Unraveling the song of ice and fire across the American landscape with machine learning
In the rugged terrain of the western United States, where wildfires rage unchecked, a surprising connection emerges with the tumultuous skies of the central US. A recent study published in Advances in Atmospheric Sciences explores the intriguing relationship between wildfires in the West and hailstorms in the Central US. At the core of this pioneering study led by Jiwen Fan, who was at Pacific Northwest National Laboratory and is currently at Argonne National Laboratory, lies the innovative application of machine learning (ML) techniques to illuminate the hidden link between seemingly disparate phenomena.
Machine learning algorithms, including Random Forest and Extreme Gradient Boosting, are employed to analyze vast datasets spanning two decades, from 2001 to 2020. These ML models are trained to predict the occurrence of large hail in Central US states based on a multitude of variables, including meteorological conditions in the fire region, wind patterns, and characteristics of wildfires themselves.
Through meticulous analysis and data processing, the ML models achieve remarkable accuracy, with predictions exceeding 90% in some cases. By identifying key variables and patterns, these models unveil correlations between wildfires in the western US and hailstorms in the central US, providing invaluable insights into the remote impacts of wildfires on severe weather events thousands of miles away.
"We are now able to paint a vivid picture of the intricate relationship between fire and hail across the American landscape. Wildfires in the western US, exert a far-reaching influence on atmospheric conditions, shaping the trajectory of severe weather events thousands of miles away - something that we never thought before” said Dr. Jiwen Fan, “Meteorological variables like westerly wind, the temperature and relative humidity in the fire region and the intensity of wildfires emerge as key players in this climatic symphony.”
Yet, amidst the marvel of discovery, challenges abound. Attempts to predict the daily count of large hail events reveal the complexities of nature's whims, reminding us of the unpredictable nature of weather phenomena. As researchers continue to refine their models and confront data imbalances, the quest for understanding presses onward.
The utilization of ML techniques represents a significant advancement in atmospheric science, allowing researchers to navigate complex datasets and extract meaningful patterns that may have eluded traditional statistical methods. With ML as their guiding light, scientists embark on a journey to unravel the mysteries of Earth's interconnected systems and pave the way for more accurate predictions and proactive measures in the face of evolving climate dynamics.
JOURNAL
Advances in Atmospheric Sciences
ARTICLE TITLE
Machine Learning Analysis of Impact of Western US Fires on Central US Hailstorms
ARTICLE PUBLICATION DATE
11-Apr-2024
Decoding spontaneous thoughts from the brain via machine learning
Predicting self-relevance and valence during personal narratives using fMRI and predictive modeling
INSTITUTE FOR BASIC SCIENCE
A team of researchers led by KIM Hong Ji and WOO Choong-Wan at the Center for Neuroscience Imaging Research (CNIR) within the Institute for Basic Science (IBS), in collaboration with Emily FINN at Dartmouth College, has unlocked a new realm of understanding within the human brain. The team demonstrated the possibility of using functional Magnetic Resonance Imaging (fMRI) and machine learning algorithms to predict subjective feelings in people’s thoughts while reading stories or in a freely thinking state.
The brain is constantly active, and spontaneous thoughts occur even during rest or sleep. These thoughts can be anything ranging from memories of the past to aspirations for the future, and they are often intertwined with emotions and personal concerns. However, because spontaneous thought typically occurs without any constraint of consciousness, researching them poses challenges - even simply asking individuals what they are currently thinking can change the nature of their thoughts.
New research suggests that it may be possible to develop predictive models of affective contents during spontaneous thought by combining personal narratives with fMRI. Narratives and spontaneous thoughts share similar characteristics, including rich semantic information and temporally unfolding nature. To capture a diverse range of thought patterns, participants engaged in one-on-one interviews to craft personalized narrative stimuli, reflecting their past experiences and emotions. While participants read their stories inside the MRI scanner, their brain activity was recorded.
After the fMRI scan, the participants were asked to read the stories again and report perceived self-relevance (i.e., how much this content is related to themselves) and valence (i.e., how much this content is positive or negative) at each moment. Using a quintile (five levels) from each participant's self-relevance and valence ratings, 25 (5 levels of self-relevance rating × 5 levels of valence rating) possible segments of fMRI and rating data were created. The team then harnessed machine learning techniques to train predictive models, combining these data with the fMRI brain scans from 49 individuals to decode the “emotional dimensions” of thoughts in real time.
To interpret the brain representations of the predictive models, the research team employed multiple approaches, such as virtual lesion and virtual isolation analyses at both region and network levels. Through these analyses, they discovered the significance of the default mode, ventral attention, and frontoparietal networks in both self-relevance and valence predictions. Specifically, they identified the involvement of the anterior insula and midcingulate cortex in self-relevance prediction, while the left temporoparietal junction and dorsomedial prefrontal cortex played important roles in valence prediction.
Moreover, the predictive models showed their capacity to predict both self-relevance and valence not only during story reading but also when applied to data from 199 individuals engaging in spontaneous, task-free thinking or even during resting. These findings show the promise of daydream decoding.
“Several tech companies and research teams are currently endeavoring to decode words or images directly from brain activity, but there are limited initiatives aimed at decoding intimate emotions underlying these thoughts,” stated Dr. WOO Choong-Wan, associate director of IBS, who led the study. “Our research is centered on human emotions, with the aim of decoding emotions within the natural flow of thoughts to obtain information that can benefit people’s mental health.”
KIM Hongji, a doctoral candidate and the first author of this study, emphasized, "This study holds significance as we decoded the emotional state associated with general thoughts, rather than targeting emotions limited to specific tasks," adding, "These findings advance our understanding of the internal states and contexts influencing subjective experiences, potentially shedding light on individual differences in thoughts and emotions, and aiding in the evaluation of mental well-being."
Video abstract can be found at: https://youtu.be/wUr6apaRuAE
The brain maps shown in the left panel illustrate the results of searchlight-based virtual isolation analysis for the self-relevance (top) and the valence model (bottom). The plots in the right panel show the virtual isolation analysis results for the self-relevance model (top) and the valence model (bottom), incorporating large-scale networks and selected ROIs. Each colored dot represents the prediction-outcome correlations for each network or region with bootstrap tests of 10,000 iterations.
CREDIT
Institute for Basic Science
JOURNAL
Proceedings of the National Academy of Sciences
METHOD OF RESEARCH
Experimental study
SUBJECT OF RESEARCH
People
ARTICLE TITLE
Brain decoding of spontaneous thought: predictive modeling of self-relevance and valence using personal narratives
No comments:
Post a Comment