Tiny fish-shaped robot ‘swims’ around picking up microplastics
Microplastics are found nearly everywhere on Earth and can be harmful to animals if they’re ingested. But it’s hard to remove such tiny particles from the environment, especially once they settle into nooks and crannies at the bottom of waterways. Now, researchers in ACS’ Nano Letters have created a light-activated fish robot that “swims” around quickly, picking up and removing microplastics from the environment.
Because microplastics can fall into cracks and crevices, they’ve been hard to remove from aquatic environments. One solution that’s been proposed is using small, flexible and self-propelled robots to reach these pollutants and clean them up. But the traditional materials used for soft robots are hydrogels and elastomers, and they can be damaged easily in aquatic environments. Another material called mother-of-pearl, also known as nacre, is strong and flexible, and is found on the inside surface of clam shells. Nacre layers have a microscopic gradient, going from one side with lots of calcium carbonate mineral-polymer composites to the other side with mostly a silk protein filler. Inspired by this natural substance, Xinxing Zhang and colleagues wanted to try a similar type of gradient structure to create a durable and bendable material for soft robots.
The researchers linked β-cyclodextrin molecules to sulfonated graphene, creating composite nanosheets. Then solutions of the nanosheets were incorporated with different concentrations into polyurethane latex mixtures. A layer-by-layer assembly method created an ordered concentration gradient of the nanocomposites through the material from which the team formed a tiny fish robot that was 15-mm (about half-an-inch) long. Rapidly turning a near-infrared light laser on and off at a fish’s tail caused it to flap, propelling the robot forward. The robot could move 2.67 body lengths per second — a speed that’s faster than previously reported for other soft swimming robots and that is about the same speed as active phytoplankton moving in water. The researchers showed that the swimming fish robot could repeatedly adsorb nearby polystyrene microplastics and transport them elsewhere. The material could also heal itself after being cut, still maintaining its ability to adsorb microplastics. Because of the durability and speed of the fish robot, the researchers say that it could be used for monitoring microplastics and other pollutants in harsh aquatic environments.
The authors acknowledge funding from a National Key Research and Development Program of China Grant, National Natural Science Foundation of China Grants and the Sichuan Provincial Natural Science Fund for Distinguished Young Scholars.
The paper’s abstract will be available on June 22 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.2c01375.
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Follow us: Twitter | Facebook | LinkedIn | Instagram
JOURNAL
Nano Letters
ARTICLE TITLE
Robust, Healable, Self-Locomotive Integrated Robots Enabled by Noncovalent Assembled Gradient Nanostructure
Silk offers an alternative to some microplastics
Researchers have developed a biodegradable system based on silk to replace microplastics added to agricultural products, paints, and cosmetics
Peer-Reviewed PublicationMicroplastics, tiny particles of plastic that are now found worldwide in the air, water, and soil, are increasingly recognized as a serious pollution threat, and have been found in the bloodstream of animals and people around the world.
Some of these microplastics are intentionally added to a variety of products, including agricultural chemicals, paints, cosmetics, and detergents — amounting to an estimated 50,000 tons a year in the European Union alone, according to the European Chemicals Agency. The EU has already declared that these added, nonbiodegradable microplastics must be eliminated by 2025, so the search is on for suitable replacements, which do not currently exist.
Now, a team of scientists at MIT and elsewhere has developed a system based on silk that could provide an inexpensive and easily manufactured substitute. The new process is described in a paper in the journal Small, written by MIT postdoc Muchun Liu, MIT professor of civil and environmental engineering Benedetto Marelli, and five others at the chemical company BASF in Germany and the U.S.
The microplastics widely used in industrial products generally protect some specific active ingredient (or ingredients) from being degraded by exposure to air or moisture, until the time they are needed. They provide a slow release of the active ingredient for a targeted period of time and minimize adverse effects to its surroundings. For example, vitamins are often delivered in the form of microcapsules packed into a pill or capsule, and pesticides and herbicides are similarly enveloped. But the materials used today for such microencapsulation are plastics that persist in the environment for a long time. Until now, there has been no practical, economical substitute available that would biodegrade naturally.
Much of the burden of environmental microplastics comes from other sources, such as the degradation over time of larger plastic objects such as bottles and packaging, and from the wear of car tires. Each of these sources may require its own kind of solutions for reducing its spread, Marelli says. The European Chemical Agency has estimated that the intentionally added microplastics represent approximately 10-15 percent of the total amount in the environment, but this source may be relatively easy to address using this nature-based biodegradable replacement, he says.
“We cannot solve the whole microplastics problem with one solution that fits them all,” he says. “Ten percent of a big number is still a big number. … We’ll solve climate change and pollution of the world one percent at a time.”
Unlike the high-quality silk threads used for fine fabrics, the silk protein used in the new alternative material is widely available and less expensive, Liu says. While silkworm cocoons must be painstakingly unwound to produce the fine threads needed for fabric, for this use, non-textile-quality cocoons can be used, and the silk fibers can simply be dissolved using a scalable water-based process. The processing is so simple and tunable that the resulting material can be adapted to work on existing manufacturing equipment, potentially providing a simple “drop in” solution using existing factories.
Silk is recognized as safe for food or medical use, as it is nontoxic and degrades naturally in the body. In lab tests, the researchers demonstrated that the silk-based coating material could be used in existing, standard spray-based manufacturing equipment to make a standard water-soluble microencapsulated herbicide product, which was then tested in a greenhouse on a corn crop. The test showed it worked even better than an existing commercial product, inflicting less damage to the plants, Liu says.
While other groups have proposed degradable encapsulation materials that may work at a small laboratory scale, Marelli says, “there is a strong need to achieve encapsulation of high-content actives to open the door to commercial use. The only way to have an impact is where we can not only replace a synthetic polymer with a biodegradable counterpart, but also achieve performance that is the same, if not better.”
The secret to making the material compatible with existing equipment, Liu explains, is in the tunability of the silk material. By precisely adjusting the polymer chain arrangements of silk materials and addition of a surfactant, it is possible to fine-tune the properties of the resulting coatings once they dry out and harden. The material can be hydrophobic (water-repelling) even though it is made and processed in a water solution, or it can be hydrophilic (water-attracting), or anywhere in between, and for a given application it can be made to match the characteristics of the material it is being used to replace.
In order to arrive at a practical solution, Liu had to develop a way of freezing the forming droplets of encapsulated materials as they were forming, to study the formation process in detail. She did this using a special spray-freezing system, and was able to observe exactly how the encapsulation works in order to control it better. Some of the encapsulated “payload” materials, whether they be pesticides or nutrients or enzymes, are water-soluble and some are not, and they interact in different ways with the coating material.
“To encapsulate different materials, we have to study how the polymer chains interact and whether they are compatible with different active materials in suspension,” she says. The payload material and the coating material are mixed together in a solution and then sprayed. As droplets form, the payload tends to be embedded in a shell of the coating material, whether that’s the original synthetic plastic or the new silk material.
The new method can make use of low-grade silk that is unusable for fabrics, and large quantities of which are currently discarded because they have no significant uses, Liu says. It can also use used, discarded silk fabric, diverting that material from being disposed of in landfills.
Currently, 90 percent of the world’s silk production takes place in China, Marelli says, but that’s largely because China has perfected the production of the high-quality silk threads needed for fabrics. But because this process uses bulk silk and has no need for that level of quality, production could easily be ramped up in other parts of the world to meet local demand if this process becomes widely used, he says.
The research team also included Pierre-Eric Millard, Ophelie Zeyons, Henning Urch, Douglas Findley and Rupert Konradi from the BASF corporation, in Germany and in the U.S. The work was supported by BASF through the Northeast Research Alliance (NORA).
###
Written by David L. Chandler, MIT News Office
Additional background
Paper: “Microencapsulation of high-content actives using biodegradable silk materials.”
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202201487
ARTICLE TITLE
“Microencapsulation of high-content actives using biodegradable silk materials.”
No comments:
Post a Comment