gene for trichothecene biosynthesis production, TRI5, from strains representing DON trichothecenes and NX trichothecenes, the researchers were able to assess FHB severity on susceptible wheat heads inoculated with these parent strains and the genetic mutants resulting from the deletion. Evaluation and further testing showed a higher amount of toxin produced by the NX-producing strain than the DON-producing strain. This reveals that deletion of one gene eliminates NX toxin production and decreases both fungal infection and disease spread in wheat, confirming that NX plays a similar role as DON in pathogen aggression and uniquely intensifies pathogen infection.

Commenting on the novelty of this finding, Dr. Hao says, “To the best of our knowledge, this is the first time that a mycotoxin (any toxic substance produced by a fungus) has been found to play a role in enhancing both pathogen infection and disease spread in wheat head."

This novel finding is especially exciting since it can be used to protect the quantity and quality of cereal grain crops. “The information we discovered provides a new way to potentially control infection (not merely reduce symptoms), FHB spread, and mycotoxin poisoning simultaneously by targeting the fungus’s ability to produce NX,” Dr. Hao explains, “And this study ultimately improves our understanding of how the fungus uses toxins as a new weapon to attack the plant.”

This knowledge can also inspire further studies on NX trichothecenes. Dr. Hao and colleagues are working on a follow-up study to generate transgenic plants that target the NX biosynthesis gene by ribonucleic acid interference (RNAi) to reduce disease and mycotoxin production.

 

To learn more, read NX Trichothecenes Are Required for Fusarium graminearum Infection of Wheatpublished in Vol. 36, No. 5 / May 2023 of MPMI.
 

Follow the USDA-ARS on social media

Twitter @USDA_ARS

Facebook  @AgriculturalResearchService

LinkedIn https://www.linkedin.com/company/usda-ars/

 

About Molecular Plant-Microbe Interactions (MPMI)

Molecular Plant-Microbe Interactions® is a gold open access journal that publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
 

Follow us on Twitter @MPMIjournal and visit https://apsjournals.apsnet.org/journal/mpmi to learn more.

Schmidt Marine Technology Partners announces recipients of $3.5 million global sustainable fisheries initiative


10 organizations receive grants to develop tools to improve fishing practices worldwide


Grant and Award Announcement

THE SCHMIDT FAMILY FOUNDATION




SAN FRANCISCO—Schmidt Marine Technology Partners, a program of the Schmidt Family Foundation, has awarded $3.5 million in grants to ten organizations and universities in seven countries for the development of new tools and innovations that will improve the sustainability of global fisheries, the program announced today.

“Tens of millions of jobs around the world depend on fisheries, and seafood is the primary protein source for 3 billion people,” said Wendy Schmidt, president and co-founder of the Schmidt Family Foundation. “The innovators chosen to receive these grants are ensuring that fishers and fisheries—and by extension all of us who rely on them—are secure and sustainable worldwide.”

Although more investors are funding ocean technology today than in years past, developers need considerable early-stage support to advance from an idea to wide use of a technology. The sustainable fisheries initiative—to which Schmidt Marine has committed $2 million in new funding, with partners Oceankind and Builders Initiative contributing the additional $1.5 million—aims to address that gap. 

“Increasing the sustainability of fisheries is challenging, but we think that both technology and philanthropy have important roles to play,” said Mark Schrope, director of Schmidt Marine Technology Partners. “We try to take a realistic approach by focusing on solutions that offer significant benefits not just for the environment, but also for the fishers themselves.” 

The 10 projects selected for grants—ranging from $150,000 to $500,000—seek to reduce bycatch, prevent illegal fishing, improve data collection on fisheries and fish populations, and increase the transparency of a fish’s journey from ocean to table. A team of seven expert advisers and additional tech reviewers from nonprofits, government, and industry helped evaluate proposals from a pool of 200 applications from 20 countries across six continents. Schmidt Marine selected grantees based on the environmental benefits of their proposed ideas, as well as their incorporation of sound fisheries science and management principles, and, where applicable, the practical appeal of the new technologies to fishers.

The funding recipients are:

  • Katchi Technologies (Yarmouth, Nova Scotia, Canada): An alternative trawling net outfitted with a cable-mounted system that ensures the net stays open and is automatically controlled to prevent contact with the seafloor. The system also reduces drag by an estimated 30%, which in turn further reduces carbon emissions, fuel costs and bycatch while also increasing fisher safety. 
  • Trygg Mat Tracking (Oslo, Norway): Data-rich and easy-to-use software that enables countries to make quick and informed decisions on who can enter their ports and what to target in their inspections to stop illegal fish landings. 
  • Abalobi (Cape Town, South Africa): Development and deployment of software that integrates fishing data with processing plant data to provide ocean-to-market tracking that helps prevent illegal fishing and connects small businesses to larger markets.  
  • University of Haifa, work led by Roee Diamant, Ph.D. (Haifa, Israel): A “swarm” of low-cost underwater autonomous robots that coordinate for better acoustic detection and size estimation of fish populations.  
  • Centro de Ciencas do Mar (Center for Marine Science) (Faro, Portugal): A redesigned fishing net, developed in partnership with fishers, that could reduce bycatch in certain squid and other fisheries by 40%, reducing net damage and protecting sensitive habitats. 
  • Cornell Universitywork led by Aaron Rice, Ph.D.(Ithaca, N.Y.) in partnership with Marc Dantzker, Ph.D. of Fisheye Acoustics (Arlington, Va.)A new autonomous audio/video technology that allows researchers to identify fish species based on the specific unique sounds they emit. With this information, inexpensive passive acoustic monitoring techniques will be better able to track and estimate fish populations for conservation, sustainability and research.
  • Allen Institute for AI (AI2), in association with Ocean Aero (Gulfport, Miss.) and ThayerMahan (Groton, Conn.): Tools to improve the detection, interdiction and prosecution of illegal, unreported, and unregulated (IUU) fishing activities. The integration of AI driven detections from Skylight AI and a modified ThayerMahan acoustic system into the TRITON—an environmentally powered Autonomous Underwater and Surface Vehicle (AUSV)—promises a revolutionary approach to securing our oceans against IUU fishing. 
  • Arizona State Universitywork led by Jesse Senko, Ph.D.(Tempe, Ariz.): Low-cost lights, powered by solar energy, that easily hook on to fishing nets and reduce bycatch of threatened species including sea turtles and sharks.  
  • Wildaid Marine (San Francisco, Calif.): An app that provides accurate fishing and vessel data to rangers to help them deter illegal fishing in marine areas and better protect marine wildlife and the coastal communities that depend on them.
  • Fishtek Marine (Devon, England)An evaluation of the effectiveness of multiple bycatch reduction tools such as a shark-repellent device for longline fishing. 

 

About Schmidt Marine Technology Partners
Schmidt Marine Technology Partners supports scientists, engineers and entrepreneurs in developing technologies that restore ocean health. Schmidt Marine is one of two grant-making and investment programs of the Schmidt Family Foundation, founded by Eric and Wendy Schmidt. For more information, visit schmidtmarine.org

About the Schmidt Family Foundation
Established in 2006 by Eric and Wendy Schmidt, the Schmidt Family Foundation works to restore a balanced relationship between people and planet. Through grantmaking and investments, the foundation partners with communities around the world in working for renewable energy, resilient food systems, healthy oceans and the protection of human rights. The foundation makes grants and impact investments through two programs: 11th Hour Project and Schmidt Marine Technology Partners.