Saturday, December 05, 2020

PRISON INDUSTRIAL COMPLEX

Mass incarceration results in significant increases in industrial emissions, study finds










PORTLAND STATE UNIVERSITY

Research News

Mass incarceration is as much an environmental problem as it is a social one, according to a new Portland State University study that finds increases in incarceration are significantly associated with increases in industrial emissions.

Julius McGee, the study's lead author and an environmental sociologist, argues that the construction and maintenance of prisons, the production of goods and materials used inside prisons and the use of prison labor to manufacture industrial equipment for the government and private companies all contribute to increased emissions.

"As we shift the population into prisons, we see a clear impact on how economic development contributes to emissions," said McGee, an assistant professor of urban studies and Black Studies at PSU.

The prison population began to grow in the 1970s, largely as a punitive response to the social movements that emerged post-World War II, McGee said. Today, more than 2.3 million people are incarcerated in the U.S.

Between 1980 and 2004, 936 prisons were built in the U.S., compared with the 711 prisons built in the 168 years prior. McGee says the construction of new prisons, as well as the renovation of existing prisons, require substantial amounts of fossil fuels. Cement, for example, is one of the largest emitters of carbon dioxide in the built environment.

"This is housing infrastructure that otherwise wouldn't have been built," McGee said, adding that most incarcerated people are forcibly removed from inner-city neighborhoods and transported to massive warehouse-like structures in rural areas.

Mass incarceration disproportionately affects black and brown people -- those whose contributions to carbon dioxide emissions are relatively small, McGee said. But once they go to prison, they become coerced consumers of industrial goods and increased industrial activity. Prisoners require beds, clothing, hygiene products and furniture -- and the prison supply companies that manufacture and distribute these goods have continuously expanded their production in response to a growing incarcerated population.

Lastly, prison labor programs help to stimulate industrial growth by reducing the cost of labor. Prisoners are paid as little as $.023 to $1.15 per hour or sometimes not at all.

"Employment in industrial manufacturing has gone down, but manufacturing in total dollars has not gone down," McGee said. "What's changed is where the labor and jobs are."

If companies did not use prison labor, McGee says, they'd use unionized labor, which requires them to invest more in workers and less into expanding growth.

"Industrial manufacturing has exploited workers, consumers, and the environment by continually reducing the cost of labor, increasing the demand of industrial goods, and increasing the use of fossil fuels," the study reads. "Incarceration allows these patterns to continue unabated, and in many instances provides the tools necessary to accelerate the pace at which such patterns recur."

###

The findings were published in the journal Social Currents. Co-authors include Patrick Greiner, an assistant professor of sociology at Vanderbilt University, and Carl Appleton, a PSU graduate and now Ph.D. student in George Mason University's Criminology, Law and Society program.

 

The climate changed rapidly alongside sea ice decline in the north

UNIVERSITY OF COPENHAGEN

Research News

Researchers from the Niels Bohr Institute, University of Copenhagen have, in collaboration with Norwegian researchers in the ERC Synergy project, ICE2ICE, shown that abrupt climate change occurred as a result of widespread decrease of sea ice. This scientific breakthrough concludes a long-lasting debate on the mechanisms causing abrupt climate change during the glacial period. It also documents that the cause of the swiftness and extent of sudden climate change must be found in the oceans.

Scientific evidence for abrupt climate change in the past finally achieved

During the last glacial period, app. 10,000 - 110,000 years ago the northern hemisphere was covered in glacial ice and extensive sea ice, covering the Nordic seas. The cold glacial climate was interrupted by periods of fast warmup of up to 16.5 degrees Celsius over the Greenland ice sheet, the so called Dansgaard Oeschger events (D-O).

These rapid glacial climate fluctuations were discovered in the Greenland ice core drillings decades ago, but the cause of them have been hotly contested. D-O events are of particular significance today as the rate of warming seems to be very much like what can be observed in large parts of the Arctic nowadays. The new results show that the abrupt climate change in the past was closely linked to the quick and extensive decline in sea ice cover in the Nordic seas. Very important knowledge as sea ice is presently decreasing each year.

"Our, up until now, most extensive and detailed reconstruction of sea ice documents the importance of the rapid decrease of sea ice cover and the connected feedback mechanisms causing abrupt climate change", says Henrik Sadatzki, first author of the study.

Sediment core and ice core data were combined in order to achieve the result

The Norwegian researchers investigated two sediment cores from the Norwegian sea and the Danish researchers investigated an ice core from East Greenland for changes in the sea ice cover. Both sediment and ice cores were meticulously dated and further linked to one another through several volcanic layers of ash (tephra) identified in both.

Past sea ice cover was reconstructed in the marine cores by observing the relation between specific organic molecules produced by algea living in sea ice and others by algea living in ice free waters. In the Renland ice core from East Greenland the researchers looked at the content of Bromin. This content is connected to newly formed sea ice, since Bromin contents increase when sea ice is formed. A robust chronology and sea ice information in both sediment cores and the ice core could be established and used to investigate the extent of the sea ice changes in the Nordic seas during the last glacial period.

"We have investigated how the sea ice cover changed during the last glacial period in both marine cores and ice cores. With the high resolution in our data sets we are able to see that the Nordic seas, during the rapid climate changes in the glacial period, change from being covered in ice all year round to having seasonal ice cover. This is knowledge we can apply in our improved understanding of how the sea ice decline we observe today may impact the climate in the Arctic", says Helle Astrid Kjær, Associate professor at the Ice, Climate and Geophysics section at the Niels Bohr Institute.

Sea ice changes in the past show how the climate today can change abruptly

The data the group of researchers present shows that the Nordic seas were covered by extensive sea ice in cold periods, while warmer periods are characterized by reduced, seasonal sea ice, as well as rather open ice free oceans. "Our records show that the extensive decline in sea ice could have happened during a period of 250 years or less, simultaneously with a phase in which the water in the oceans to the north mixed with the Nordic sea, and that this situation led to sudden changes in atmospheric warming", says Henrik Sadatzki.

As the Nordic seas changed abruptly from ice covered to open sea, the energy from the warmer ocean water was released to the cold atmosphere, leading to amplification of sudden warming of the climate. The result of the study documents that sea ice is a "tipping element" in the tightly coupled ocean-ice-climate system. This is particularly relevant today, as the still more open ocean to the north can lead to similar abrupt climate change.

###

Inouye Solar Telescope releases first image of a sunspot

ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY (AURA)

Research News

The world's largest solar observatory, the U.S. National Science Foundation's Daniel K. Inouye Solar Telescope, just released its first image of a sunspot. Although the telescope is still in the final phases of completion, the image is an indication of how the telescope's advanced optics and four-meter primary mirror will give scientists the best view of the Sun from Earth throughout the next solar cycle.

The image, taken January 28, 2020, is not the same naked eye sunspot currently visible on the Sun. This sunspot image accompanies a new paper by Dr. Thomas Rimmele and his team. Rimmele is the associate director at NSF's National Solar Observatory (NSO), the organization responsible for building and operating the Inouye Solar Telescope. The paper is the first in a series of Inouye-related articles featured in Solar Physics. The paper details the optics, mechanical systems, instruments, operational plans and scientific objectives of the Inouye Solar Telescope. Solar Physics will publish the remaining papers in early 2021.

Read Daniel K. Inouye Solar Telescope - Observatory Overview, by Thomas R. Rimmele et al. - Solar Physics volume 295, issue 12, 2020

"The sunspot image achieves a spatial resolution about 2.5 times higher than ever previously achieved, showing magnetic structures as small as 20 kilometers on the surface of the sun," said Rimmele.

The image reveals striking details of the sunspot's structure as seen at the Sun's surface. The streaky appearance of hot and cool gas spidering out from the darker center is the result of sculpting by a convergence of intense magnetic fields and hot gasses boiling up from below.

The concentration of magnetic fields in this dark region suppresses heat within the Sun from reaching the surface. Although the dark area of the sunspot is cooler than the surrounding area of the Sun, it is still extremely hot with a temperature of more than 7,500 degrees Fahrenheit.

This sunspot image, measuring about 10,000 miles across, is just a tiny part of the Sun. However, the sunspot is large enough that Earth could comfortably fit inside.

CAPTION

This is the first sunspot image taken on Jan. 28, 2020, by the NSF's Inouye Solar Telescope's Wave Front Correction context viewer. The image reveals striking details of the sunspot's structure as seen at the sun's surface. The sunspot is sculpted by a convergence of intense magnetic fields and hot gas boiling up from below. This image uses a warm palette of red and orange, but the context viewer took this sunspot image at the wavelength of 530 nanometers -- in the greenish-yellow part of the visible spectrum. This is not the same naked eye sunspot group visible on the sun in late November and early December 2020.

CREDIT

NSO/AURA/NSF

Sunspots are the most visible representation of solar activity. Scientists know that the more sunspots that are visible on the Sun, the more active the Sun is. The Sun reached solar minimum, the time of fewest sunspots during its 11-year solar cycle, in December 2019. This sunspot was one of the first of the new solar cycle. Solar maximum for the current solar cycle is predicted in mid-2025.

"With this solar cycle just beginning, we also enter the era of the Inouye Solar Telescope," says Dr. Matt Mountain, president of the Association of Universities for Research in Astronomy (AURA), the organization that manages NSO and the Inouye Solar Telescope. "We can now point the world's most advanced solar telescope at the Sun to capture and share incredibly detailed images and add to our scientific insights about the Sun's activity."

Sunspots, and associated solar flares and coronal mass ejections, cause many space weather events, which frequently impact the Earth, a consequence of living inside the extended atmosphere of a star. These events affect technological life on Earth. The magnetic fields associated with solar storms can impact power grids, communications, GPS navigation, air travel, satellites and humans living in space. The Inouye Solar Telescope is poised to add important capabilities to the complement of tools optimized to study solar activity particularly magnetic fields.

NSF's Inouye Solar Telescope is located on the island of Maui in Hawaii. Construction began in 2013 and is slated to be completed in 2021.

"While the start of telescope operations has been slightly delayed due to the impacts of the COVID-19 global pandemic," said Dr. David Boboltz, NSF Program Director for the Inouye Solar Telescope, "this image represents an early preview of the unprecedented capabilities that the facility will bring to bear on our understanding of the Sun."

The Daniel K. Inouye Solar Telescope is a facility of the National Science Foundation operated by the National Solar Observatory under a cooperative agreement with the Association of Universities for Research in Astronomy, Inc. The Inouye Solar Telescope is located on land of spiritual and cultural significance to Native Hawaiian people. The use of this important site to further scientific knowledge is done so with appreciation and respect.


CAPTION

The National Science Foundation's Inouye Solar Telescope.

CREDIT

NSF/NSO/AURA

###

Image Use:

The images and movies shown here are part of the facility Science Verification Phase. They are for the sole purpose of promotion and are not released for scientific use. Science Verification Phase data is proprietary to the Inouye Solar Telescope project, and its use for publications or outreach purposes requires approval by the NSO Director, and notification to the cognizant NSF program officer. Please contact outreach@nso.edu for details and questions. The original data are still being processed and are not fully calibrated for scientific use. Images have been processed to remove noise and enhance the visibility (contrast) of small-scale (magnetic) features while maintaining their shape. The movie frames have been smoothed to remove noise.

This product is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). For image use conditions, please visit our image use page or email outreach@nso.edu.

Contacts:

Claire Raftery
Head of Communications
National Solar Observatory
303-735-9044
claire@nso.edu
National Science Foundation
media@nsf.gov

Rochester researchers uncover key clues about the solar system's history

New clues lead to a better understanding of the evolution of the solar system and the origin of Earth as a habitable planet

UNIVERSITY OF ROCHESTER

Research News

IMAGE

IMAGE: ILLUSTRATION OF SOLAR WIND FLOWING OVER ASTEROIDS IN THE EARLY SOLAR SYSTEM. THE MAGNETIC FIELD OF THE SOLAR WIND (WHITE LINE/ARROWS) MAGNETIZES THE ASTEROID (RED ARROW). RESEARCHERS AT THE UNIVERSITY... view more 

CREDIT: UNIVERSITY OF ROCHESTER ILLUSTRATION / MICHAEL OSADCIW

In a new paper published in the journal Nature Communications Earth and Environment, researchers at the University of Rochester were able to use magnetism to determine, for the first time, when carbonaceous chondrite asteroids--asteroids that are rich in water and amino acids--first arrived in the inner solar system. The research provides data that helps inform scientists about the early origins of the solar system and why some planets, such as Earth, became habitable and were able to sustain conditions conducive for life, while other planets, such as Mars, did not.

The research also gives scientists data that can be applied to the discovery of new exoplanets.

"There is special interest in defining this history--in reference to the huge number of exoplanet discoveries--to deduce whether events might have been similar or different in exo-solar systems," says John Tarduno, the William R. Kenan, Jr., Professor in the Department of Earth and Environmental Sciences and dean of research for Arts, Sciences & Engineering at Rochester. "This is another component of the search for other habitable planets."

SOLVING A PARADOX USING A METEORITE IN MEXICO

Some meteorites are pieces of debris from outer space objects such as asteroids. After breaking apart from their "parent bodies," these pieces are able to survive passing through the atmosphere and eventually hit the surface of a planet or moon.

Studying the magnetization of meteorites can give researchers a better idea of when the objects formed and where they were located early in the solar system's history.

"We realized several years ago that we could use the magnetism of meteorites derived from asteroids to determine how far these meteorites were from the sun when their magnetic minerals formed," Tarduno says.

In order to learn more about the origin of meteorites and their parent bodies, Tarduno and the researchers studied magnetic data collected from the Allende meteorite, which fell to Earth and landed in Mexico in 1969. The Allende meteorite is the largest carbonaceous chondrite meteorite found on Earth and contains minerals--calcium-aluminum inclusions--that are thought to be the first solids formed in the solar system. It is one of the most studied meteorites and was considered for decades to be the classic example of a meteorite from a primitive asteroid parent body.

In order to determine when the objects formed and where they were located, the researchers first had to address a paradox about meteorites that was confounding the scientific community: how did the meteorites gain magnetization?

Recently, a controversy arose when some researchers proposed that carbonaceous chondrite meteorites like Allende had been magnetized by a core dynamo, like that of Earth. Earth is known as a differentiated body because it has a crust, mantle, and core that are separated by composition and density. Early in their history, planetary bodies can gain enough heat so that there is widespread melting and the dense material--iron--sinks to the center.

New experiments by Rochester graduate student Tim O'Brien, the first author of the paper, found that magnetic signals interpreted by prior researchers was not actually from a core. Instead, O'Brien found, the magnetism is a property of Allende's unusual magnetic minerals.

DETERMINING JUPITER'S ROLE IN ASTEROID MIGRATION

Having solved this paradox, O'Brien was able to identify meteorites with other minerals that could faithfully record early solar system magnetizations.

Tarduno's magnetics group then combined this work with theoretical work from Eric Blackman, a professor of physics and astronomy, and computer simulations led by graduate student Atma Anand and Jonathan Carroll-Nellenback, a computational scientist at Rochester's Laboratory for Laser Energetics. These simulations showed that solar winds draped around early solar system bodies and it was this solar wind that magnetized the bodies.

Using these simulations and data, the researchers determined that the parent asteroids from which carbonaceous chondrite meteorites broke off arrived in the Asteroid Belt from the outer solar system about 4,562 million years ago, within the first five million years of solar system history.

Tarduno says the analyses and modeling offers more support for the so-called grand tack theory of the motion of Jupiter. While scientists once thought planets and other planetary bodies formed from dust and gas in an orderly distance from the sun, today scientists realize that the gravitational forces associated with giant planets--such as Jupiter and Saturn--can drive the formation and migration of planetary bodies and asteroids. The grand tack theory suggests that asteroids were separated by the gravitational forces of the giant planet Jupiter, whose subsequent migration then mixed the two asteroid groups.

He adds, "This early motion of carbonaceous chondrite asteroids sets the stage for further scattering of water-rich bodies--potentially to Earth--later in the development of the solar system, and it may be a pattern common to exoplanet systems."

###

Leaving so soon? Unusual planetary nebula fades mere decades after it arrived

UNIVERSITY OF WASHINGTON

Research News

IMAGE

IMAGE: TWO IMAGES OF THE STINGRAY NEBULA, LOCATED IN THE DIRECTION OF THE SOUTHERN CONSTELLATION ARA -- OR THE ALTAR -- CAPTURED 20 YEARS APART BY NASA'S HUBBLE SPACE TELESCOPE. THE... view more 

CREDIT: NASA/ESA/BRUCE BALICK/MARTÍN GUERRERO/GERARDO RAMOS-LARIOS

Stars are rather patient. They can live for billions of years, and they typically make slow transitions -- sometimes over many millions of years -- between the different stages of their lives.

So when a previously typical star's behavior rapidly changes in a few decades, astronomers take note and get to work.

Such is the case with a star known as SAO 244567, which lies at the center of Hen 3-1357, commonly known as the Stingray Nebula. The Stingray Nebula is a planetary nebula -- an expanse of material sloughed off from a star as it enters a new phase of old age and then heated by that same star into colorful displays that can last for up to a million years.

The tiny Stingray Nebula unexpectedly appeared in the 1980s and was first imaged by scientists in the 1990s using NASA's Hubble Space Telescope. It is by far the youngest planetary nebula in our sky. A team of astronomers recently analyzed a more recent image of the nebula, taken in 2016 by Hubble, and found something unexpected: As they report in a paper accepted to the Astrophysical Journal, the Stingray Nebula has faded significantly and changed shape over the course of just 20 years.

If dimming continues at current rates, in 20 or 30 years the Stingray Nebula will be barely perceptible, and was likely already fading when Hubble obtained the first clear images of it in 1996, according to lead author Bruce Balick, an emeritus professor of astronomy at UW.

"This is an unprecedented departure from typical behavior for a planetary nebula," said Balick. "Over time, we would expect it to imperceptibly brighten and expand, which could easily go unnoticed in a century or more. But here we're seeing the Stingray nebula fade significantly in an incredibly compressed time frame of just 20 years. Moreover, its brightest inner structure has contracted -- not expanded -- as the nebula fades."

Planetary nebulae form after most stars, including stars like our own sun, swell into red giants as they exhaust hydrogen fuel. At the end of the red giant phase, the star then expels large amounts of its outer material as it gradually -- over the course of a million years -- transforms into a small, compact white dwarf. The sloughed-off material expands outward for several thousand years while the star heats the material, which eventually becomes ionized and glows.

Balick and his co-authors, Martín Guerrero at the Institute of Astrophysics of Andalusia in Spain and Gerardo Ramos-Larios at the University of Guadalajara in Mexico, compared Hubble images of the Stingray Nebula taken in 1996 and 2016. Hen 3-1357 changed shape markedly over 20 years, losing the sharp, sloping edges that gave the Stingray Nebula its name. Its colors have faded overall and once-prominent blue expanses of gas near its center are largely gone.

"In a planetary nebula, the star is really the center of all the activity," said Balick. "The material around it is directly responsive to the energy from its parent star."

The team analyzed light spectra from Hen 3-1357 emitted by chemical elements in the nebula. Emission levels of hydrogen, nitrogen, sulfur and oxygen all dropped between 1996 and 2016, particularly oxygen, which dropped by a factor of 900. The resulting fade in color and the nebula's change in shape are likely connected to the cooling of its parent star -- from a peak of about 107,500 degrees Fahrenheit in 2002 to just under 90,000 degrees Fahrenheit in 2015 -- which means it is giving off less ultraviolet ionizing radiation that heats the expelled gas and makes it glow.

"Like a doused forest fire, the smoke wanes more slowly than the flames that created it," said Balick. "Even so, we were amazed when the Hubble images revealed how quickly the nebula was fading. It took a month of work to believe it."

Astronomers have yet to understand why SAO 244567 made the Stingray Nebula light up and then fade almost as quickly. One theory, posited by a team led by Nicole Reindl at the University of Potsdam, is that the star underwent a brief burst of fresh helium fusion around its core, which stirred up its outer layers and caused its surface to both shrink and heat.

If so, then as its outer layers settle back down, the star may return to a more typical transition from red giant to white dwarf. Only future observations of the star and its nebula can confirm this.

"Unfortunately, the best tool to follow future changes in the Stingray Nebula, the Hubble Space Telescope, is near the end of its life as well," said Balick. "We can hope, but the odds aren't good for Hubble's survival as its three remaining gyroscopes start to fail. It's a good race to the finish."

###

The Hubble Space Telescope is an international partnership between NASA and the European Space Agency, or ESA, and managed by NASA's Goddard Space Flight Center in Maryland. The Space Telescope Science Institute is responsible for Hubble science operations. The research was also funded by the European Union and the National Council of Science and Technology in Mexico.


Hubble captures unprecedented fading of 

Stingray nebula

NASA/GODDARD SPACE FLIGHT CENTER

Research News

Astronomers have caught a rare look at a rapidly fading shroud of gas around an aging star. Archival data from NASA's Hubble Space Telescope reveal that the nebula Hen 3-1357, nicknamed the Stingray nebula, has faded precipitously over just the past two decades. Witnessing such a swift rate of change in a planetary nebula is exceeding rare, say researchers.

Images captured by Hubble in 2016, when compared to Hubble images taken in 1996, show a nebula that has drastically dimmed in brightness and changed shape. Bright, blue, fluorescent tendrils and filaments of gas toward the center of the nebula have all but disappeared, and the wavy edges that earned this nebula its aquatic-themed name are virtually gone. The young nebula no longer pops against the black velvet background of the vast universe.

"This is very, very dramatic, and very weird," said team member Martín A. Guerrero of the Instituto de Astrofísica de Andalucía in Granada, Spain. "What we're witnessing is a nebula's evolution in real time. In a span of years, we see variations in the nebula. We have not seen that before with the clarity we get with this view."

Researchers discovered unprecedented changes in the light emitted by glowing nitrogen, hydrogen, and oxygen being blasted off by the dying star at the center of the nebula. The oxygen emission, in particular, dropped in brightness by a factor of nearly 1,000 between 1996 and 2016.

"Changes in nebulae have been seen before, but what we have here are changes in the fundamental structure of the nebula," said Bruce Balick of the University of Washington, Seattle, leader of the new research. "In most studies, the nebula usually gets bigger. Here, it's fundamentally changing its shape and getting fainter, and doing so on an unprecedented time scale. Moreover, to our surprise, it's not growing any larger. Indeed, the once-bright inner elliptical ring seems to be shrinking as it fades."

Ground-based observations of other planetary nebulae have shown hints of changes in brightness over time, but those speculations haven't been confirmed until now. Only Hubble can resolve the changes in structure in this tiny nebula. The new paper examines every image of the Stingray nebula from Hubble's archives.

"Because of Hubble's optical stability, we are very, very confident that this nebula is changing in brightness with time," added Guerrero. "This is something that can only be confirmed with Hubble's visual acuity."

The researchers note the nebula's rapid changes are a response to its central star, SAO 244567, expanding due to a temperature drop, and in turn emitting less ionizing radiation.

A 2016 study by Nicole Reindl, now of the University of Potsdam, Germany, and a team of international researchers, also using Hubble data, noted the star at the center of the Stingray nebula, SAO 244567, is special in its own right.

Observations from 1971 to 2002 showed the temperature of the star skyrocketing from less than 40,000 to 108,000 degrees Fahrenheit, more than ten times hotter than the surface of our Sun. Now, Reindl and her research team has shown that SAO 245567 is cooling. Reindl speculates the temperature jump was caused by a brief flash of helium fusion that occurred in a shell around the core of the central star. Recently, the star appears to be backstepping into its early stage of stellar evolution.

"We're very lucky to observe it just in that moment," said Reindl. "During such a helium shell flash, it evolves very quickly, and that implies short evolutionary timescales, so we can't usually see how these stars evolve. We just happened to be there at the right time to have caught that."

The team studying the rapid fading of the Stingray nebula can only speculate at this time what's in store for the future of this young nebula. At its present rates of fading, it's estimated the nebula will barely be detectable in 20 or 30 years.

###

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.