Tuesday, May 28, 2024

SPACE

Mystery of ‘slow’ solar wind unveiled by Solar Orbiter mission


Scientists have come a step closer to identifying the mysterious origins of the ‘slow’ solar wind, using data collected during the Solar Orbiter spacecraft’s first close journey to the Sun


Peer-Reviewed Publication

NORTHUMBRIA UNIVERSITY

Dr Steph Yardley of Northumbria University 

IMAGE: 

DR STEPH YARDLEY OF NORTHUMBRIA UNIVERSITY

view more 

CREDIT: SIMON VEIT-WILSON/NORTHUMBRIA UNIVERSITY





Scientists have come a step closer to identifying the mysterious origins of the ‘slow’ solar wind, using data collected during the Solar Orbiter spacecraft’s first close journey to the Sun.

Solar wind, which can travel at hundreds of kilometres per second, has fascinated scientists for years, and new research published in Nature Astronomy, is finally shedding light on how it forms.

Solar wind describes the continuous outflow of charged plasma particles from the Sun into space – with wind travelling at over 500km per second known as ‘fast’ and under 500km per second described as ‘slow’.

When this wind hits the Earth’s atmosphere it can result in the stunning aurora we know as the Northern Lights. But when larger quantities of plasma are released, in the form of a coronal mass ejection, it can also be hazardous, causing significant damage to satellites and communications systems.

Despite decades of observations, the sources and mechanisms that release, accelerate and transport solar wind plasma away from the Sun and into our solar system are not well understood – particularly the slow solar wind.

In 2020 the European Space Agency (ESA), with support from NASA, launched the Solar Orbiter mission. As well as capturing the closest and most detailed images of the Sun ever taken, one of the mission’s main aims is to measure and link the solar wind back to its area of origin on the Sun’s surface.

Described as ‘the most complex scientific laboratory ever to have been sent to the Sun’, there are ten different scientific instruments onboard Solar Orbiter – some in situ to collect and analyse samples of the solar wind as it passes the spacecraft, and other remote sensing instruments designed to capture high quality images of activity at the Sun’s surface.

By combining photographic and instrumental data, scientists have for the first time been able to identify more clearly where the slow solar wind originates. This has helped them to establish how it is able to leave the Sun and begin its journey into the heliosphere – the giant bubble around the Sun and its planets which protect our solar system from interstellar radiation.

Dr Steph Yardley of Northumbria University, Newcastle upon Tyne, led the research and explains: “The variability of solar wind streams measured in situ at a spacecraft close to the Sun provide us with a lot of information on their sources, and although past studies have traced the origins of the solar wind, this was done much closer to Earth, by which time this variability is lost.

“Because Solar Orbiter travels so close to the Sun, we can capture the complex nature of the solar wind to get a much clearer picture of its origins and how this complexity is driven by the changes in different source regions.”

The difference between the speed of the fast and slow solar wind is thought to be due to the different areas of the Sun’s corona, the outermost layer of its atmosphere, that they originate from.

The open corona refers to regions where magnetic field lines anchor to the Sun at only one end, and stretch out into space on the other, creating a highway for solar material to escape into space. These areas are cooler and are believed to be the source of the fast solar wind.

Meanwhile the closed corona refers to regions of the Sun where its magnetic field lines are closed — meaning they are connected to the solar surface at both ends. These can be seen as large bright loops that form over magnetically active regions.

Occasionally these closed magnetic loops will break, providing a brief opportunity for solar material to escape, in the same way it does through open magnetic field lines, before reconnecting and forming a closed loop once again. This generally takes place in areas where the open and closed corona meet.

One of the aims of Solar Orbiter is to test a theory that the slow solar wind originates from the closed corona and is able to escape into space through this process of magnetic field lines breaking and reconnecting.

One way the scientific team were able to test this theory was by measuring the ‘composition’ or make up of solar wind streams.

The combination of heavy ions contained in solar material differs depending on where it has originated from; the hotter, closed versus the cooler, open corona.

Using the instruments onboard Solar Orbiter, the team were able to analyse the activity taking place on the surface of the Sun and then match this with the solar wind streams collected by the spacecraft.

Using the images of the Sun’s surface captured by Solar Orbiter they were able to pinpoint that the slow wind streams had come from an area where the open and closed corona met, proving the theory that the slow wind is able to escape from closed magnetic field lines through the process of breaking and reconnection.

As Dr Yardley, of Northumbria University’s Solar and Space Physics research group, explains: “The varying composition of the solar wind measured at Solar Orbiter was consistent with the change in composition across the sources in the corona.

“The changes in composition of the heavy ions along with the electrons provide strong evidence that not only is the variability driven by the different source regions, but it is also due to reconnection processes occurring between the closed and open loops in the corona.”

The ESA Solar Orbiter mission is an international collaboration, with scientists and institutions from around the world working together, contributing specialist skills and equipment.

Daniel Müller, ESA Project Scientist for Solar Orbiter, said: “From the beginning, a central goal of the Solar Orbiter mission has been to link dynamic events on the Sun to their impact on the surrounding plasma bubble of the heliosphere.

“To achieve this, we need to combine remote observations of the Sun with in-situ measurements of the solar wind as it flows past the spacecraft. I am immensely proud of the entire team for making these complex measurements successfully.

“This result confirms that Solar Orbiter is able to make robust connections between the solar wind and its source regions on the solar surface. This was a key objective of the mission and opens the way for us to study the solar wind’s origin in unprecedented detail.”

Among the instruments onboard Solar Orbiter is the Heavy Ion Sensor (HIS), developed in part by researchers and engineers from the University of Michigan's Space Physics Research Laboratory in the department of Climate and Space Sciences and Engineering. The sensor was designed to measure heavy ions in the solar wind, which can be used to determine where the solar wind came from.

“Each region of the Sun can have a unique combination of heavy ions, which determines the chemical composition of a stream of solar wind. Because the chemical composition of the solar wind remains constant as it travels out into the solar system, we can use these ions as a fingerprint to determine the origin of a specific stream of the solar wind in the lower part of the Sun's atmosphere,” said Susan Lepri, a professor of climate and spaces sciences and engineering at the University of Michigan and the deputy principal investigator of the Heavy Ion Sensor.

The electrons in the solar wind are measured by an Electron Analyser System (EAS), developed by UCL’s Mullard Space Science Laboratory, where Dr Yardley is an Honorary Fellow.

Professor Christopher Owen, of UCL, said: “The instrument teams spent more than a decade designing, building and preparing their sensors for launch, as well as planning how best to operate them in a coordinated way. So it is highly gratifying to now see the data being put together to reveal which regions of the Sun are driving the slow solar wind and its variability.”

The Proton-Alpha Sensor (PAS), which measures wind speed, has been designed and developed by Paul Sabatier University’s Institut de Recherche en Astrophysique et Planétologie in Toulouse, France.

Together, these instruments make up the Solar Wind Analyser senor suite on board Solar Orbiter, for which UCL’s Professor Christopher Owen is principal investigator.

Speaking about future research plans, Dr Yardley said: “So far, we have only analysed Solar Orbiter data in this way for this particular interval. It will be very interesting to look at other cases using Solar Orbiter and to also make a comparison to datasets from other close-in missions such as NASA’s Parker Solar Probe.”

The paper, Multi-source connectivity as the driver of solar wind variability in the heliosphere, is due to be published in Nature Astronomy on Tuesday 28 May 2024.

ESA Solar Orbiter instruments

ESA Solar Orbiter

CREDIT

European Space Agency (ESA)


Coronal hole in the Sun [VIDEO] | 








Euclid space mission releases first scientific results and new images of the cosmos


The release marks the start of Euclid’s main survey, says physicist at Maynooth University, the only Irish university in the Euclid consortium. We are on the threshold of a new era in cosmology,” says MU’s Prof Peter Coles


MAYNOOTH UNIVERSITY

Euclid captures NGC 6744 

IMAGE: 

EUCLID CAPTURES NGC 6744, ONE OF THE LARGEST SPIRAL GALAXIES BEYOND OUR LOCAL PATCH OF SPACE, LYING 30 MILLION LIGHT-YEARS AWAY

view more 

CREDIT: ESA/EUCLID/EUCLID CONSORTIUM/NASA





European space mission Euclid has released early scientific papers based on observations made by the space telescope, along with five new astronomical images of the Universe, as the project sets about unravelling the secrets of the cosmos.

The new images are part of Euclid’s Early Release Observations (EROs) and accompany the mission’s first scientific data and 10 forthcoming science papers. Their publication comes less than a year after the space telescope’s launch and some six months after it returned its first full-colour images of the cosmos.

The scientific papers are based on observations and analysis of 17 targets and contain exciting scientific results including:

  • the discovery of free-floating new-born planets
  • newly identified extragalactic star clusters
  • new low-mass dwarf galaxies in a nearby cluster of galaxies
  • the discovery of very distant bright galaxies

The five new ERO images follow the release of an initial five images last November. The images obtained by Euclid are at least four times sharper than those that can be taken from ground-based telescopes. They cover large patches of sky at unrivalled depth, looking far into the distant Universe using both visible and infrared light.

The latest Euclid images include observations of:

  • Messier 78, a reflection nebula
  • Abell 2390 and Abell 2764, two giant clusters of galaxies
  • NGC 6744, a spiral galaxy very similar to the Milky Way
  • the Dorado Group, a loose agglomeration of galaxies

Speaking about the data release, Prof Peter Coles of Maynooth University’s Department of Theoretical Physics, the only Irish-based academic involved in the Euclid consortium, said: “Today's release of new data and technical papers from Euclid is exciting in itself but also marks the start, after months of painstaking calibration and testing of the instruments, of Euclid's main cosmological survey. We are on the threshold of a new era in cosmology.”

“Maynooth is the only University in Ireland to be involved in this mission and it is very exciting to be at the forefront of such an important scientific development.”

Launched from Cape Canaveral on July 1, 2023, Euclid’s mission is to map the distribution of distant galaxies across more than one-third of the sky to extract information about the constituents of the universe, and test whether current ideas about cosmic evolution are correct.

“Euclid is a unique, ground-breaking mission, and these are the first datasets to be made public – it’s an important milestone,” says Valeria Pettorino, ESA’s Euclid Project Scientist. “The images and associated science findings are impressively diverse in terms of the objects and distances observed. They include a variety of science applications, and yet represent a mere 24 hours of observations. They give just a hint of what Euclid can do. We are looking forward to six more years of data to come!”

The next thing to look forward to from Euclid is a taster for the main Euclid survey around March 2025. The first year of survey data (DR1) will be released in June 2026 while the full survey will be completed in 2031.

A close-up of Messier 78, this image illustrates how newly forming stars create a 'cavity' in the surrounding molecular cloud by generating winds of charged particles

CREDIT

ESA/Euclid/Euclid Consortium/NASA

Scientists discover CO2 and CO ices in outskirts of solar system


A UCF-led research team’s findings revealed a vast presence of ancient carbon dioxide and carbon monoxide ices on trans-Neptunian objects, suggesting carbon dioxide may have existed at the formation of our solar system.


Peer-Reviewed Publication

UNIVERSITY OF CENTRAL FLORIDA




ORLANDO, May 24, 2024 – For the first time, carbon dioxide and carbon monoxide ices have been observed in the far reaches of our solar system on trans-Neptunian objects (TNOs).

A research team, led by planetary scientists Mário Nascimento De Prá and Noemí Pinilla-Alonso from the University of Central Florida’s Florida Space Institute (FSI), made the findings by using the infrared spectral capabilities of the James Webb Space Telescope (JWST) to analyze the chemical composition of 59 trans-Neptunian objects and Centaurs.

The pioneering study, published this week in Nature Astronomy, suggests that carbon dioxide ice was abundant in the cold outer regions of the protoplanetary disk, the vast rotating disk of gas and dust from which the solar system formed. Further investigation is needed to understand the carbon monoxide ice’s origins, as it also prevalent on the TNOs in the study.

The researchers reported the detection of carbon dioxide in 56 TNOs and carbon monoxide in 28 (plus six with dubious or marginal detections), out of a sample of 59 objects observed with the JWST. Carbon dioxide was widespread on the surfaces of the trans-Neptunian population, independent of the dynamical class and body size while carbon monoxide was detected only in objects with a high carbon dioxide abundance, according to the study.

The work is part of the UCF-led Discovering the Surface Compositions of Trans-Neptunian Objects program (DiSCo-TNOs), one of the JWST programs focused on analyzing our solar system.

“It is the first time we observed this region of the spectrum for a large collection of TNOs, so in a sense, everything we saw was exciting and unique,” says de Prá, who co-authored the study. “We did not expect to find that carbon dioxide was so ubiquitous in the TNO region, and even less that carbon monoxide was present in so many TNOs.”

The discovery of the ices can further help us understand the formation of our solar system and how celestial objects may have migrated, he says.

“Trans-Neptunian Objects are relics from the process of planetary formation,” de Prá says. “These findings can impose important constraints about where these objects were formed, how they reached the region they inhabit nowadays, and how their surfaces evolved since their formation. Because they formed at greater distances to the Sun and are smaller than the planets, they contain the pristine information about the original composition of the protoplanetary disk.”

Chronicling Ancient Ice

Carbon monoxide ice was observed on Pluto by the New Horizons probe, but not until JWST was there an observatory powerful enough to pinpoint and detect traces of carbon monoxide ice or carbon dioxide ice on the largest population of TNOs.

Carbon dioxide is commonly found in many objects in our solar system. So, the DiSCo team was curious to see if it existed in greater quantities beyond the reaches of Neptune.

Possible reasons for the lack of previous detections of carbon dioxide ice on TNOs include a lower abundance, non-volatile carbon dioxide becoming buried under layers of other less volatile ices and refractory material over time, conversion into other molecules through irradiation, and simple observational limitations, according to the study.

The discovery of carbon dioxide and carbon monoxide on the TNOs provides some context while also raising many questions, de Prá says.

“While the carbon dioxide was probably accreted from the protoplanetary disk, the origin of the carbon monoxide is more uncertain,” he says. “The latter is a volatile ice even in the cold surfaces of the TNOs. We can’t rule out the carbon monoxide was primordially accreted and somehow was retained until present date. However, the data suggests that it could be produced by the irradiation from carbon-bearing ices.”

An Avalanche of Answers

Confirming the presence of carbon dioxide and carbon monoxide on TNOs opens many opportunities to further study and quantify how or why it is present, says Pinilla-Alonso, who also co-authored the study and leads the DiSCo-TNOs program.

“The discovery of carbon dioxide on trans-Neptunian objects was thrilling, but even more fascinating were its characteristics,” she says. “The spectral imprint of carbon dioxide revealed two distinct surface compositions within our sample. In some TNOs, carbon dioxide is mixed with other materials like methanol, water ice, and silicates. However, in another group — where carbon dioxide and carbon monoxide are major surface components — the spectral signature was strikingly unique. This stark carbon dioxide imprint is unlike anything observed on other solar system bodies or even replicated in laboratory settings.”

It now seems clear that when carbon dioxide is abundant, it appears isolated from other materials, but this alone doesn't explain the band shape, Pinilla-Alonso says. Understanding these carbon dioxide bands is another mystery, likely tied to their unique optical properties and how they reflect or absorb specific colors of light, she says.

It was commonly theorized that perhaps carbon dioxide may be present in TNOs as carbon dioxide exists in a gaseous state in comets, which are comparable in composition, Pinilla-Alonso says.

“In comets, we observe carbon dioxide as a gas, released from the sublimation of ices on or just below the surface,” she says. “However, since carbon dioxide had never been observed on the surface of TNOs, the common belief was that it was trapped beneath the surface. Our latest findings upend this notion. We now know that carbon dioxide is not only present on the surface of TNOs but is also more common than water ice, which we previously thought was the most abundant surface material. This revelation dramatically changes our understanding of the composition of TNOs and suggests that the processes affecting their surfaces are more complex than we realized.”

Thawing the Data

Study co-authors Elsa Hénault, a doctoral student at the Université Paris-Saclay’s Institut d'Astrophysique Spatiale, and French National Center of Scientific Research, and Rosario Brunetto, Hénault’s supervisor, brought a laboratory and chemical perspective into the interpretation of JWST observations.

Hénault analyzed and compared the absorption bands of carbon dioxide and carbon monoxide across all objects. While there was ample evidence of the ice, there was a great diversity in abundance and distribution, Hénault says.

“While we found CO2 to be ubiquitous across TNOs, it is definitely not uniformly distributed,” she says. “Some objects are poor in carbon dioxide while others are very rich in carbon dioxide and show carbon monoxide. Some objects display pure carbon dioxide while others have it mixed with other compounds. Linking the characteristics of carbon dioxide to orbital and physical parameters allowed us to conclude that carbon dioxide variations are likely representative of the objects’ different formation regions and early evolution.”

Through analysis, it is very likely that carbon dioxide was present in the protoplanetary disk, however, carbon monoxide is unlikely to be primordial, Hénault says.

“Carbon monoxide could be efficiently formed by the constant ion bombardment coming from our sun or other sources,” she says. “We are currently exploring this hypothesis by comparing the observations with ion irradiation experiments that can reproduce the freezing and ionizing conditions of TNO surfaces.”

The research brought some definite answers to longstanding questions dating back to the discovery of TNOs nearly 30 years ago, but researchers still have a long way to go, Hénault says.

“Other questions are now raised,” she says. “Notably, considering the origin and evolution of the carbon monoxide. The observations across the complete spectral range are so rich that they will definitely keep scientists busy for years to come.”

Although the DiSCo program observations are nearing a conclusion, the analysis and discussion of the results still have a long way to go. The foundational knowledge gained from the study will prove to be an important supplement for future planetary science and astronomy research, de Prá says.

“We have only scratched the surface of what these objects are made of and how they came to be,” he says. “We now need to understand the relationship between these ices with the other compounds present in their surfaces and understand the interplay between their formation scenario, dynamical evolution, volatile retention and irradiation mechanisms throughout the history of the solar system.”

Team Effort

Study co-authors also included Ana Carolina de Souza Feliciano, Charles Schambeau, Yvonne Pendelton, Dale Cruikshank and Brittany Harvison with UCF; Bryan Holler and John Stansberry with the Space Telescope Science Institute; Jorge Carvano with the Observatorio Nacional do Rio de Janeiro in Brazil;  Javier Licandro and Vania Lorenzi with the Instituto de Astrofísica de Canarias in Spain; Thomas Müller with the Max-Planck-Institut für extraterrestrische Physik in Germany; Nuno Peixinho with the Instituto de Astrofísica e Ciencias do Espaço in Portugal; Aurélie Guilbert-Lepoutre with the Laboratoire de Géologie de Lyon in France; Michele Bannister with the University of Canterbury in New Zealand; and Joshua Emery and Lucas McClure with Northern Arizona University.

Researchers’ Credentials:

De Prá joined UCF FSI in 2022 as an assistant scientist. He previously spent nearly four years as a preeminent post-doctoral associate at FSI. De Prá received his doctorate in astronomy in 2017 at the Observatório Nacional do Rio de Janeiro, Brazil. He works with observational planetary sciences using several ground and space-based telescopes to study the connection between different small body populations.

Pinilla-Alonso is a professor at FSI and joined in 2015. She received her doctorate in astrophysics and planetary sciences from the Universidad de La Laguna in Spain. Pinilla-Alonso also holds a joint appointment as a professor in UCF’s Department of Physics and has led numerous international observational campaigns in support of NASA missions such as New Horizons, OSIRIS-REx and Lucy.

 

Study suggests ‘biodegradable’ teabags don’t readily deteriorate in the environment and can adversely affect terrestrial species



UNIVERSITY OF PLYMOUTH





Some teabags manufactured using plastic alternatives do not degrade in soil and have the potential to harm terrestrial species, a new study has shown.

The research looked at commonly available teabags made using three different compositions of polylactic acid (PLA), which is derived from sources such as corn starch or sugar cane.

The teabags were buried in soil for seven months, and a range of techniques were then used to assess whether – and to what extent – they had deteriorated.

The results showed that teabags made solely from PLA remained completely intact. However, the two types of teabags made from a combination of cellulose and PLA broke down into smaller pieces, losing between 60% and 80% of their overall mass and with the PLA component remaining.

The study also examined the impacts of the discs cut from the teabags on a species of earthworm, Eisenia fetida, which has a critical role in soil nutrient turnover as it consumes organic matter.

Researchers found that being exposed to three different concentrations of teabag discs – equivalent to the mass of half, one and two teabags – resulted in up to 15% greater mortality, while some concentrations of PLA had a detrimental effect on earthworm reproduction.

Writing in the journal Science of the Total Environment, the study’s authors highlight the need for accurate disposal information to be clearly displayed on product packaging.

Only one of the manufacturers whose products were chosen for the study indicated on the packaging that the teabags were not home compostable.

This could lead to them ending up in soil, while there is also high potential for consumer confusion about the meaning of terms such as plant-based or biodegradable, emphasising the need for clear guidance on appropriate disposal.

Dr Winnie Courtene-Jones, Post-Doctoral Research Fellow at the University of Plymouth, is the study’s lead author. She said: “In response to the plastic waste crisis, biodegradable plastics such as PLA are being used in an increasing range of products. This study highlights the need for more evidence on the degradation and possible effects of such materials before their use becomes even more widespread, and to prevent the generation of alternative problems if they are not properly disposed of.”

The study was designed to replicate the environmental conditions into which teabags might be discarded on account of a lack of clear labelling as to how they should be disposed.

It used analytical techniques such as size exclusion chromatography, nuclear magnetic resonance, and scanning electron microscopy allowing scientists to examine not just how the teabags had changed visibly but also structurally.

Study co-author Professor Antoine Buchard, formerly of the University of Bath and now Professor of Sustainable Polymer Chemistry at the University of York, added: PLA is a bioderived plastic with a reduced carbon footprint compared to traditional plastics, which also degrades under industrial composting conditions. Using a number of chemical analysis techniques, we've shown that when it is not properly disposed of, for example after seven months in the soil, its molecular structure remains intact. Labels such as biodegradable and compostable have the potential to mislead the public, therefore it is important that scientists, policy makers and manufacturers work together to ensure clear standards are followed and that the public has easy access to information on where to dispose of those new plastics.”

The research was carried out as part of BIO-PLASTIC-RISK, a four-year £2.6million project led by the University of Plymouth and funded by the Natural Environment Research Council (part of UK Research and Innovation). It is assessing how biodegradable packaging and products break down and, in turn, whether the plastics or their breakdown products affect species both on land and in the marine environment.

It also builds on previous research suggesting that some products labelled as biodegradable, including carrier bags, do not disintegrate after as much as three years in the environment.

The study has been published in the wake of the fourth session of the Intergovernmental Negotiating Committee (INC-4), where world leaders and scientists were among those to continue discussions towards the Global Plastics Treaty.

Study co-author Professor Richard Thompson OBE FRS, Head of the University of Plymouth’s International Marine Litter Research Unit and lead of the BIO-PLASTIC-RISK project, is a co-coordinator the Scientists’ Coalition for an Effective Plastics Treaty. He said: “After 30 years of research on plastic pollution I am delighted there is now a global consensus, as evidenced by the UN Plastics Treaty, that current production use and disposal of plastic is unsustainable. But it is with immense frustration that I see alternative and substitute materials entering the market without clear guidance on how their benefits might be realised. Even if consumers understand how to dispose of these products only around half of households in the UK currently have access to the necessary waste streams for the type of composting required. It is essential we learn from the mistakes we made with plastic materials by testing and labelling these novel materials in relation to the prevailing waste management infrastructure.”

Dr Mick Hanley, Associate Professor in Plant-Animal Interactions at the University of Plymouth and senior author on the study, added: “In this study PLA-based teabags  did not fully deteriorate, and it seems that composting worms may be harmed by them. The lack of clear labelling can lead to consumers disposing of teabags in their compost, where any limit to complete degradation of the material raises the potential for plastics to enter the soil when compost is added to the garden, with potential impacts on garden wildlife and uptake by food plants.”

 

What are the risks of hydrogen vehicles in tunnels?


A team from Graz University of Technology has analyzed the risk and damage potential of hydrogen vehicles in tunnels and derived recommendations. Their conclusion? Any damage would be extensive, but its occurrence is unlikely.


GRAZ UNIVERSITY OF TECHNOLOGY

Daniel Fruhwirt from the Institute of Thermodynamics and Sustainable Propulsion Systems at TU Graz. 

IMAGE: 

DANIEL FRUHWIRT FROM THE INSTITUTE OF THERMODYNAMICS AND SUSTAINABLE PROPULSION SYSTEMS AT TU GRAZ.

view more 

CREDIT: LUNGHAMMER - TU GRAZ




In addition to electric vehicles, hydrogen-powered vehicles are also seen as an alternative to conventionally powered vehicles. However, an increase in the number of such cars with fuel cells (fuel cell electric vehicles – FCEVs) would also result in completely new hazard scenarios, especially in tunnels. In the HyTRA project, Graz University of Technology (TU Graz) has investigated what types of incidents involving hydrogen-powered vehicles in tunnels are realistic, what dangers arise for people and the tunnel structure, and what measures can be taken to minimise these risks. The project was funded by the Austrian Research Promotion Agency (FFG), the Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology (BMK) and ASFINAG.

Low probability of occurrence, high damage potential

There is virtually no empirical data on real accidents involving hydrogen-powered vehicles in tunnels due to their low traffic share to date. Therefore, only a rough estimate of the probability of occurrence could be made based on experience with gas-powered vehicles, which indicated a low probability. In comparison, the potential extent of damage was analysed in great detail on the basis of experiments from the EU HyTunnel-CS project, which ended in 2022. Due to the high energy density of hydrogen and the high pressure at which it is stored, FCEVs have a very high damage potential.

According to the current standard, hydrogen is stored in cars at a pressure of 700 bar and in lorries and buses at 350 bar. If damage occurs to a tank, a great deal of energy is quickly released; if hydrogen catches fire, it burns at temperatures of over 2000 degrees Celsius. Although the tanks are very robust and well protected against mechanical impact, they cannot withstand a rear-end collision with a lorry. This scenario should therefore be avoided as far as possible.

Three hazard scenarios

The most likely outcome of an accident involving an FCEV is that there will be no significant impact from the hydrogen. However, three different hazard scenarios can occur in the event of serious accidents. In the first case, the thermal pressure relief device (TPRD) is triggered when the pressure rises as a result of a thermal impact (e.g. vehicle fire), releasing the hydrogen from the tank in a controlled jet. This keeps the pressure at a certain level and prevents the tank from rupturing. If the discharged hydrogen ignites – which can easily happen when mixed with air -, the flame is directed towards the ground. Nevertheless, it remains dangerous because hydrogen burns without colour or odour, but the danger zone is limited. If the TPRD fails, the tank can explode, creating a blast wave that spreads through the entire tunnel. Up to approx. 30 metres there is a risk of death, up to approx. 300 metres there is a risk of serious internal injuries such as bleeding to the lungs, and further away there is still a risk of ruptured eardrums.

The third scenario is the least likely. It occurs when the hydrogen is released without being ignited. As the lightest element in the periodic table, hydrogen rises and collects in a cloud under the tunnel ceiling. If there is an ignition source there (e.g. hot lamps or an electrical impulse starting a fan), a hydrogen cloud explosion follows, which also causes a blast wave.

Less speed and sufficient distance

“Our investigations have shown that although the hazard scenarios involving hydrogen vehicles are relatively unlikely, they harbour great potential for damage. Modern hydrogen tanks are built so safely that a lot has to go wrong for the hydrogen to escape,” says Daniel Fruhwirt from the Institute of Thermodynamics and Sustainable Propulsion Systems. “In addition, the transport infrastructure in Austrian tunnels probably fulfils the strictest requirements in Europe. Since we only have one operator for all motorway and highway tunnels, the safety level is also very homogeneous. In terms of infrastructure, there is hardly any risk of damage to the tunnel structure, but accidents would be dangerous for people.”

To minimise the risks, Daniel Fruhwirt and his project team have recommended several measures. Stricter speed limits that are monitored with section control, precise distance controls that signal to drivers when they are following too closely, and speed limits that are displayed earlier in traffic jams so that the speed is already low enough when arriving at the end of the jam to cause only minor damage in the event of a rear-end collision. “What has already been implemented in most EU member states as a result of the serious events at the end of the 1990s and early 2000s, is that all tunnels on motorways and highways with a length of more than 500 metres are twin-tube tunnels and are generally no longer used for bi-directional traffic. This reduces the risk considerably,” explains Daniel Fruhwirt.

This research area is anchored in the Field of Expertise “Mobility & Production“, one of five strategic foci of TU Graz.

 

Changes in extreme high-temperature warning indicators over China under different global warming levels




SCIENCE CHINA PRESS
Regional average anomaly time series of extreme high temperature warning indicators (left column) and spatial distribution of long-term trends (right column) observed in China from 1961 to 2022 

IMAGE: 

THIS FIGURE ILLUSTRATES THE CHANGES IN TX40D (NUMBER OF DAYS WITH TEMPERATURES EXCEEDING 40°C), TX40L (LENGTH OF THE SEASON WITH TEMPERATURES EXCEEDING 40°C), AND TXX (INTENSITY OF HIGH TEMPERATURES) OVER CHINA. IT DEMONSTRATES THAT TX40D IS INCREASING, TX40L IS EXTENDING, AND TXX IS STRENGTHENING, ESPECIALLY IN 2022, THE INCREASE OF THESE INDICATORS HAS BROKEN THROUGH HISTORICAL EXTREMES.

view more 

CREDIT: ©SCIENCE CHINA PRESS





Recently, the Science China Earth Sciences published online research results from the team led by Ying Sun from China National Climate Center, including authors Master Yuxia Zhang and Researcher Ting Hu. The team investigated the observed and climate model projected changes in extreme high temperature warning indicators across China. They found approximately linear increase in the intensity of extreme high temperatures exceeding 35°C and 40°C with global warming, while the number of high temperature days and length of season were projected to increase non-linearly. The climate models showed more severe increase in extreme high temperature changes than the raw projections after the annual cycle was bias corrected. The start date of high temperatures will occur earlier and the end date will be delayed, thereby the high temperature season will become longer. The geographical extent affected by high temperatures will continue to expand.

The researchers focused on the fixed threshold indices closely related to human health in high temperature warning indicators. They investigated the number of days, intensity, length of season and impacted area of extreme high temperatures with daily maximum temperature reaching or exceeding 35°C and 40°C. They found that from 1961 to 2022, the number of days and length of season with temperatures exceeding 35°C and 40°C in the summer half year of China showed an increasing trend, and the area affected by high temperatures has been continuously expanding. In 2022, there was a sudden increase in high temperatures exceeding 40°C, with the number of days in Eastern China increasing by about 2 days, and the season extending by over 5 days.

Based on the model results that participated in the Coupled Model Intercomparison Project Phase 6 (CMIP6), the team utilized the model climate sensitivity combined with the annual temperature cycle bias correction method to project the future changes in extreme high temperature warning indicators over China under different global warming levels. The results show that after bias correction, the increasing trends for the number of days and length of season with temperatures exceeding 35°C and 40°C become more pronounced. “This indicates that the increase in these indicators will be more severe than originally anticipated” they said.

As global warming intensifies, the high temperature days and length of season are projected to increase non-linearly, while the intensity of high temperatures is expected to increase linearly. “For every 1°C increase in global temperature, the intensity of high temperatures is projected to rise by approximately 1.4°C” they said.

Meanwhile, as global warming, the area affected by high temperatures is expanding, with the major hotspot for China located in the eastern and northwestern regions. In the middle and lower reaches of the Yangtze River, when the global temperature rises by 1.5°C, the number of days with temperatures exceeding 40°C will increase by about 0.5 days. However, at a 2°C level, this increase could reach 2-4 days, and at a 3°C level, it could even reach 6-8 days. This means that extreme temperatures above 40°C, which have been rare in the past, may become common in the future with global warming. At a global temperature rise of 5 ° C, parts of China are likely to experience extreme high temperatures for most of the year.

See the article:

Zhang Y, Sun Y, Hu T. 2024. Changes in extreme high temperature warning indicators over China under different global warming levels. Science China Earth Sciences, 67(6): 1895–1909, https://doi.org/10.1007/s11430-023-1299-1


Changes in warning indicators at 40°C high temperatures over China based on the CMIP6 multi-model ensemble projection under the global warming levels of 1.5°C, 2°C, 3°C, 4°C and 5°C