Friday, June 10, 2022

Racial disparities in health care spending, use among Medicaid enrollees

JAMA Health Forum

Peer-Reviewed Publication

JAMA NETWORK

About The Study: In this analysis of nearly 2 million Medicaid enrollees in 2016, compared with white enrollees, Black enrollees generated lower spending and used fewer services, including primary care and recommended care for acute and chronic conditions, but had substantially higher emergency department use. Differences persisted among enrollees residing in the same zip codes who were treated by the same health care professionals.

Authors: Jacob Wallace, Ph.D., of the Yale School of Public Health in New Haven, Connecticut, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamahealthforum.2022.1398)

Editor’s Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.

#  #  #

Embed this link to provide your readers free access to the full-text article This link will be live at the embargo time https://jamanetwork.com/journals/jama-health-forum/fullarticle/10.1001/jamahealthforum.2022.1398?utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_term=061022

About JAMA Health Forum: JAMA Health Forum has transitioned from an information channel to an international, peer-reviewed, online, open access journal that addresses health policy and strategies affecting medicine, health and health care. The journal publishes original research, evidence-based reports and opinion about national and global health policy; innovative approaches to health care delivery; and health care economics, access, quality, safety, equity and reform. Its distribution will be solely digital and all content will be freely available for anyone to read.

Estimating potential deaths averted from hypothetical income support policies

JAMA Health Forum

Peer-Reviewed Publication

JAMA NETWORK

About The Study: Researchers estimated the number of deaths that could be averted among working-age adults age 18 to 64 with hypothetical income support policies in the United States.

Authors: Anton L. V. AvanceƱa, M.S., of the University of Michigan in Ann Arbor, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamahealthforum.2022.1537)

Editor’s Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.

#  #  #

Embed this link to provide your readers free access to the full-text article This link will be live at the embargo time https://jamanetwork.com/journals/jama-health-forum/fullarticle/10.1001/jamahealthforum.2022.1537?utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_term=061022

About JAMA Health Forum: JAMA Health Forum has transitioned from an information channel to an international, peer-reviewed, online, open access journal that addresses health policy and strategies affecting medicine, health and health care. The journal publishes original research, evidence-based reports and opinion about national and global health policy; innovative approaches to health care delivery; and health care economics, access, quality, safety, equity and reform. Its distribution will be solely digital and all content will be freely available for anyone to read.

Can they make graphite from coal? OHIO researchers start by finding new carbon solid

Peer-Reviewed Publication

OHIO UNIVERSITY

Amorphous graphite 

IMAGE: AMORPHOUS GRAPHITE (YELLOW) OBTAINED AFTER THERMAL TREATMENT AT HIGH TEMPERATURE (3000K) FROM A RANDOM INITIAL CONFIGURATION (GRAY). view more 

CREDIT: OHIO UNIVERSITY

As the world's appetite for carbon-based materials like graphite increases, Ohio University researchers presented evidence this week for a new carbon solid they named "amorphous graphite."

Physicist David Drabold and engineer Jason Trembly started with the question, "Can we make graphite from coal?"

"Graphite is an important carbon material with many uses. A burgeoning application for graphite is for battery anodes in lithium-ion batteries, and it is crucial for the electric vehicle industry — a Tesla Model S on average needs 54 kg of graphite. Such electrodes are best if made with pure carbon materials, which are becoming more difficult to obtain owing to spiraling technological demand," they write in their paper, "Ab initio simulation of amorphous graphite," that published today in Physical Review Letters.

Ab initio means from the beginning, and their work pursues novel paths to synthetic forms of graphite from naturally occurring carbonaceous material. What they found, with several different calculations, was a layered material that forms at very high temperatures (about 3000 degrees Kelvin). Its layers stay together due to the formation of an electron gas between the layers, but they're not the perfect layers of hexagons that make up ideal graphene. This new material has plenty of hexagons, but also pentagons and heptagons. That ring disorder reduces the electrical conductivity of the new material compared with graphene, but the conductivity is still high in the regions dominated largely by hexagons.

Not all hexagons

"In chemistry, the process of converting carbonaceous materials to a layered graphitic structure by thermal treatment at high temperature is called graphitization. In this letter, we show from ab initio and machine learning molecular dynamic simulations that pure carbon networks have an overwhelming proclivity to convert to a layered structure in a significant density and temperature window with the layering occurring even for random starting configurations. The flat layers are amorphous graphene: topologically disordered three-coordinated carbon atoms arranged in planes with pentagons, hexagons and heptagons of carbon," said Drabold, Distinguished Professor of Physics and Astronomy in the College of Arts and Sciences at Ohio University.

"Since this phase is topologically disordered, the usual 'stacking registry' of graphite is only statistically respected,” Drabold said. “The layering is observed without Van der Waals corrections to density functional (LDA and PBE) forces, and we discuss the formation of a delocalized electron gas in the galleries (voids between planes) and show that interplane cohesion is partly due to this low-density electron gas. The in-plane electronic conductivity is dramatically reduced relative to graphene."

The researchers expect their announcement to spur experimentation and studies addressing the existence of amorphous graphite, which may be testable from exfoliation and/or experimental surface structural probes.

Trembly, Russ Professor of Mechanical Engineering and director of the Institute for Sustainable Energy and the Environment in the Russ College of Engineering and Technology at Ohio University, has been working in part on green uses of coal. He and Drabold — along with physics doctoral students Rajendra Thapa, Chinonso Ugwumadu and Kishor Nepal — collaborated on the research. Drabold also is part of the Nanoscale & Quantum Phenomena Institute at OHIO, and he has published a series of papers on the theory of amorphous carbon and amorphous graphene. Drabold also emphasized the excellent work of his graduate students in carrying out this research.

CAPTION

One of the planes in 1,000-atom model of amorphous graphite. Yellow spheres are carbon atoms. Note the “ring disorder”: co-existing pentagons, hexagons and heptagons.

CREDIT

Ohio University

Surprising interplane cohesion

"The question that led us to this is whether we could make graphite from coal," Drabold said. "This paper does not fully answer that question, but it shows that carbon has an overwhelming tendency to layer — like graphite, but with many 'defects' such as pentagons and heptagons (five- and seven-member rings of carbon atoms), which fit quite naturally into the network. We present evidence that amorphous graphite exists, and we describe its process of formation. It has been suspected from experiments that graphitization occurs near 3,000K, but the details of the formation process and nature of disorder in the planes was unknown," he added.

The Ohio University researchers' work is also a prediction of a new phase of carbon.

"Until we did this, it was not at all obvious that layers of amorphous graphene (the planes including pentagons and heptagons) would stick together in a layered structure. I find that quite surprising, and it is likely that experimentalists will go hunting for this stuff now that its existence is predicted,” Drabold said. “Carbon is the miracle element — you can make life, diamond, graphite, Bucky Balls, nanotubes, graphene, and now this. There is a lot of interesting basic physics in this, too — for example how and why the planes bind, this by itself is quite surprising for technical reasons."

The process of layer formation (VIDEO)

How crops can better survive floods

Peer-Reviewed Publication

UNIVERSITY OF FREIBURG

Thale cress 

IMAGE: WHEN OBSERVING THALE CRESS, SJON HARTMAN AND HIS COLLABORATORS FOUND OUT WHICH SIGNALING PATHWAYS THE HORMONE ETHYLENE USES TO SWITCH ON A MOLECULAR EMERGENCY PROGRAM IN PLANTS IN THE EVENT OF FLOODING. view more 

CREDIT: IRIS HARTMAN / UNIVERSITY OF FREIBURG

Extreme weather phenomena are on the rise worldwide, including frequent droughts and fires. Floods are also a clear consequence of climate change. For agriculture, a flooded field means major losses: about 15 percent of global crop losses are due to flooding. As part of a collaboration between Freiburg, Utrecht in the Netherlands, and other institutes, Junior Professor Dr. Sjon Hartman from the Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies at the University of Freiburg, has now discovered that a signaling molecule can make plants more resistant to flooding. The gaseous plant hormone ethylene causes the plant to switch on a kind of molecular emergency power system that helps it survive the lack of oxygen during flooding. The team had previously demonstrated that ethylene sends a signal to the plant that it is underwater. Pretreating the experimental plants with the hormone improved their chances of survival. The results, which appeared in the journal Plant Physiology, should help to combat waterlogging and flooding in agriculture and, for example, to develop resistant plant varieties.

Tracking the adaptations to wet conditions

Plant species differ greatly in their ability to survive periods of flooding or waterlogging. “In the case of potatoes, the roots die after two days due to a lack of oxygen. Rice plants are much more resistant, able to survive their entire lives in waterlogged paddy fields,” Hartman explains. The Arabidopsis thaliana, a model organism for plant research, can be used to study the genes and proteins that make up this adaptation. “Plants notice that they are surrounded by water because the gas ethylene, which all plant cells produce, can no longer escape into the air,” Hartman continues. The researchers showed this in previous studies at Utrecht University. Receptors throughout the plant subsequently respond to increased concentrations of the hormone.

Simulate flooding with oxygen deprivation

The team simulated flooding by placing Arabidopsis seedlings in a bell jar without light or oxygen. When the seedlings were previously exposed to ethylene gas, the root tip cells survived longer. The treated plants stopped root growth and switched energy production in the cells to oxygen-free metabolic processes. In addition, the ethylene caused the cells to be better protected against harmful oxygen radicals that accumulate in oxygen-deprived plants. This was revealed by analyses of gene activity and protein composition of the cells.

"Taken together, these rearrangements that ethylene triggers improve plant survival during and after flooding," Hartman summarizes. "As we better understand these signaling pathways, we can learn to make crops more resilient to flooding to combat climate change."

Read more about Jun.-Prof. Dr. Sjon Hartman's research at CIBSS:
https://www.cibss.uni-freiburg.de/de/news/he-is-getting-to-the-root-of-plant-memory-2

###

About the Cluster of Excellence CIBSS

The Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies aims to gain a comprehensive understanding of biological signaling processes across scales - from the interactions of single molecules and cells to the processes in organs and whole organisms. The researchers are using the knowledge they have gained to develop strategies that can be used to control signals in a targeted manner. Thanks to these technologies, they not only able to unlock new insights in research, but also enable innovations in medicine and plant sciences.

Overview of facts:

  • Original publication: Liu, Z., Hartman, S., van Veen, H., Zhang, H., Leeggangers, H., Martopawiro, S., Bosman, F., de Deugd, F., Su, P., Hummel, M., Rankenberg, T., Hassall, K., Bailey-Serres, J., Theodoulou, F., Voesenek, L., Sasidharan, R. (2022): Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration, Plant Physiology, 2022, kiac245, https://doi.org/10.1093/plphys/kiac245
  • Sjon Hartman has been Junior Professor for “Plant Environmental Signalling and Development” at the University of Freiburg since 2022 and is a member of the Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies.
  • Hartman researches the biological signaling processes that enable plants to respond to their environment and adapt to changing conditions. https://www.hartman-plantlab.com/

Researchers create rapid test for deadly infections in livestock, starting with pigs

Saliva test allows penside testing

Peer-Reviewed Publication

MCMASTER UNIVERSITY

Leyla Soleymani 

IMAGE: MCMASTER UNIVERSITY RESEARCHER LEYLA SOLEYMANI view more 

CREDIT: MCMASTER UNIVERSITY

HAMILTON, ON, June 10, 2022 – Researchers at McMaster University have developed a new form of rapid test to detect infections in farm animals, responding to the rising threat of dangerous outbreaks.

The prototype has been proven effective in detecting a devastating diarrheal infection in pigs first identified in Canada in 2014, and can be adapted to test for other pathogens, and in other animals.

The test, created by biochemist Yingfu Li and engineer Leyla Soleymani and their colleagues, uses a small sample of saliva to detect the chemical markers of infection.

It employs technology similar to a form of test the same research team recently created to detect COVID and other infections in humans. The human test is now moving toward the marketplace with public research funding and corporate support.

The animal test, once it becomes widely available, is expected to be a valuable tool for identifying and isolating outbreaks in farm settings, and for limiting the possibility of animal-to-human transmission of infections, which is believed to be the origin of the COVID-19 pandemic.

Disease outbreaks often require entire herds to be euthanized, with sometimes severe economic and environmental consequences. Canada is a leading producer of pork, with 14 million hogs on 7,600 farms.

“There is a really a clear need for this technology,” Li said. “There are many reasons why everyone – even people who don’t eat pork – should care about animal-infection surveillance.”

The work has been published today in the influential German science journal Angewandte Chemie, which has identified it as a “very important paper” – a specific and rare distinction. The research was funded by the Natural Sciences and Engineering Research Council of Canada.

Li and Soleymani’s co-authors on the paper are Amanda Victorious, Zijie Zhang, Dingran Chang, Roderick Maclachlan, Richa Pandey, Jianrun Xia, Jimmy Gu and Todd Hoare.

The new test could be a significant advancement in the concept of “One Health,” the growing understanding of the interconnection between human, animal and ecosystem health.

Creating such technology is part of the mission of McMaster’s broader Global Nexus for Pandemics and Biological Threats.

The researchers have designed the aptamer-based test to be portable, accurate and quick, allowing veterinarians and other animal caretakers to identify, isolate and treat infected animals quickly.

The test works by mixing a small saliva sample with a chemical reagent and applying the blend to a small microchip reader, which is in turn attached to a smartphone, which displays the results in minutes.

After consulting with experts in the field, the researchers chose to create their first animal test for Porcine Epidemic Diarhhea, a serious viral threat which can spread quickly through entire farms.

One of the greatest technical challenges in developing the test over the last four years was to extract the infection’s chemical signature from the thick and often contaminated saliva of pigs, using samples collected by veterinarian collaborators.

“The challenge here was that the samples we get from animal swabs are much less pure than what we get from humans,” Soleymani said. “You can’t tell a pig to rinse its mouth before swabbing it, so we had to adapt our process to accommodate these challenges.”

Astronomers may have detected a ‘dark’ free-floating black hole


Gravitational microlensing turns up black hole candidate, one of 200 million in the galaxy

Peer-Reviewed Publication

UNIVERSITY OF CALIFORNIA - BERKELEY

Microlensing by compact object 

IMAGE: HUBBLE SPACE TELESCOPE IMAGE OF A DISTANT STAR THAT WAS BRIGHTENED AND DISTORTED BY AN INVISIBLE BUT VERY COMPACT AND HEAVY OBJECT BETWEEN IT AND EARTH. THE COMPACT OBJECT — ESTIMATED BY UC BERKELEY ASTRONOMERS TO BE BETWEEN 1.6 AND 4.4 TIMES THE MASS OF OUR SUN — COULD BE A FREE-FLOATING BLACK HOLE, ONE OF PERHAPS 200 MILLION IN THE MILKY WAY GALAXY. view more 

CREDIT: IMAGE COURTESY OF STSCI/NASA/ESA

If, as astronomers believe, the death of large stars leave behind black holes, there should be hundreds of millions of them scattered throughout the Milky Way galaxy. The problem is, isolated black holes are invisible.

Now, a team led by University of California, Berkeley, astronomers has for the first time discovered what may be a free-floating black hole by observing the brightening of a more distant star as its light was distorted by the object's strong gravitational field — so-called gravitational microlensing.

The team, led by graduate student Casey Lam and Jessica Lu, a UC Berkeley associate professor of astronomy, estimates that the mass of the invisible compact object is between 1.6 and 4.4 times that of the sun. Because astronomers think that the leftover remnant of a dead star must be heavier than 2.2 solar masses in order to collapse to a black hole, the UC Berkeley researchers caution that the object could be a neutron star instead of a black hole. Neutron stars are also dense, highly compact objects, but their gravity is balanced by internal neutron pressure, which prevents further collapse to a black hole.

Whether a black hole or a neutron star, the object is the first dark stellar remnant — a stellar “ghost” — discovered wandering through the galaxy unpaired with another star.

"This is the first free-floating black hole or neutron star discovered with gravitational microlensing," Lu said. "With microlensing, we're able to probe these lonely, compact objects and weigh them. I think we have opened a new window onto these dark objects, which can’t be seen any other way."

Determining how many of these compact objects populate the Milky Way galaxy will help astronomers understand the evolution of stars — in particular, how they die — and of our galaxy, and perhaps reveal whether any of the unseen black holes are primordial black holes, which some cosmologists think were produced in large quantities during the Big Bang.

The analysis by Lam, Lu and their international team has been accepted for publication in The Astrophysical Journal Letters. The analysis includes four other microlensing events that the team concluded were not caused by a black hole, though two were likely caused by a white dwarf or a neutron star. The team also concluded that the likely population of black holes in the galaxy is 200 million — about what most theorists predicted.

Same data, different conclusions

Notably, a competing team from the Space Telescope Science Institute (STScI) in Baltimore analyzed the same microlensing event and claims that the mass of the compact object is closer to 7.1 solar masses and indisputably a black hole. A paper describing the analysis by the STScI team, led by Kailash Sahu, has been accepted for publication in The Astrophysical Journal.

Both teams used the same data: photometric measurements of the distant star's brightening as its light was distorted or "lensed" by the super-compact object, and astrometric measurements of the shifting of the distant star's location in the sky as a result of the gravitational distortion by the lensing object. The photometric data came from two microlensing surveys: the Optical Gravitational Lensing Experiment (OGLE), which employs a 1.3-meter telescope in Chile operated by Warsaw University, and the Microlensing Observations in Astrophysics (MOA) experiment, which is mounted on a 1.8-meter telescope in New Zealand operated by Osaka University. The astrometric data came from NASA’s Hubble Space Telescope. STScI manages the science program for the telescope and conducts its science operations.

Because both microlensing surveys caught the same object, it has two names: MOA-2011-BLG-191 and OGLE-2011-BLG-0462, or OB110462, for short.

While surveys like these discover about 2,000 stars brightened by microlensing each year in the Milky Way galaxy, the addition of astrometric data is what allowed the two teams to determine the mass of the compact object and its distance from Earth. The UC Berkeley-led team estimated that it lies between 2,280 and 6,260 light years (700-1920 parsecs) away, in the direction of the center of the Milky Way Galaxy and near the large bulge that surrounds the galaxy's central massive black hole.

The STScI group estimated that it lies about 5,153 light years (1,580 parsecs) away.

Looking for a needle in a haystack

Lu and Lam first became interested in the object in 2020 after the STScI team tentatively concluded that five microlensing events observed by Hubble — all of which lasted for more than 100 days, and thus could have been black holes — might not be caused by compact objects after all.

Lu, who has been looking for free-floating black holes since 2008, thought the data would help her better estimate their abundance in the galaxy, which has been roughly estimated at between 10 million and 1 billion. To date, star-sized black holes have been found only as part of binary star systems. Black holes in binaries are seen either in X-rays, produced when material from the star falls onto the black hole, or by recent gravitational wave detectors, which are sensitive to mergers of two or more black holes. But these events are rare.

"Casey and I saw the data and we got really interested. We said, 'Wow, no black holes. That's amazing,' even though there should have been," Lu said. "And so, we started looking at the data. If there were really no black holes in the data, then this wouldn’t match our model for how many black holes there should be in the Milky Way. Something would have to change in our understanding of black holes — either their number or how fast they move or their masses.”

When Lam analyzed the photometry and astrometry for the five microlensing events, she was surprised that one, OB110462, had the characteristics of a compact object: The lensing object seemed dark, and thus not a star; the stellar brightening lasted a long time, nearly 300 days; and the distortion of the background star's position also was long-lasting.

The length of the lensing event was the main tipoff, Lam said. In 2020, she showed that the best way to search for black hole microlenses was to look for very long events. Only 1% of detectable microlensing events are likely to be from black holes, she said, so looking at all events would be like searching for a needle in a haystack. But, Lam calculated, about 40% of microlensing events that last more than 120 days are likely to be black holes.

"How long the brightening event lasts is a hint of how massive the foreground lens bending the light of the background star is," Lam said. "Long events are more likely due to black holes. It's not a guarantee, though, because the duration of the brightening episode not only depends on how massive the foreground lens is, but also on how fast the foreground lens and background star are moving relative to each other. However, by also getting measurements of the apparent position of the background star, we can confirm whether the foreground lens really is a black hole."

According to Lu, the gravitational influence of OB110462 on the light of the background star was amazingly long. It took about one year for the star to brighten to its peak in 2011, then about a year to dim back to normal.

More data will distinguish black hole from neutron star

To confirm that OB110462 was caused by a super-compact object, Lu and Lam asked for more astrometric data from Hubble, some of which arrived last October. That new data showed that the change in position of the star as a result of the gravitational field of the lens is still observable 10 years after the event. Further Hubble observations of the microlens are tentatively scheduled for fall 2022.

Analysis of the new data confirmed that OB110462 was likely a black hole or neutron star.

Lu and Lam suspect that the differing conclusions of the two teams are due to the fact that the astrometric and photometric data give different measures of the relative motions of the foreground and background objects. The astrometric analysis also differs between the two teams. The UC Berkeley-led team argues that it is not yet possible to distinguish whether the object is a black hole or a neutron star, but they hope to resolve the discrepancy with more Hubble data and improved analysis in the future.

"As much as we would like to say it is definitively a black hole, we must report all allowed solutions. This includes both lower mass black holes and possibly even a neutron star," Lu said.

"If you can't believe the light curve, the brightness, then that says something important. If you don't believe the position versus time, that tells you something important," Lam said. "So, if one of them is wrong, we have to understand why. Or the other possibility is that what we measure in both data sets is correct, but our model is incorrect. The photometry and astrometry data arise from the same physical process, which means the brightness and position must be consistent with each other. So, there's something missing there. "

Both teams also estimated the velocity of the super-compact lensing object. The Lu/Lam team found a relatively sedate speed, less than 30 kilometers per second. The STScI team found an unusually large velocity, 45 km/s, which it interpreted as the result of an extra kick that the purported black hole got from the supernova that generated it.

Lu interprets her team's low velocity estimate as potentially supporting a new theory that black holes are not the result of supernovas — the reigning assumption today — but instead come from failed supernovas that don't make a bright splash in the universe or give the resulting black hole a kick.

The work of Lu and Lam is supported by the National Science Foundation (1909641) and the National Aeronautics and Space Administration (NNG16PJ26C, NASA FINESST 80NSSC21K2043).

Women in space analogues demonstrate more sustainable leadership

New study from Inga Popovaitė, a sociologist at Kaunas University of Technology (KTU) in Lithuania, suggests that women may be better suited for long-term space missions.

Peer-Reviewed Publication

KAUNAS UNIVERSITY OF TECHNOLOGY

KTU researcher Inga Popovaite at MDRS 

IMAGE: KTU RESEARCHER INGA POPOVAITE AT MDRS view more 

CREDIT: INGA POPOVAITĖ

A new study based on Mars Desert Research Station commanders’ reports reveals differences in female and male leadership behaviour. Although both genders are task-focused, women tend to be more positive. The genders also differ in their approach toward their team – while men focus on accomplishments, women emphasise mutual support. According to the author of the study, Inga Popovaitė, a sociologist at Kaunas University of Technology (KTU) in Lithuania, the findings suggest that women may be better suited for long-term space missions.

According to the researcher, as of 2021, only three women have served as commanders in the International Space Station during two decades of its operations. Although the space is becoming more diverse, little is known about gender differences in leadership in isolated, confined, and extreme environments.

“In ten-to-twenty years when the missions to Mars start, it will be mixed-gender groups that will be sent there. Also, a female astronaut is preparing for a flight to the Moon in a few years. However, there is still a lack of data on women in space due to their low participance in both polar expeditions and space analogues. The dynamics of mixed groups are compared with that of male groups,” says Popovaitė, a researcher at KTU Civil Society and Sustainability research group.

Aiming to contribute to the small body of literature on the topic, she investigated potential gender differences in leadership in space analogue environments. For her study, Popovaitė was using commander reports from the Mars Desert Research Station (MDRS), a space analogue facility in Utah. Space analogues share some characteristics with spaceflight. Such places may exist for other purposes (for example, the Antarctic research stations) or be specifically built to replicate parts of the spaceflight experience.

Leaders of both genders are task-focused, but women are more supportive

In her study, Popovaitė analysed the MDRS reports from 2009 to 2016. In total, 824 commander reports with an average length of 348 words (2008 characters) each were analysed; 277 of them were written by female authors and 541 – by the male. There were 27 women commanders and 49 men commanders during that time in MDRS.

After conducting several types of analysis – computational sentiment analysis, qualitative study of the reports’ content and word frequency calculations – the KTU researcher detected certain differences in female and male commanders’ communication. Firstly, women’s reports had significantly higher positive sentiment scores and significantly lower negative sentiment scores. Secondly, although both female and male commanders demonstrated task-oriented leadership behaviour, women commanders discussed their crew members more frequently; moreover, in such discussions, male commanders focused on team spirit, loyalty and accomplishments, and women emphasised mutual support, motivation and a positive environment. Thirdly, the findings revealed that female commanders tend to use less specific words while talking about their daily activities.

“While it is traditionally considered that male leaders are task-oriented and women are more sociable leaders, my research has shown that both male and female commanders were equally focused on task completion. The only difference between them was that women more frequently encouraged their team with positive supportive messages,” says Popovaitė.

According to the KTU researcher, her findings are in line with theory, which claims that women are more sociable, communal leaders than men. Also, it mirrors previous research evidence that male and female leaders rarely differ in task-oriented behaviour.

“Feminine” leadership more sustainable in space missions

While commenting on her discoveries, Popovaitė reminds that gender and leadership are social roles with potentially conflicting behavioural expectations – leadership traits are culturally perceived as aligned with masculine, and not feminine, traits. Women leaders are socially encouraged to show more positive feelings towards others and avoid showing negative emotions, such as anger.

However, this aspect, characteristic of “feminine” leadership, might be beneficial in extreme situations. Space analogues are more stressful due to long-term isolation, confinement, and limited resources; and any interpersonal conflict can jeopardise team success. Social scientists agree that a leader in such an environment should possess both agentic and communal skills, i.e. should be both task and people-oriented.

“Participation in a simulated space mission is not just about adventure, excitement and discoveries. During the mission, the crew is mainly performing mundane tasks: making food, washing dishes, and tidying the environment. In these environments, people need to survive for prolonged periods without the emotional and psychological support of their family and friends. That’s why a leader, who cares about the emotional needs of their team, becomes more sustainable, especially in the later stages of the mission,” says Popovaitė.

Therefore, the researcher suggests that women might be better suited for long term space missions than men. However, more research on the topic is needed.

How the first biomolecules could have been formed

International team led by researchers from the University of Jena, Germany shows that the first biologically relevant compounds could have originated on Earth's surface

Peer-Reviewed Publication

FRIEDRICH-SCHILLER-UNIVERSITAET JENA

Wolfgang Weigand 

IMAGE: PROF. WOLFGANG WEIGAND (L.) FROM THE UNIVERSITY OF JENA DISCUSSES WITH HIS COLLEAGUE DR MARIO GROSCH VIA ZOOM. view more 

CREDIT: (IMAGE: ANNE GƜNTHER/UNIVERSITY OF JENA)

(Jena, Germany) The chemical precursors of present-day biomolecules could have formed not only in the deep sea at hydrothermal vents, but also in warm ponds on the Earth's surface. The chemical reactions that may have occurred in this “primordial soup” have now been reproduced in experiments by an international team led by researchers of Friedrich Schiller University Jena, Germany. They even found that one of the nucleobases, which represent the code of our genetic material, could have originated from the surface of our planet.

 

The Earth is around 4.6 billion years old and was not always a place that was hospitable to life. In the first hundred million years, our planet's atmosphere consisted primarily of nitrogen, carbon dioxide, methane, hydrogen sulphide and hydrogen cyanide, also known as hydrocyanic acid. Free oxygen did not exist. Under these conditions, iron sulphide, which is transformed into iron oxide when exposed to oxygen, is stable. On the surface of iron sulphide, however, biologically important reactions can take place, similar to those that occur in certain iron and sulphur-based enzymes, such as nitrogenases and hydrogenases.

 

An accidental rediscovery made it possible

 

“We asked ourselves: what happens when iron sulphide in this primordial atmosphere comes into contact with hydrocyanic acid?” explains Prof. Wolfgang Weigand from the Institute of Inorganic and Analytical Chemistry at the University of Jena. “It was helpful to us that we had accidentally discovered a particularly reactive form of iron sulphide in a successful collaboration with my colleague Prof. Christian Robl. This form had already been discovered twice in history, and on each occasion it was forgotten again: once in 1700 and again in the 1920s. So to speak, the two doctoral students at the time, Robert Bolney and Mario Grosch, discovered it for the third time,” he adds. The two chemists observed in the laboratory that when iron powder is stirred with sulphur in water and slightly heated, after a certain time, iron sulphide is formed as mackinawite in an explosive reaction. This mineral served as a catalyst in the “primordial soup” experiment.

 

A letter of the genetic code may have been created in this way

 

“We added potassium cyanide, phosphoric acid and water to the iron sulphide in a nitrogen atmosphere and heated the mixture to 80 degrees Celsius. The phosphoric acid converts the potassium cyanide into hydrocyanic acid. We then took gas samples from the atmosphere of the respective vessels and analysed them,” explains Weigand. The researchers found substances that may have served as chemical precursors for today's biomolecules.

 

In the scientific journal ChemSystemsChem, the team confirms, among other things, the discovery of thiols, which occur as lipids in cell membranes, as well as acetaldehyde, which is needed as a precursor for DNA building blocks (called nucleosides). “It was particularly exciting that under these mild conditions we were even able to detect adenine, a nucleobase that is one of the five letters of the genetic code,” Weigand adds with enthusiasm.

 

By means of isotope labelling, the team was able to prove that the cyanide indeed provided the carbon for the molecules they found. Weigand explains: “In this experiment, the potassium cyanide did not contain the isotope carbon-12, which is the isotope that accounts for 98.9 per cent of carbon naturally occurring in the environment. Instead, it was the heavier – and also stable – isotope carbon-13. It was this isotope that we found in the reaction products. In this way, we were able to prove unequivocally that the carbon atoms in the molecules we found really came from the isotope-labelled potassium cyanide.”

 

Decades of imagination and patience

 

Weigand is particularly grateful for the cooperation of the entire international team: “You really need imagination and patience for such work,” he says. “And Robert Bolney and Mario Grosch have proven that. The cooperation with our colleagues at the University of California, Irvine and at LMU Munich was also exemplary.”

 

The importance of imagination and especially patience in science is exemplified by Wolfgang Weigand himself. Because in 2003, he received the Thuringian Research Prize together with Prof. GĆ¼nter Kreisel from the University of Jena and Dr Willi Brand from the Max Planck Institute for Biogeochemistry Jena for his paper “A possible prebiotic formation of ammonia from molecular nitrogen on iron sulphide surfaces”.

 

Now – almost 20 years later – Weigand has also been able to show that the first carbon compounds, from which life later grew, could have formed under these conditions from cyanide on the Earth's surface.