Monday, November 07, 2022

Rethinking mountain water security

Peer-Reviewed Publication

UNIVERSITY OF BIRMINGHAM

Water security in mountain regions relies on a broader understanding of the complex interlinks of water supply and demand that goes far beyond the study of glacier melt.

Current information on how the communities which depend on water from mountain snow and ice will be affected by climate change is limited, according to new research published in Nature Sustainability.

The study, led by Imperial College London, University of Birmingham, University of Zurich, the British Geological Survey and Pontifical Catholic University of Peru along with local partners, suggests this lack of integrated water security knowledge is due to poor understanding of what happens ‘beyond the cryosphere’ – that is the contribution from water sources other than frozen water such as hillslopes, wetlands, and groundwater.

Emerging research is showing that the effects of global warming and climate change is enhanced in mountainous areas. Glacier-related disasters such as ice avalanches and glacial lake outburst floods are becoming more commonplace, but there are serious and life-threatening implications for the millions of people who depend on mountain water supply.

In the new study, the researchers described huge gaps in available data on how communities use water from glaciers and mountain snow in combination with other water sources. The picture is especially difficult to construct because of complex mountain landscapes, localised weather systems and a low density of data station records.

Low uptake of new monitoring technologies and approaches, particularly in lower income countries with limited institutional capacities, is hampering further our understanding of high-altitude data sparse regions. These make it hard to create models that can be scaled up across watersheds with accuracy.

Beyond these factors, the picture is further complicated by uncertainties about future water needs. Information on population growth and likely adaptation to water security threats is limited, as are data on the future expansion of irrigated agriculture and hydropower, all of which will have substantial impact on water access and allocation.

Professor David Hannah, UNESCO Chair in Water Sciences at the University of Birmingham, said: “In mountains, there are complex interconnections between the cryosphere and other water sources, as well as with humans. We need to identify the gaps in our understanding and rethink strategies for water security in the context of climate change adaptation and shifting human needs.”

The research team, have called for a fundamental rethink of the methods and technologies used to assess current water availability and model future scenarios.

Lead author Dr Fabian Drenkhan, who undertook the work while at Imperial and now works at the Pontifical Catholic University of Peru, said: “The future is likely to lead to a more variable water supply and growing water demand, which is a real threat to water security in many mountain regions. Our current incomplete picture is hampering the design and implementation of effective climate change adaptation. A holistic perspective based on improved data and process understanding is urgently needed to guide robust, locally tailored adaptation approaches in view of increasingly adverse impacts from climate change and other human interferences.”

Senior author Professor Wouter Buytaert of Imperial, who developed the original research concept for this work, said: “Our study highlights the need for scientists to work on the ground with stakeholders. A thorough understanding of the local water security context is essential to co-produce integrated local and scientific knowledge that can support local water management decisions and adaptation strategies.”

Working with mountain communities could help water systems adapt to climate


Peer-Reviewed Publication

IMPERIAL COLLEGE LONDON

Nearly two billion people globally rely on mountain water for drinking and irrigation, but this water source is under threat due to global heating. Mountainous regions are particularly impacted by the effects of the climate crisis, with melting glaciers and snow adding to water scarcity in regions such as the Himalayas, Central Asia, and Andes.  

 

In a new paper, Imperial College London researchers outline how integrated water strategies that include scientists working directly with communities on the ground could help them drive their own climate adaptation and boost water security. 

 

Local communities have often developed ingenious local solutions such as water sowing and harvesting practices, wetland conservation, and interconnected storage reservoirs. A better scientific evidence base can help integrating these practices and river basin management plans, to offset some of the negative impacts of climate change. 

 

At present, scientists monitor glacier melt and river flows, using the data to produce predictive models of future hydrological scenarios. However this method leaves huge data gaps on how communities use glacier and snow water in combination with other water sources like hillslopes, wetlands, and groundwater. The solution, the researchers say, could be to incorporate more information on water management practices, using multi-generational knowledge from people who live in mountain regions. 

 

Senior author Professor Wouter Buytaert of Imperial’s Department of Civil and Environmental Engineering, who developed the original research concept for this work, said: “The picture is especially difficult to construct because of the complexity of mountain landscapes, the diversity of local livelihood strategies, and the lack of scientific awareness and understanding of these practices. 

 

“Our study highlights the need for scientists to work directly on the ground with communities. This is the only way we can gain a thorough understanding of the local water security context, and it is essential to uncover local and scientific knowledge that can support regional water management decisions and adaptation strategies.” 

 

Water security 

 

The impacts of climate change, such as glacier shrinkage, ice avalanches, and glacial lake outburst floods are becoming more commonplace as the climate changes. These impacts present serious and life-threatening implications for those who depend on mountain water supply. 

 

However, the study found that current information on precisely how these communities will be affected by climate change is limited. The researchers say that working directly with mountain communities can combine local knowledge and scientific inquiry to drive effective adaptations to their changing homes. 

 

Lead author Dr Fabian Drenkhan, who undertook the work at Imperial’s Department of Civil and Environmental Engineering and Grantham Institute said: “Water security in mountain regions relies on a broader understanding of the complex interplay between water supply and demand. These links go far beyond just the scientific study of glacier melt.” 

 

The study which includes researchers from Imperial, University of Birmingham, University of Zurich, the British Geological Survey and Pontifical Catholic University of Peru along with local partners, calls for a fundamental rethink of the methods and technologies used to assess current water availability and model future scenarios. 

 

Adaptation is key 

 

Low uptake of new monitoring technologies and approaches, particularly in lower income countries with limited institutional capacities, is further hampering our understanding of high-altitude, data-sparse regions. These make it difficult to create models and solutions that can be scaled up across watersheds with accuracy. 

 

Co-author Professor David Hannah, UNESCO Chair in Water Sciences at the University of Birmingham, said: “In mountains, there are complex interconnections between the cryosphere and other water sources, as well as with humans. We need to identify the gaps in our understanding and rethink strategies for water security in the context of climate change adaptation and shifting human needs.” 

 

Dr Drenkhan, who now works at Pontifical Catholic University of Peru, said: “The future is likely to lead to a more variable water supply and growing water demand, which is a real threat to water security in many mountain regions. Our incomplete picture of future water availability and security is keeping us from designing and implementing the best possible climate adaptations. We urgently need a holistic perspective to guide robust, locally tailored adaptations to global heating.” 

 

This study was funded by CONCYTEC Peru and Natural Environment Research Council (NERC), part of UK Research and Innovation (UKRI). 

 

For more information contact:  

Caroline Brogan  

Senior Media Officer (Engineering)  

Email: caroline.brogan@imperial.ac.uk  

Tel: +44(0)20 7594 3415  

Out of hours duty media officer: +44 (0)7803 886 248 

 

NOTES TO EDITORS: 

  1. “Looking beyond glaciers to understand mountain water security” by Drenkhan et al., published 7 November 2022 in Nature Sustainability.  

  1. About Imperial College London   

Imperial College London is a global top ten university with a world-class reputation. The College's 22,000 students and 8,000 staff are working to solve the biggest challenges in science, medicine, engineering and business.  

The Research Excellence Framework (REF) 2021 found that it has a greater proportion of world-leading research than any other UK university, it was named University of the Year 2022 according to The Times and Sunday Times Good University Guide, University of the Year for Student Experience 2022 by the Good University Guide, and awarded a Queen’s Anniversary Prize for its COVID-19 response.  

https://www.imperial.ac.uk/  

  1. About University of Birmingham 

The University of Birmingham is ranked amongst the world’s top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.   

 

No comments: