Andrea Stone
A great figure in 20th-century physics, Freeman J. Dyson—the theorist who unified the world of the atom and the electron, a critic of nuclear weapons tests, a designer of space civilizations, and a steadfast climate change contrarian—died on February 28, 2020, in Princeton, New Jersey. He was 96 years old.
A great figure in 20th-century physics, Freeman J. Dyson—the theorist who unified the world of the atom and the electron, a critic of nuclear weapons tests, a designer of space civilizations, and a steadfast climate change contrarian—died on February 28, 2020, in Princeton, New Jersey. He was 96 years old.
© Photograph by William E. Sauro, The New York Times via Reuters Professor Freeman J. Dyson of the Institute for Advanced Study in Princeton is shown at Jadwyn Hall where he had an office and taught, November 15, 1972.
At his death, Dyson still maintained an office at the Institute for Advanced Study (IAS) in Princeton, New Jersey, where he took up residence in 1953 as a professor of physics. The IAS confirmed Dyson's passing to National Geographic.
"No life is more entangled with the Institute and impossible to capture—architect of modern particle physics, free-range mathematician, advocate of space travel, astrobiology and disarmament, futurist, eternal graduate student, rebel to many preconceived ideas including his own, thoughtful essayist, all the time a wise observer of the human scene," Robbert Dijkgraaf, director of the IAS, said in a statement. "His secret was simply saying yes to everything in life, till the very end."
When Dyson began his appointment at the IAS, Albert Einstein still roamed the grounds. Though he would later be called an "heir" to his renowned colleague, Dyson never came up with a general theory of anything. Modest, shy, and self-effacing, he was always content to work with others on their ideas.
"I'm not a person for big questions," he told Quanta Magazine shortly after his 90th birthday. "I look for puzzles. I look for interesting problems that I can solve. I don't care whether they're important or not, and so I'm definitely not obsessed with solving some big mystery. That's not my style."
"He did not propose radical new ideas, but instead helped clean up the details of the theories first proposed in the quantum revolution of the 1920s," said Declan Fahy, an associate professor of communications at Dublin City University in Dublin, Ireland, who studies scientists as public intellectuals. "In the 1940s and 1950s, he and others proved experimentally that the theories were correct, and this resulted ultimately in the theory of quantum electrodynamics, which describes how atoms behave. It's hugely significant in science, but does not capture public imagination in the same way as string theory."
At his death, Dyson still maintained an office at the Institute for Advanced Study (IAS) in Princeton, New Jersey, where he took up residence in 1953 as a professor of physics. The IAS confirmed Dyson's passing to National Geographic.
"No life is more entangled with the Institute and impossible to capture—architect of modern particle physics, free-range mathematician, advocate of space travel, astrobiology and disarmament, futurist, eternal graduate student, rebel to many preconceived ideas including his own, thoughtful essayist, all the time a wise observer of the human scene," Robbert Dijkgraaf, director of the IAS, said in a statement. "His secret was simply saying yes to everything in life, till the very end."
When Dyson began his appointment at the IAS, Albert Einstein still roamed the grounds. Though he would later be called an "heir" to his renowned colleague, Dyson never came up with a general theory of anything. Modest, shy, and self-effacing, he was always content to work with others on their ideas.
"I'm not a person for big questions," he told Quanta Magazine shortly after his 90th birthday. "I look for puzzles. I look for interesting problems that I can solve. I don't care whether they're important or not, and so I'm definitely not obsessed with solving some big mystery. That's not my style."
"He did not propose radical new ideas, but instead helped clean up the details of the theories first proposed in the quantum revolution of the 1920s," said Declan Fahy, an associate professor of communications at Dublin City University in Dublin, Ireland, who studies scientists as public intellectuals. "In the 1940s and 1950s, he and others proved experimentally that the theories were correct, and this resulted ultimately in the theory of quantum electrodynamics, which describes how atoms behave. It's hugely significant in science, but does not capture public imagination in the same way as string theory."
Dyson became famous for translating the ideas of Richard Feynman and two other physicists into more accessible mathematical calculations in a seminal 1949 paper, "The Radiation Theories of Tomonaga, Schwinger, and Feynman." But before that, he and Feynman spent four memorable days driving from upstate New York to Albuquerque that included not only deep, inspirational conversations but also taking shelter from an Oklahoma flood in a brothel.
Despite Dyson's key role in synthesizing their ideas, he was overlooked in 1965 when Feynman, Harvard physicist Julian Schwinger, and Japanese scientist Sin-Itiro Tomonaga won the Nobel Prize for their work on the physics of elementary particles.
Though he was passed over for the Nobel—his 2000 Templeton Prize cited that work as his "most useful contribution to science"—Dyson's improvement of the early understanding of how atoms behave was a major advance from earlier ideas regarding both relativity and quantum mechanics, said Virginia Trimble, a physicist at the University of California at Irvine.
"You could say that, without this understanding, you wouldn't have modern computers or telephones or digital cameras," she said.
You also wouldn’t have certain radiation therapies used for cancer to this day. In the late 1950s, building on an idea by Edward Teller, Dyson led a team that designed and patented the TRIGA (which stands for Training, Research, Isotopes, General Atomic), a small, low-power nuclear reactor that is still used in research hospitals to produce medical isotopes to treat various forms of cancer.
Dyson's nuclear energy work also extended to the Air Force's secret Project Orion, which sought to build a spaceship propelled by exploding atomic bombs that would take humans to the farthest reaches of the solar system. The fantastical venture was canceled after NASA opted for more conventional rockets and the nuclear test ban treaty put an end to aboveground atomic experiments.
Dyson's interest in nuclear weapons also brought controversy. As a member during the Vietnam War of JASON, a defense industry advisory panel, he spearheaded research on the feasibility of using small, tactical nuclear weapons against the enemy. His ease in separating the technical from the moral aspects of the project made him a target of the anti-war movement.
Still, the scientist had other, less divisive ideas that became the stuff of science fiction. His hypothetical Dyson Sphere, a megastructure that would encompass a star to capture its energy, was portrayed in novels and in an episode of TV's Star Trek: The Next Generation. The hypothetical Dyson tree would grow on comets to support future space colonists.
Proud not to be a Ph.D.
Freeman John Dyson was born on December 15, 1923, in Crowthorne, England. His father was the prominent British composer Sir George Dyson, and his mother, Mildred Atkey, was a social worker. He was a math prodigy who by the age of 5 had calculated how many atoms were in the sun.
Dyson attended Winchester College, where his father was a music instructor, before working as a civilian targeting analyst for the Royal Air Force during World War II.
Not long after earning a degree in mathematics from Cambridge University in 1945, Dyson moved to the United States. He enrolled at New York's Cornell University and, despite lacking a Ph.D., was a professor there from 1951 to 1953. Although he would eventually receive some two dozen honorary degrees, Dyson never completed his doctorate. Instead, he became an outspoken opponent of the "Ph.D. system," which he called "an abomination" that discouraged many budding scientists, especially women.
After Dyson's mentor at Cornell, physicist Hans Bethe, wrote a letter to Robert Oppenheimer at the Institute for Advanced Study, Dyson was invited to become a fellow. It was there that he wrote his epochal paper on quantum electrodynamics, which launched his career and led to a permanent place at the institute.
The versatile scientist worked on a wide range of areas in theoretical physics. While Wolfgang Pauli won the Nobel Prize for his exclusion principle stating that no two electrons in an atom can have identical quantum numbers, it was Dyson and mathematician Andrew Lenard who later proved it definitively.
Dyson wrote more than a dozen books that made complex scientific and moral concepts comprehensible to nonspecialists. Among his best-selling books are Origins of Life and Weapons and Hope, which won the National Book Critics Circle Award for general nonfiction in 1984.
The scientist, who became a U.S. citizen in 1957, married twice and had six children. His two children with mathematician Verena Huber Dyson are technology venture capitalist Esther Dyson and science historian George Dyson. In 1958, he married Imme Jung, his wife for more than 60 years when he died. She and their daughters Dorothy, Mia, Rebecca, and Emily, as well as 16 grandchildren, also survive him.
So, too, does his controversial stance on climate change.
Dyson's criticism of climate science grew out of his own involvement with the JASON group and developed amid the nuclear winter debate with Carl Sagan and others. In his own simple climate model, Dyson underplayed the effects of greenhouse gases. Atmospheric physicists savaged his model for going against a broad consensus. That stung Dyson, who insisted that "global warming is grossly exaggerated as a problem." His skepticism continued to bring scathing criticism during his final years, as evinced in a New York Times Magazine article headlined "The Civil Heretic."
"An important theme in his popular science books was the value of the scientific contrarian," Fahy said. "At the end of his life, it was this issue that increasingly came to define him in public, rather than his vital contributions to physics."
Dan Vergano and Michael Greshko contributed to this article.
Legendary mathematician and physicist Freeman Dyson has died at the age of 96
Mathematician and physicist Freeman Dyson Bryan Bedder/Getty Images
Mathematician and physicist Freeman Dyson has died at the age of 96, according to a press release issued by the Institute for Advanced Study.
Mathematician and physicist Freeman Dyson has died at the age of 96, according to a press release issued by the Institute for Advanced Study.
yson was perhaps most famous for contributions to quantum electrodynamics, his biography on the the institute website noted.
Dyson's contributions to both science and popular culture are many: he won the Max Planck Medal and the Templeton prize, wrote books like "The Scientist as Rebel," was an outspoken supporter of Obama's nuclear deal with Iran, and his Dyson Sphere concept even made an appearance in Star Trek.
Legendary mathematician and physicist Freeman Dyson has died at the age of 96, according to a press release issued by the Institute for Advanced Study.
The British-born mathematician and physicist, best known for unifying the three versions of quantum electrodynamics invented by Richard Feynman, suffered a fall on his way to his office, his daughter Mia Dyson first told the Maine Public. He passed away on Friday.
Dyson had a colorful career: He worked as a civilian scientist for the Royal Airforce in World War II, before attending Cambridge University to get his undergraduate degree in mathematics. He went on to do graduate work in Cornell University, and became a professor there despite never having formally gotten a PhD.
Dyson worked on a diverse range of physics and mathematical problems: nuclear reactors, solid-state physics, ferromagnetism, astrophysics, and biology (one of his ideas, the Dyson Sphere, was even featured in a "Star Trek" episode). He won the Max Planck Medal and the Templeton Prize, and wrote often-quoted books like "Disturbing the Universe" and "The Scientist as Rebel."
He also kept track of the politics that later surrounded his expertise. Notably, he was among 29 scientists who supported the Obama administration's 2015 nuclear deal with Iran. He also acted as a a military adviser regarding the use of nuclear weapons during the Vietnam War in 1967.
And in 2009, he was the subject of a lengthy profile in the New York Times Magazine after expressing his skepticism about the scientific predictions surrounding climate change. He stuck to that conviction, telling NPR in 2015 that, "I'm not saying the climate disasters aren't real, I'm merely saying we don't know how to prevent them."
Dyson is survived by his wife of 64 years and six children.
Scientific Rebel Freeman Dyson Dies
The iconoclastic physicist rejected the idea of an endpoint to the human quest for knowledge and happiness.
By John Horgan on February 28, 2020
Credit: Getty Images
Freeman Dyson, who possessed one of the truly original minds of the modern era, has died. Dyson, 96, helped construct the standard model of particle physics, and he envisioned the Singularity decades before that term was adopted to describe the radical transformation of human intelligence. Below is a eulogy cobbled together from The End of Science and other writings. –John Horgan
Humanity, Nietzsche proclaimed, is just a steppingstone, a bridge leading to the Superman. If Nietzsche were alive today, he would surely entertain the notion that the Superman might be made not of flesh and blood but of silicon. As human science wanes, those who hope that the quest for knowledge will continue must put their faith not in Homo sapiens but in intelligent machines. Only machines can overcome our physical and cognitive weaknesses--and our indifference.
In fact, there is an odd little sub-culture within science whose members speculate about how intelligence might evolve when or if it sheds its mortal coil. Participants are not practicing science, of course, but ironic science, or wishful thinking. They are concerned with what the world might be or should be centuries or millennia or eons hence. The literature of this field—which I call scientific theology--may nonetheless shed new light on age-old philosophical and even theological questions: What could we do if we could do anything? What is the point of life? What are the ultimate limits of knowledge? Is suffering a necessary component of existence, or can we attain eternal bliss?
Physicist Freeman Dyson was the leading practitioner of scientific theology. In his 1988 essay collection Infinite in All Directions, Dyson speculated on why there is so much violence and hardship in the world. The answer, he suggested, might have something to do with what he called "the principle of maximum diversity." This principle, he continued,
operates at both the physical and the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible. As a result, life is possible but not too easy. Always when things are dull, something turns up to challenge us and to stop us from settling into a rut. Examples of things which made life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death. Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth.
Dyson, it seemed to me, was suggesting that we cannot solve all our problems, we cannot create heaven, we cannot find The Answer to the riddle of existence. Life is--and must be--an eternal struggle. Was I reading too much into Dyson's remarks? I hoped to find out when I interviewed him in 1993 at the Institute for Advanced Study, his home since the early 1940's.
Dyson was a slight man, all sinew and veins, with a cutlass of a nose and deep-set, watchful eyes. He resembled a gentle raptor. His demeanor was generally cool and reserved--until he laughed. Then he snorted through his nose, shoulders heaving, like a 12-year-old schoolboy hearing a dirty joke. It was a subversive laugh, the laugh of a man who envisioned space as a haven for "religious fanatics" and "recalcitrant teenagers," who insisted that science at its best is "a rebellion against authority."
I did not ask Dyson about his maximum-diversity idea right away. First I inquired about the choices that had characterized his career. Dyson had once been at the forefront of the search for a unified theory of physics. In the early 1950s, the British-born physicist strove with Richard Feynman and other titans to forge a quantum theory of electromagnetism. It has often been said that Dyson deserved a Nobel prize for his efforts--or at least more credit. In fact, some colleagues have suggested that disappointment and, perhaps, a contrarian streak, later drove Dyson toward pursuits unworthy of his powers.
When I mentioned this assessment to Dyson, he gave me a tight-lipped smile. He then responded, as he was wont to do, with an anecdote. The British physicist Lawrence Bragg, he noted, was "a sort of role model." After Bragg became the director of the University of Cambridge's legendary Cavendish Laboratory in 1938, he steered it away from nuclear physics, on which its mighty reputation rested, and into new territory.
"Everybody thought Bragg was destroying the Cavendish by getting out of the mainstream," Dyson said. "But of course it was a wonderful decision, because he brought in molecular biology and radio astronomy. Those are the two things which made Cambridge famous over the next 30 years or so."
Dyson, too, had spent his career swerving toward unknown lands. He veered from mathematics, his focus in college, to particle physics and from there to solid state physics, nuclear engineering, arms control, climate studies--and speculation about the long-term prospects of intelligence.
Dyson was provoked into taking up this final topic by physicist Steven Weinberg, who once remarked that "the more the universe seems comprehensible, the more it also seems pointless." No universe with intelligence is pointless, Dyson retorted in a 1979 paper in Reviews of Modern Physics. He sought to show that in an open, eternally expanding universe, intelligence could persist forever--perhaps in the form of a cloud of charged particles--through shrewd conservation of energy.
Dyson did not think organic intelligence would soon give way to artificial intelligence. In Infinite in All Directions, he speculated that genetic engineers might someday "grow" spacecraft "about as big as a chicken and about as smart," which could flit on sunlight-powered wings through the solar system and beyond, acting as our scouts. (Dyson called them "astrochickens.") Still more distant civilizations, perhaps concerned about dwindling energy supplies, could capture the radiation of stars by encasing them in energy-absorbing shells--now called Dyson spheres.
Eventually, Dyson predicted, intelligence might spread through the entire universe, transforming it into one great mind. But he insisted that "no matter how far we go into the future, there will always be new things happening, new information coming in, new worlds to explore, a constantly expanding domain of life, consciousness and memory." The quest for knowledge would be--must be--"infinite in all directions."
Dyson addressed the most important question raised by this prophecy: "What will mind choose to do when it informs and controls the universe?" The question, Dyson made clear, was theological rather than scientific:
I do not make any clear distinction between mind and God. God is what mind becomes when it has passed beyond the scale of our comprehension. God may be considered to be either a world-soul or a collection of world souls. We are the chief inlets of God on this planet at the present stage in his development. We may later grow with him as he grows, or we may be left
Ultimately, we “cannot hope to answer" the question of what this superbeing, this God, will do or think. Dyson admitted that his view of the future reflected wishful thinking. When I asked if science could keep evolving forever, he replied, "I hope so! It's the kind of world I'd like to live in." If minds make the universe meaningful, they must have something to think about, so science must be eternal.
"The only way to think about this is historical," he explained. Two thousand years ago some "very bright people" invented something that, while not science in the modern sense, was obviously its precursor. "If you go into the future, what we call science won't be the same thing anymore, but that doesn't mean there won't be interesting questions."
Like physicist Roger Penrose, Dyson hoped that Godel's theorem might apply to physics as well as mathematics. "Since we know the laws of physics are mathematical, and we know that mathematics is an inconsistent system, it's sort of plausible that physics will also be inconsistent" and therefore open-ended. "So I think these people who predict the end of physics may be right in the long run. Physics may become obsolete. But I would guess myself that physics might be considered something like Greek science: an interesting beginning but it didn't really get to the main point. So the end of physics may be the beginning of something else."
When, finally, I asked Dyson about his maximum diversity idea, he shrugged. Oh, he didn't intend anyone to take that too seriously. He insisted that he was not really interested in "the big picture." One of his favorite quotes, he said, is "God is in the details." But given his insistence that diversity is somehow essential to existence, I asked, didn't he find it disturbing that so many scientists and others seemed compelled to reduce everything to a single insight? Didn't such efforts represent a dangerous game?
"Yes, that's true in a way," Dyson replied, with a small smile that suggested he found my interest in his little idea amusing. "I never think of this as a deep philosophical belief," he added. "It's simply, to me, just a poetic fancy." Dyson was maintaining an appropriate ironic distance between himself and his ideas, but there was something disingenuous about his attitude. After all, throughout his own eclectic career, he seemed to be striving to adhere to the principle of maximum diversity.
The 1984 book The Limits of Science by biologist Peter Medawar consisted for the most part of regurgitated Popperisms. Medawar kept insisting, for example, that "there is no limit upon the power of science to answer questions of the kind science can answer," as if this were a profound truth rather than a vacuous tautology. Medawar did offer some felicitous phrases, however. He concluded a section on "bunk"--by which he meant myths, superstitions and other beliefs lacking an empirical basis--with the remark, "It is fun sometimes to be bunkrapt."
Dyson was both brilliant and bunkrapt. He thought that global warming, on balance, might be beneficial, and he took extrasensory perception seriously. In a 2004 essay in the New York Review of Books, he proposed that "paranormal phenomena are real but lie outside the limits of science." No one has produced empirical proof of ESP, Dyson conjectured, because it tends to occur under conditions of "strong emotion and stress," which are "inherently incompatible with controlled scientific procedures."
Dyson’s vision of the far future is bunkrapt, too—and also one of the most profound bits of ironic science I have encountered. The principle of maximum diversity suggests that, even if the cosmos was designed for us, we will never figure it out, and we will never create a blissful paradise in which all our problems are solved. No theory of everything, no heaven. Without hardship and suffering--without “challenges,” from the war between the sexes to World War II and the Holocaust--life would be too boring. This is a chilling answer to the problem of evil, but I haven’t found a better one.
Further Reading:
See also my free, online book Mind-Body Problems: Science, Subjectivity & Who We Really Are.
The views expressed are those of the author(s) and are not necessarily those of Scientific American.
ABOUT THE AUTHOR(S)
John Horgan
John Horgan directs the Center for Science Writings at the Stevens Institute of Technology. His books include The End of Science, The End of War and Mind-Body Problems, available for free at mindbodyproblems.com.
Recent Articles
No comments:
Post a Comment