Tuesday, May 28, 2024

 

In international relations, it’s the message, not the medium



Research surveys show warnings issued by world leaders are taken equally seriously whether issued on social media or through formal statements.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY





Over 180 world leaders maintain social media accounts, and some of them issue policy warnings to rivals and the public on these platforms rather than relying on traditional government statements. How seriously do people take such social media postings? 

A new study suggests the general public and policymakers alike take leaders’ social media posts just as seriously as they take formal government statements. The research, by MIT political scientists, deploys novel surveys of both the public and experienced foreign policy specialists.

“What we find, which is really surprising, across both expert audiences and public audiences, is that tweets are not necessarily seen as this form of cheap talk,” says Erik Lin-Greenberg, an MIT faculty member and co-author of a new paper detailing the results. “They’re viewed as the same type of signal as that being offered through more formal and traditional communications.”

The findings suggest that people have become so fully acclimatized to social media that they regard the medium as a vehicle for messages that have just as much credibility as those generated through the old-school method, in which official statements are released in formal language on official government documents. 

“One clue that sheds some light on our unexpected findings is that a slight majority of our survey respondents who read a tweet identified what they read as a White House press release,” says Benjamin Norwood Harris, an MIT doctoral candidate and co-author of the paper. “Respondents really seemed to believe that tweets were just another way presidents communicate in their official capacity.”

The paper, “Cheap Tweets?: Crisis Signaling in the Age of Twitter,” appears in the June issue of International Studies Quarterly. Greenberg is the Leo Marx Career Development Assistant Professor of the History and Culture of Science and Technology at MIT; Harris is a PhD candidate in MIT’s Department of Political Science who specializes in security studies and international relations. 

The study fits into a larger body of political science research in the area of “crisis signaling” — the way words and actions in international relations are interpreted, which is often critical to diplomacy. However, when it comes to the use of social media, “There’s been very little research that looks at the credibility of public signals,” Lin-Greenberg notes.

The research consisted of a multilayered set of surveys, conducted in 2021. Using the survey platform Lucid, the scholars surveyed 977 members of the general public about a hypothetical confrontation between the U.S. and Iran, using facsimiles of messages on Twitter (now known as X) and formal White House statements that might have been sent by U.S. President Joe Biden during such a scenario. Separately, the scholars also recruited foreign policy experts from the U.S., India, and Singapore, which all have active English-language think tank spheres, to take the same survey.

Asked to rate the credibility of tweets and official statements on a five-point scale, the public rated official press releases at 3.30 and tweets at 3.22. The policy experts gave a 3.10 rating to the official statement, and a 3.11 rating to the tweets.

“No matter how we cut the data, we just don’t see much difference in how respondents rated Tweets versus official statements,” Harris says. “Even when we vary the formality of the tweet language — including things like all caps and lots of exclamation points — we don’t find an effect.”

A follow-up layer of the survey then asked respondents about a related hypothetical conflict between the U.S. and Iran in 2026, with facsimile tweets and White House statements attributed to both Biden and former president Donald Trump, given that either could be president then. The aim was to see if different leaders influenced perceptions of the two forms of statements. 

But in this instance, the public and policy experts regarded tweets and official statements virtually equally seriously. Trump’s statements were given slightly more credibility overall, but with a strong partisan divide: Liberals took Biden’s statements to have more credibility, and conservatives took Trump’s statements to have more credibility. 

Overall, the study suggests that many people are simply unaffected by the medium in which a global leader might choose to issue a warning to leaders of other nations. In the surveys, participants were given the opportunity to describe qualitatively what shaped their responses; only about 2 percent cited the medium as an issue. 

As Harris notes, the survey data also indicate that slightly more than 51 percent of respondents believed a tweet constituted an officially released government statement. Additionally, about 73 percent of respondents thought tweets were generated in the same way as statements that have the official imprint of a national government. 

“People who see a tweet don’t really differentiate it in their minds. They don’t think the tweet is not an official statement,” Lin-Greenberg says. “About three-quarters of the population think it’s coordinated, whether it’s a tweet or an official statement.”

In the paper, the scholars suggest there is considerable room for follow-up research in this area. Among other things, future studies might compare the effect of social media statements to other types of communication, such as speeches. Scholars might also study other social media platforms or broaden the set of countries being studied. Such research, Lin-Greenberg and Harris conclude in the paper, “will further enrich our understanding of the interactions between emerging technology and international politics.”

 

Written by: Peter Dizikes, MIT News

Paper: Cheap Tweets?: Crisis Signaling in the Age of Twitter

https://academic.oup.com/isq/article-abstract/68/2/sqae067/7644224?redirectedFrom=fulltext

 

How killifish embryos use suspended animation to survive over 8 months of drought


CELL PRESS
Pair of killifish 

IMAGE: 

PAIR OF KILLIFISH

view more 

CREDIT: ROGELIO BARAJAS AND XIAOAI ZHAThe African turquoise killifish lives in ephemeral ponds in Zimbabwe and Mozambique. To survive the annual dry season, the fish’s embryos enter a state of extreme suspended animation or “diapause” for approximately 8 months. Now, researchers have uncovered the mechanisms that enabled the killifish to evolve this extreme survival state. They report May 30 in the journal Cell that although killifish evolved diapause less than 18 million years ago, they did so by co-opting ancient genes that originated more than 473 million years ago. Through comparative analysis, the team showed that similar specialized gene expression patterns are also employed by other animals—including the house mouse—during diapause.





“The whole program is like day and night—there is life in the normal state and life in the diapause state, and the way this happened was by reshuffling or re-wiring the regulatory region of a whole set of genes,” says senior author and molecular biologist Anne Brunet (@BrunetLab) of Stanford University.

African turquoise killifish mature faster than any other vertebrate species, and adults live for only around 6 months, even in captivity. The fish reproduce rapidly before their watery homes disappear, but their embryos remain behind in the dry mud, ready to hatch when the next year’s rains come. Embryonic diapause also occurs in other vertebrate species, including fish, reptiles, and some mammals, but killifish diapause is remarkably extreme because it lasts for such an extended period (8 months on average and up to 2 years in the lab) and because killifish embryos enter suspended animation much later in development than other animals.

“It's roughly in the middle of development, and many organs are already formed by that stage— they have a developing brain and a heart which stops beating in diapause and then starts again,” says first author Param Priya Singh (@param_p_singh) of the University of California, San Francisco. “Killifish are the only vertebrate species that we know of that can undergo diapause so late in development.”

To understand diapause evolution, the team first characterized the gene expression of the African turquoise killifish (Nothobranchius furzeri) during different developmental stages. They focused on duplicated copies of genes called “paralogs,” because gene duplication is one of the primary mechanisms by which new genes originate and specialize. Overall, the researchers identified 6,247 paralog pairs that exhibited specialized gene expression patterns during diapause. Surprisingly, they estimated that most of the diapause-specialized genes were “very ancient” paralogs, having originated more than 473 million years ago.

“Even though diapause evolved relatively recently, the genes that are specialized in diapause are really ancient,” said Brunet. “We found that most of the genes that specialize for diapause in killifish are very ancient paralogs, which means that they were duplicated in the common ancestor of all vertebrates.”

Since diapause also occurs in some other species of killifish, the researchers compared gene expression between embryos of the African turquoise killifish, the South American killifish (Austrofundulus limnaeus), which also undergoes diapause, and two killifish species that do not undergo diapause, the red-striped killifish (Aphyosemion striatum) and lyretail killifish (Aphyosemion austral).

They found significant overlap in gene expression patterns between the African turquoise and South American killifish, which evolved diapause independently of each other, but not in the two non-diapausing species. Likewise, the researchers found significant correlation in the gene expression patterns of house mouse (Mus musculus) embryos during diapause and showed that diapause-specialized genes in mice also have very ancient origins.

“This suggests that the same mechanisms that enable diapause have been repeatedly co-opted for the evolution of diapause across distantly related species,” says Singh.

Next, the researchers explored how these diapause-specialized genes are regulated in the killifish. They identified several key transcription factors that control the altered gene expression patterns seen during diapause, including REST and FOXO3, which are known to be expressed during hibernation (a different form of suspended animation) in mammals. Notably, several of these regulatory genes are involved in lipid metabolism, which has a distinctive profile during diapause.

“One of the key elements of diapause is this special lipid metabolism,” said Brunet. “During diapause, they seem to have much higher levels of triglycerides and very long chain fatty acids, which are forms of storage and also perhaps aid with long-term protection of the organism’s membranes.”

The researchers plan to continue investigating how different species regulate diapause and to dig deeper into the role of lipid metabolism during diapause and other types of suspended animation.

“It's such a complex state that I think we are just scratching the surface,” said Singh. “We want to go deeper into specific aspects of how lipid metabolism is regulated during diapause, and we are also interested in examining the role of specific cell types during diapause.”

###

This research was supported by the Glenn Foundation for Medical Research, the NOMIS Distinguished Scientist and Scholar award, the Stanford Center for Computational, Evolutionary, and Human Genomics, the National Institutes of Health, and the National Science Foundation

Cell, Singh et al. “Evolution of diapause in the African turquoise killifish by remodeling ancient gene regulatory landscape” https://www.cell.com/cell/fulltext/S0092-8674(24)00474-4

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Male killifish

CREDIT

Rogelio Barajas and Xiaoai Zhao

Harnessing green energy from plants depends on their circadian rhythms


Plant hydraulics create streaming electric potential in sync with the biological clock



AMERICAN INSTITUTE OF PHYSICS

Plant hydraulics and the biological process 

IMAGE: 

PLANT HYDRAULICS DRIVE THE BIOLOGICAL PROCESS THAT MOVES FLUIDS FROM ROOTS TO PLANT STEMS AND LEAVES, CREATING STREAMING ELECTRIC POTENTIAL, OR VOLTAGE, IN THE PROCESS. THIS STUDY CLOSELY EXAMINED THE DIFFERENCES IN VOLTAGE CAUSED BY THE CONCENTRATIONS OF IONS, TYPES OF IONS, AND PH OF THE FLUID PLANTS TRANSPORT, TYING THE VOLTAGE CHANGES TO THE PLANT’S CIRCADIAN RHYTHM THAT CAUSES ADJUSTMENTS DAY AND NIGHT. ACCORDING TO THE AUTHORS, THIS CONSISTENT, CYCLIC VOLTAGE CREATION COULD BE HARNESSED AS AN ENERGY SOURCE.

view more 

CREDIT: ANIRUDDHA GUHA





WASHINGTON, May 28, 2024 —When plants draw water from their roots to nourish their stems and leaves, they produce an electric potential that could be harnessed as a renewable energy source. However, like all living things, plants are subject to a circadian rhythm — the biological clock that runs through day and night cycles and influences biological processes. In plants, this daily cycle includes capturing light energy for photosynthesis and absorbing water and nutrients from the soil during the day and slowing its growth processes at night.

In a study published this week in Physics of Fluids, by AIP Publishing, the researchers from the Indian Institute of Technology Kharagpur detailed how biological processes produce voltage in plants and the impact of the cyclic day and night changes on this voltage.

“This streaming potential, essentially a consequence of the natural energy gathered in the plant, offers a renewable energy source that is continuous and can be sustainable over long periods,” author Suman Chakraborty said. “The question we wanted to answer was how much potential it can produce, and how is electric potential influenced by the plant’s biological clock?”

To find out, the authors inserted electrodes into the stems of water hyacinths and attached reservoirs with electrodes to pieces of lucky bamboo to closely examine how electrical potential changes depending on types of ions, ion concentration, and the pH of the fluid flowing through the plants.

“Our eureka moment was when our first experiments showed it is possible to produce electricity in a cyclic rhythm and the precise linkage between this and the plant’s inherent daily rhythm,” Chakraborty said. “We could exactly pinpoint how this is related to water transpiration and the ions the plant carries via the ascent of sap.”

The study quantified the voltage response originating from the movement of ions through the plant’s pathways that align uniquely with the plant’s daily rhythms. The authors discovered plants can actively moderate the flow of fluid or sap in sync with the day and night cycles. They also found the electric streaming potential increases with decreased concentration of ions or increased pH in the fluid.

“We not only rediscovered the plant’s electrical rhythm, articulating it in terms of voltages and currents, but we also provided insight into potentially tapping electrical power output from plants in a sustainable manner with no environmental impact and no disruption to the ecosystem,” Chakraborty said. “The findings could help develop biomimetic, nature-inspired systems that can address the global energy crisis with an eco-friendly, sustainable solution in which planting a tree not only relieves the crises of climate change and declining environmental quality, but also provides a way to harness electricity from it.”

###

The article “How does the diurnal biological clock influence electrokinetics in a living plant?” is authored by Aniruddha Guha, Saumyadwip Bandyopadhyay, Chirodeep Bakli, and Suman Chakraborty. It will appear in Physics of Fluids on May 28, 2024 (DOI: 10.1063/5.0195088). After that date, it can be accessed at https://www.doi.org/10.1063/5.0195088.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###

 

Tracking animals without markers in the wild


Researchers from the Cluster of Excellence Collective Behaviour developed a computer vision framework for posture estimation and identity tracking which they can use in indoor environments as well as in the wild.



UNIVERSITY OF KONSTANZ




Two pigeons are pecking grains in a park in Konstanz. A third pigeon flies in. There are four cameras in the immediate vicinity. Doctoral students Alex Chan and Urs Waldmann from the Cluster of Excellence Collective Behaviour at the University of Konstanz are filming the scene. After an hour, they return with the footage to their office to analyze it with a computer vision framework for posture estimation and identity tracking. The framework detects and draws a box around all pigeons. It records central body parts and determines their posture, their position, and their interaction with the other pigeons around them. All of this happened without any markers being attached to pigeons or any need for human being called in to help. This would not have been possible just a few years ago.

3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons
Markerless methods for animal posture tracking have been rapidly developed recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap, researchers from the Cluster of Excellence Collective Behaviour at the University of Konstanz and the Max Planck Institute of Animal Behavior present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. The related publication was recently published in the International Journal of Computer Vision (IJCV).

Important milestone in animal posture tracking and automatic behavioural analysis
Urs Waldmann and Alex Chan recently finalized a new method, called 3D-MuPPET, which stands for 3D Multi-Pigeon Pose Estimation and Tracking. 3D-MuPPET is a computer vision framework for posture estimation and identity tracking for up to 10 individual pigeons from 4 camera views, based on data collected both in captive environments and even in the wild. “We trained a 2D keypoint detector and triangulated points into 3D, and also show that models trained on single pigeon data work well with multi-pigeon data,” explains Urs Waldmann. This is a first example of 3D animal posture tracking for an entire group of up to 10 individuals. Thus, the new framework provides a concrete method for biologists to create experiments and measure animal posture for automatic behavioural analysis. “This framework is an important milestone in animal posture tracking and automatic behavioural analysis", as Alex Chan and Urs Waldmann say.

Framework can be used in the wild
In addition to tracking pigeons indoors, the framework is also extended to pigeons in the wild. “Using a model that can identify the outline of any object in an image called the Segment Anything Model, we further trained a 2D keypoint detector with a masked pigeon from the captive data, then applied the model to pigeon videos outdoors without any extra model finetuning”, states Alex Chan. 3D-MuPPET presents one of the first case-studies on how to transition from tracking animals in captivity towards tracking animals in the wild, allowing fine-scaled behaviours of animals to be measured in their natural habitats. The developed methods can potentially be applied across other species in future work, with potential application for large scale collective behaviour research and species monitoring in a non-invasive way.

3D-MuPPET showcases a powerful and flexible framework for researchers who would like to use 3D posture reconstruction for multiple individuals to study collective behaviour in any environments or species. As long as a multi-camera setup and a 2D posture estimator is available, the framework can be applied to track 3D postures of any animals.

 

 

Key facts:

  • Publication: Waldmann, U. & Chan, A.H.H. et al. 3D-MuPPET: 3D Multi-Pigeon Pose Estimation and Tracking. Int J Comput Vis (2024).
    DOI: https://doi.org/10.1007/s11263-024-02074-y.
  • The article is part of a special issue on “Computer Vision Approaches for Animal Tracking and Modeling 2023” in IJCV.
  • The framework is based on the 3D-POP dataset and the I-MuPPET
    framework, developed by researchers in the Cluster of Excellence
    Collective Behaviour.
  • Alex Chan and Urs Waldmann are doctoral students in the field of biology and computer science at the Cluster of Excellence Collective Behaviour. Senior author Fumihiro Kano is a junior group leader at the Cluster of Excellence Collective Behaviour.
  • The Centre for the Advanced Study of Collective Behaviour at the University of Konstanz is a global hotspot for the study of collective behaviour across a wide range of species and across scales of organization. It is a Cluster of Excellence within the framework of the German Excellence Strategy of the federal and state governments.

 

 

 

Note to editors:

Watch a video about 3D-MuPPET here: https://youtu.be/GZZ_u53UpfQ?si=pW0DQRM2oelku41c

 

You can download photos here:

  1. https://www.uni-konstanz.de/fileadmin/pi/fileserver/2024_EXTRA/tierbewegungen_in_freier.jpg

 

  1. https://www.uni-konstanz.de/fileadmin/pi/fileserver/2024_EXTRA/Tierbewegungen_in_freier_wildbahn.jpg

 

Caption: 3D-MuPPET offers a computer vision framework for 3D posture estimation and identity tracking of animals in indoor environments as well as in the wild.

Copyright: Alex Chan


Simple food swaps could cut greenhouse gas emissions from household groceries by a quarter



New analysis shows potential contribution that different purchasing choices could make



GEORGE INSTITUTE FOR GLOBAL HEALTH





Switching food and drink purchases to very similar but more environmentally friendly alternatives could reduce the greenhouse gas emissions from household groceries by more than a quarter (26%), according to a new Australian study from The George Institute for Global Health and Imperial College London published today in Nature Food.1

Making bigger changes - like swapping a frozen meat lasagne for the vegetarian option - could push the reduction to as much as 71%.

To make this happen will require on-pack labelling of greenhouse gas emissions for every packaged food product so that consumers can make informed choices.

This is the most detailed analysis ever conducted on the environmental impacts of a country’s food purchasing behaviour, involving comprehensive data on greenhouse gas emissions and sales for tens of thousands of supermarket products, typical of the Western diet of many countries globally.

Lead author and epidemiologist Dr Allison Gaines, who conducted the analysis for The George Institute and Imperial College London, said, “Dietary habits need to change significantly if we are to meet global emissions targets, particularly in high-income countries like Australia, the UK, and US.

“But while consumers are increasingly aware of the environmental impact of the food system and willing to make more sustainable food choices, they lack reliable information to identify the more environmentally friendly options.”

Researchers calculated the projected emissions of annual grocery purchases from 7,000 Australian households using information on ingredients, weights and production life cycles in The George Institute’s FoodSwitch database and global environmental impact datasets. More than 22,000 products were assigned to major, minor and sub-categories of foods (e.g. ‘bread and bakery’, ‘bread’ and ‘white bread’, respectively) to quantify emissions saved by switching both within and between groups.

Making switches within the same sub-categories of foods could lead to emission reductions of 26% in Australia, equivalent to taking over 1.9 million cars off the road.2 Switches within minor categories of foods could lead to even bigger emission reductions of 71%.

“The results of our study show the potential to significantly reduce our environmental impact by switching like-for-like products. This is also something consumers in the UK could, and would probably like, to do if we put emissions information onto product labels," said Dr Gaines.

Dr Gaines added that the switches would not compromise food healthiness overall: “We showed that you can switch to lower emissions products while still enjoying nutritious foods. In fact, we found it would lead to a slight reduction in the proportion of ultra-processed foods purchased, which is a positive outcome because they’re generally less healthy,” she said.

The purchase analysis also showed that meat products contributed almost half (49%) of all greenhouse gas emissions, but only 11% of total purchases. Conversely, fruit, vegetables, nuts and legumes represented one quarter (25%) of all purchases, but were responsible for just 5% of emissions.

It is estimated that around one-third of global greenhouse gas emissions are attributable to the food and agriculture sector, and the combined health and environmental costs of the global food system are estimated to be 10-14 trillion USD (8-11 trillion GBP) per year.3,4,5 More than 12 million deaths per year could be prevented if the system transitioned to deliver healthy, low-emission diets.3

Prof Bruce Neal, Executive Director at The George Institute Australia and Professor of Clinical Epidemiology at Imperial College London, said that as a global community, we are taking too long to improve the sustainability of the food system, endangering the prospect of a net-zero future.

“There is currently no standardised framework for regulating the climate or planetary health parameters of our food supply, and voluntary measures have not been widely adopted by most countries. This research shows how innovative ways of approaching the problem could enable consumers to make a real impact,” he said.

“With this in mind, we have developed a free app called ecoSwitch, currently available in Australia, which is based on this research. Shoppers can use their device to scan a product barcode and check its ‘Planetary Health Rating’, a measure of its emissions shown as a score between half a star (high emissions) to five stars (low emissions).”

The George Institute plans to extend the ecoSwitch algorithm to integrate other environmental indicators such as land and water use, and biodiversity, and to introduce the tool to other countries.

“While ecoSwitch is a much-needed first step in providing environmental transparency for grocery shoppers, the vision is for mandatory display of a single, standardised sustainability rating system on all supermarket products,” concluded Prof Neal.