Friday, June 26, 2020


USA 

Nearly 70% of patients make personal or financial sacrifices to afford medications

The 2020 Medication Access Report uncovers the impact of common medication access challenges, including those caused by the COVID-19 pandemic
COVERMYMEDS

COLUMBUS, Ohio, June 23, 2020 -- Nearly 70 percent of patients have made personal or financial sacrifices to afford prescribed medications1 according to new research released by CoverMyMeds, highlighting the impact of one of the most common medication access challenges. The 2020 Medication Access Report, and corresponding Prescription Decision SupportElectronic Prior AuthorizationSpecialty Patient Support and COVID-19 sub-reports, investigate healthcare barriers that impede access to prescriptions, contribute to increased provider burden and motivate patient consumerism. The report also examines the impact of the COVID-19 pandemic on healthcare and assesses how the market is responding to these challenges with tools that inform medication decisions, streamline administrative tasks and support remote healthcare. Click here to access the full report.
"Navigating the patient journey can be complex, especially for patients who encounter significant barriers--such as medication cost, clinical requirements and enrollment processes--to obtain their prescription," said Eric Weidmann, MD. Chief Medical Officer of eMDs. "The complexity of obtaining access to medications can also take a toll on providers who are faced with increasingly burdensome administrative tasks, especially during the pandemic. As a practicing physician, I appreciate the benefits of technology to help streamline many traditionally-manual processes, inform my conversations with patients and support my prescribing decisions."
Key takeaways from the 2020 Medication Access Report include:
  • The COVID-19 pandemic has caused millions of Americans to face healthcare insecurity:
    • As of June 5, 2020, 44 million people -- over a quarter of the U.S. workforce -- had filed for first-time unemployment benefits since March 2020, when much of the U.S. economy began to shut down in response to the pandemic. This is six times the number of claims during the peak of the Great Recession.2
    • When asked what medication barriers their patients are experiencing due to COVID-19, 30 percent of providers said their patients are unable to pay for prescriptions.3
    • Since the beginning of COVID-19, more than 20 percent of patients said they've used a cash price program to help afford medications.4
  • The COVID-19 pandemic fast-tracked adoption of many healthcare technologies, but there is still room for growth.
    • Prior to COVID-19, only 11 percent of patients used telehealth services.5 Now, 67 percent say they are more likely to use telehealth services moving forward.4
    • Despite increased utilization, over 30 percent of providers said lack of integration within EHR and privacy concerns were challenges they faced with telemedicine.3
    • 80 percent of providers surveyed listed patients' lack of technology skills as a telemedicine challenge.3
  • Many Americans face medication access challenges, such as affordability barriers and manual processes that can delay care:
    • When patients cannot afford their prescriptions, 29 percent admit to abandoning their medications while 52 percent seek affordability options through their physician, a labor-intensive process which creates additional work for the provider and can delay the patient's time to therapy.1
    • 55 percent of patients reported delays in time to therapy due to a prescribed medication requiring prior authorization.1
    • 82 percent of patients say they spent at least one hour or more making multiple phone calls to track down needed information to begin specialty therapies.1 As a result of this time-consuming administrative work, nearly one in 10 patients reported waiting eight weeks or more to receive their first dose of therapy.1
"The 2020 Medication Access Report uses industry statistics, market research and new survey data to highlight critical barriers that can limit patients' access to medications," said Miranda Gill MSN, RN, NEA-BC, Senior Director, Provider Services and Operations at CoverMyMeds. "The report also highlights important strides in creating innovative solutions that help patients overcome many of these disruptive obstacles. However, there needs to be more widespread adoption and collaboration across the healthcare industry to see the true benefits of these solutions: streamlining inefficiencies which can help improve patients' health outcomes."
The 2020 Medication Access Report is published by CoverMyMeds, part of McKesson Prescription Technology Solutions, with an advisory board of leaders from BestRx, Blue Cross Blue Shield North Carolina, Cerner Corporation, eMDs, Express Scripts, Horizon Government Affairs, Humana, National Alliance of State Pharmacy Associations, National Council for Prescription Drug Programs, National Patient Advocate Foundation, OptumRx, Orsini Healthcare, RelayHealth Pharmacy Solutions, RxCrossroads and University of Virginia Health System.
To view the full 2020 Medication Access Report, click here.
Sources
1 - CoverMyMeds Patient and Provider Surveys, 2020
Survey based on responses from 1,000 patients and 400 providers.
3 - CoverMyMeds Provider COVID-19 Survey, 2020
Survey based on responses from 3,000 providers.
4 - CoverMyMeds Patient COVID-19 Survey, 2020
Survey based on responses from 500 patients.
###
About CoverMyMeds
CoverMyMeds, part of McKesson Prescription Technology Solutions, is a fast-growing healthcare technology company that has been recognized as a "Best Place to Work" by Glassdoor and a "Best Company to Work For" by FORTUNE. CoverMyMeds' solutions help patients get the medications they need to live healthy lives by seamlessly connecting the healthcare network to improve medication access; thereby increasing speed to therapy and reducing prescription abandonment. CoverMyMeds' network includes 75 percent of electronic health record systems (EHRs), 96 percent of pharmacies, 700,000 providers and most health plans and PBMs. By facilitating appropriate access to medications, the company can help its customers avoid millions of dollars each year in administrative waste and avoidable medical spending caused by prescription abandonment. Visit https://www.covermymeds.com/main/ for more information.

Exciting new developments for polymers made from waste sulfur

Significant progress made in the development of new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics
UNIVERSITY OF LIVERPOOL
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.
University of Liverpool chemist and Royal Society Research Fellow, Dr Tom Hasell and his team, have published two papers which demonstrate practical and exciting developments for sulfur polymer technologies and application.
This new research builds on their game changing discovery in 2019 when they reported a new catalytic process to make polymers out of sulfur.
Sulfur is a waste product from many industrial processes and in recent years a growing number of materials scientists have become interested in using it as an environmentally alternative to oil from which to manufacture plastics. As well as being in plentiful supply, sulfur also has the added advantage of leading to more easily recyclable polymers.
In a paper published in Angewandte Chemie, Dr Hasell and colleagues make an exciting discovery that addresses the weakness of sulfur polymers, a factor that has limited its application.
Led by PhD student Peiyao Yan, the paper demonstrates that adding a second type of bonding, urethane bonds, to the materials increases the strength of sulfur polymers by up to 135 times. The way this second type of bonding is introduced means that its amount can be controlled, and in turn controls the physical properties of the polymers.
The strengthened sulfur polymers were found to have shape-memory effects - they can be set in one shape, before being temporarily deformed into another. When heated a little, they 'remember' the previous shape and go back to it. This setting process and temporary deformation can be repeated multiple times.
This is a first for sulfur polymers, and despite these unusual properties, the sulfur bonds of the polymers mean they are still easy to recycle and opens up potential applications in areas such as soft robotics, medicine, and self-repairing objects.
In a second paper, published in Chemical Science, Dr Hasell's group teamed up with researchers at Flinders University in Australia to show that sulfur polymers could form rubber like materials that could be easily self-repaired to their original strength within minutes, just by applying an amine catalyst that helps the bonds in the broken surfaces heal back together.
This new kind of rubber and catalyst can be used with low energy consumption to make flexible, repairable, sustainable objects - providing a very real and useful application for these new sulfur polymers.
Dr Tom Hasell said: "Both of these papers really show the potential of polymers made from waste sulfur to be a viable replacement material for some traditional petrochemical based plastics.
"Not only as a substitute material, but as one that is easier to recycle, and has exciting new properties for materials chemists to explore.
"We are excited to see what ideas researchers have for using these new findings, in particular the memory shape and "re-programming" properties."
###
The collaborative research between the two research groups in Liverpool and at Flinders was made possible by support from the Royal Society and the Australian Research Council which supported visits and student exchanges. Peiyao Yan was supported through the Chinese Scholarship Council.
The research has benefited from new research facilities at the University of Liverpool, the Stephenson institute for Renewable Energy, and the Materials Innovation Factory.
The paper `Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior' (doi.org/10.1002/anie.202004311) is published in Angewandte Chemie.
The paper `Chemically induced repair, adhesion, and recycling of polymers made by inverse vulcanization' (doi.org/10.1039/D0SC00855A) is published in Chemical Science.

Wet wipes and sanitary products found to be microplastic pollutants in Irish waters




NEWS RELEASE 

Researchers from Earth and Ocean Sciences and the Ryan Institute at NUI Galway have carried out a study on the contribution of widely flushed personal care textile products (wet wipes and sanitary towels) to the ocean plastic crisis.
Dr Liam Morrison led the study, which showed that sediments adjacent to a wastewater treatment plant are consistently strewn with white microplastic fibres that are comparable to those from commercially available consumer sanitary products (wet wipes and sanitary towels). The article has been published in the international journal Water Research and was co-authored by NUI Galway PhD student Ana Mendes and Maynooth University graduate Oisín Ó Briain.
In most studies to date, white fibres are likely underestimated, because of the commonly used filtration procedure to capture microplastic fibres as filters are commonly white, making visual identification of microscopic white fibres against a white background difficult. This is significant given the global growth of non-woven synthetic fibre products and their ubiquity in wastewater.
Speaking today, President of NUI Galway, Professor Ciarán Ó hÓgartaigh said: "Our University has made sustainability a strategic priority, and for the world to address climate change, we have a duty to examine the behaviour of individuals and corporations that can help our planet. This research highlights the need for us to adapt our behaviours and tackle the ubiquity of plastic in so many products."
An urban rural gradient involving three locations from Galway City (close to Mutton Island and adjacent to a wastewater treatment plant) to counties Clare (Bell Harbour) and Mayo (Bellacragher) were investigated in this study. The total number of fibres found near Mutton Island was 6083 microplastics fibres per kilogram of sediment, while the rural sites had much lower levels (Bell Harbour, 1627 and Bellacragher 316). The total number of white fibres was 5536, 788, and 265 per kilogram of sediment for Mutton Island, Bell harbour and Bellacragher respectively. Incredibly, 91% of microplastic fibres at Mutton Island are likely derived from wet wipes and sanitary towels.
Lead researcher of the study, Dr Liam Morrison from Earth and Ocean Sciences and Ryan Institute at NUI Galway, said: "COVID-19 may have brought its own challenges for the oceans including the increased use of disinfectant wipes during the pandemic which potentially may end up as microplastic fibres in the sea. It is widely known that microplastics can act as vectors for contaminants including bacteria and viruses and are potentially harmful for public health and marine life."
The nearby intertidal zone at Mutton Island is prone to the accumulation of high volumes of washed-up sewage-derived debris on a frequent basis. Excessive microplastic loading in sediments in December 2017 was likely induced by heavy precipitation episodes during a south-westerly storm front. Elevated debris loading on this occasion may result from combined sewer overflows, where excessive input of drainage water exceeds wastewater treatment effluent capacity and is released untreated in the overflow. Dr Morrison said: "This was significant in the context of climate change, where we are likely to see increased rainfall events and flooding."
While most microplastics may be removed by the wastewater treatment process, combined sewage overflows associated with periods of heavy rainfall give rise to the release of sewage waste containing wipes and sanitary towels, impacting on public health and the environment. Combined sewer overflows and the subsequent shoreline deposition of sanitary waste have not previously been thoroughly investigated as a source of white microplastic fibres in the marine environment. The study found that wet wipes and sanitary towels are a source of unaccounted white microplastic fibres in the marine environment and not all flushable wipes are biodegradable. In fact 50% of the wipes labelled "flushable" in this study were shown to contain microplastics. The lack of regulation for hygiene and sanitary products results in a failure to identify the plastic composition of these materials. This demonstrates the consequences of misleading labelling of non-woven textile personal care products.
The samples of sanitary-related macro debris (wipes and sanitary towels) collected from the intertidal zone near Mutton Island in Galway City following a heavy rainfall event were mostly comprised of the plastic polyethylene terephthalate (PET), with only a quarter of the samples analysed presenting as a mix of PET and cellulose, and over 80% of the wipes in the shoreline waste were identified as non-flushable due to their polymer composition following the International Water Services Flushability Group and non-woven textile industry guidelines (INDA/EDANA, 2018; IWSFG, 2018).
Given the global distribution and projected growth of the non-woven textile industry (as non-woven textiles form the base material of many sanitary products), this is a concern. European production of non-woven textiles for hygiene and sanitary products exceeded one million tonnes in 2016 alone and these products frequently cause blockages in sewage systems globally, incurring significant technical and financial costs to wastewater utilities.
These products are a consistent feature of global plastic pollution surveys and in comparison, microplastic fibres from clothing are generally coloured or multi-coloured. To date the role of these white microplastic fibres as significant components of wastewater effluent remained poorly understood. The quantities of wet wipes washing up on beaches in the UK has increased 400% in the last decade (Marine Conservation Society, 2019*).
Dr Morrison added: "There is a need for increased public awareness of microplastic pollution in the environment and human behaviour should shift away from the inapt disposal of sanitary products down the toilet and instead divert to alternative land-based waste management."
###
Funding for the study was based on research grant-aided by the Marine Institute and funded by the Marine Research Programme of the Irish Government under the framework of the JPI Oceans (PLASTOX).(Grant-Aid Agreement No. PBA/ME/15/03).
*Reference: MCS, 2019. Great British Beach Clean 2019 Report. Marine Conservation Society, Herefordshire, UK.

A blue spark to shine on the origin of the Universe

An interdisciplinary team of scientists has demonstrated that it is possible to build an ultra-sensitive sensor based on a new fluorescent molecule able to detect the nuclear decay key to knowing whether or not a neutrino is its own antiparticle
UNIVERSITY OF THE BASQUE COUNTRY
IMAGE
IMAGE: ARTISTIC REPRESENTATION OF THE NEW FLUORESCENT MOLECULE THAT CAN SHED LIGHT ON THE ELUSIVE NATURE OF NEUTRINOS. view more 
CREDIT: UPV/EHU
Why is our Universe made of matter? Why does everything exist as we know it? These questions are linked to one of the most important unsolved problems in particle physics. This problem is that of the nature of the neutrino, which could be its own antiparticle, as argued by the unfortunate Italian genius Ettore Majorana almost a century ago. If this were so, it could explain the mysterious cosmic asymmetry between matter and antimatter.
Indeed, we know that the Universe is made almost exclusively of matter. However, the Big Bang theory predicts that the early Universe contained the same amount of matter and antimatter particles. This prediction is consistent with the "small Big Bangs" that form in proton collisions at CERN's giant LHC accelerator, where a symmetrical production of particles and antiparticles is always observed. So, where did the antimatter of the early Universe go? A possible mechanism points to the existence of heavy neutrinos that were its own antiparticle, and therefore, could decay into both matter and antimatter. If a second phenomenon occurs, called violation of charge and parity (that is, if the neutrino slightly favors in its decay the production of matter over that of antimatter), then it could have injected an excess of the first over the second. After all the matter and antimatter in the Universe were annihilated (with the exception of this small excess), the result would be a cosmos made only of matter, of the leftovers from the Big Bang. We could say that our Universe is the remnant of a shipwreck.
It is possible to demonstrate that the neutrino is its own antiparticle by observing a rare type of nuclear process called neutrinoless double beta decay (bb0nu), in which concurrently two neutrons (n) of the nucleus are transformed into protons (p) while two electrons (e) are emitted out of the atom. This process can happen in some rare isotopes, such as Xenon-136, which has in its nucleus 54 p and 82 n, in addition to 54 e when is neutral. The NEXT experiment (directed by J.J. Gómez-Cadenas, DIPC and D. Nygren, UTA), located in the underground laboratory of Canfranc (LSC), looks for these decays using high pressure gas chambers.
When a Xe-136 atom undergoes spontaneous bb0nu decay, the result of the process is the production of a doubly charged ion of Barium-136 (Ba2+); with 54 e and a nucleus made of 56 p and 80 n; and two electrons (Xe à Ba2+ + 2e).
So far, the NEXT experiment has focused on observing these two electrons, whose signal is very characteristic of the process. However, the bb0nu process that is meant to be observed is extremely rare and the signal that is expected is of the order of one bb0nu decay per ton of gas and year of exposure. This very weak signal can be completely masked by background noise due to the ubiquitous natural radioactivity. However, if in addition to observing the two electrons, the barium ionized atom is also detected, the background noise can be reduced to zero, since natural radioactivity does not produce this ion. The problem is that observing a single ion of Ba2+ in the midst of a large bb0nu detector is technically so challenging that until recently it was considered essentially unfeasible. However, a number of recent works, the latest of which has just been published in the journal Nature, suggest that the feat may be feasible after all.
The work, conceived and led by the researchers F.P. Cossío, Professor at the University of the Basque Country (UPV/EHU) and Scientific Director of Ikerbasque, and J.J. Gómez-Cadenas, Professor Ikerbasque at the Donostia International Physics Center (DIPC), includes an interdisciplinary team with scientists from DIPC, the UPV/EHU, Ikerbasque, the Optics Laboratory of the University of Murcia (LOUM), the Materials Physics Center (CFM, a joint center CSIC-UPV/EHU), POLYMAT, and the University of Texas at Arlington (UTA). Gómez-Cadenas has pointed out that "the result of this interdisciplinary collaboration that combines, among other disciplines, particle physics, organic chemistry, surface physics and optics, is a clear example of the commitment that DIPC has recently shown to developing new research lines. The purpose is not only to generate knowledge in other fields, different from the centre's usual ones, but also to look for hybrid grounds and create interdisciplinary projects that, in many cases, like this one, can be the most genuine".
The research is based on the idea, proposed by one of the authors of the article, the prestigious scientist D. Nygren (inventor, among other devices of the Time Projection Chamber technology applied by many particle physics experiment, including NEXT). In 2016, Nygren proposed the feasibility to capture Ba2+ with a molecule capable of forming a supramolecular complex with it and to provide a clear signal when this occurs, thus yielding a suitable molecular indicator. Nygren and his group at UTA then went into designing "on-off" indicators, in which the signal of the molecule is highly enhanced when a supra-molecular complex is formed. The group led by Cossío and Gómez-Cadenas has followed a different path, designing a fluorescent bicolor indicator (FBI) which combines a large intensity enhancement and a dramatic color shift when the molecule captures Ba2+. The synthesis of FBI was done under the direction of DIPC researcher I. Rivilla. If an FBI molecule with no barium is illuminated with ultraviolet light, it emits fluorescence in the range of green light, with a narrow emission spectrum of about 550 nm. However, when this molecule captures Ba2+, its emission spectrum shifts towards blue (420 nm). The combination of both features results in a spectacular enhancement of the signal, thus making it very suitable for a future Ba2+ detector.
It is interesting to note that the experimental multiphoton microscopy systems used in the LOUM by P. Artal's group for the green/blue spectral detection are based on those developed previously for imaging the cornea of the human eye in vivo. This is an example of interlacing the use of a unique technology in the world for biomedical applications on a fundamental problem of particle physics. "The effort to combine basic science and new instrumental implementations is essential to open new research avenues to answer the many questions that we scientists ask ourselves every day," says J.M. Bueno, Professor of Optics at LOUM.
As Cossío has explained, "the most difficult task in the chemical part of the work was to design a new molecule that would meet the strict (almost impossible) requirements imposed by the NEXT experiment. This molecule had to be very bright, capture barium with extreme efficiency (bb0nu is a very rare event and no cation could be wasted) and emit a specific signal that would allow the capture to be detected without background noise. In addition, the chemical synthesis of the new FBI sensor had to be efficient in order to have enough ultra-pure samples for installation within the detector. The most rewarding part was to check that, after many efforts by this multidisciplinary team, actually our specific and ultra-sensitive FBI sensor worked as planned".
Besides the design and characterization of FBI, the paper offers the first demonstration of the formation of a supramolecular complex in dry medium. This landmark result has been achieved preparing a layer of FBI indicators compressed over a silica pellet and evaporating over such a layer a salt of barium perchlorate. Z. Freixa, Ikerbasque Professor at the UPV/EHU says, with a smile: "the preparation of FBI on silica has been a quick-but-not-so-dirty solution for this proof of concept. A bit of home alchemy". The vacuum sublimation experiment was done by the CSIC scientist at CFM C. Rogero and her student P. Herrero-Gómez. Rogero, an expert in physics of surfaces says: "it was one of those Eureka moment, when we realized that we had in my lab just the tools to carry on the experiment. We evaporated the perchlorate and got FBI shinning in blue almost at the first attempt"
The next step of this research project is the construction of an FBI based sensor for the detection of the neutrinoless double beta decay or bb0nu, for which Gomez-Cadenas, F. Monrabal from DIPC and D. Nygren and collaborators at UTA are developing a conceptual proposal.
This work is a significant advance towards building a future "barium-tagging" NEXT experiment to look for noise-free bb0nu events through the identification of the two electrons and the barium atom produced in the reaction. This experiment would have a great potential to find out if the neutrino is its own antiparticle, which could lead to answer fundamental questions about the origin of the Universe.
###
Donostia International Physics Center (DIPC)
DIPC is a research centre whose mission is to conduct and catalyse cutting-edge research in physics and related disciplines as well as to convey scientific culture to society. Located in Donostia / San Sebastian, DIPC was born from a strategic alliance between public institutions and private companies. Since 2008, DIPC is a 'Basque Excellence Research Center' (BERC) of the Department of Education of the Basque Government, and recently in 2019 it has been recognized as a "Severo Ochoa" Center of Excellence by the Spanish Research Agency.
University of the Basque Country (UPV/EHU)
The University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea) is the main institution of higher education in the Basque Country and one of the most important in Spain in terms of quantity of teaching results, research, and technological innovation and development. It is currently listed among the 500 best universities in the world, according to the Shanghai ranking. The UPV/EHU is present in all the territories of the Basque Autonomous Region. It is a public university, with a research vocation, rooted in the Basque culture, open to the world, which develops an important intellectual leadership within the society in which it is embedded and with a clear ethical and social commitment. Three campuses, twenty study centers and a wide range of undergraduate and graduate programs are its academic credentials. More than 50,000 people attend the university every day, including students, faculty and research and management staff, to carry out their work. The UPV/EHU has the status of Campus of International Excellence, awarded by the Ministry of Education after an independent assessment, and has fostered, in collaboration with the University of Bordeaux, a cross-border campus that is unique in Europe.
Ikerbasque - Basque Foundation for Science
IKERBASQUE is the result of an initiative by the Department of Education of the Basque Government that aims to reinforce the Basque scientific system through the attraction, recovery and retention of researchers from all around the world.
Optics Laboratory of the University of Murcia (LOUM)
The LOUM is a research group headed by Prof. Pablo Artal that develops advanced optical instrumentation for use in biomedicine. It is one of the world's leading groups in the implementation of adaptive optics and wavefront manipulation techniques for the evaluation and correction of vision.
Materials Physics Center (CFM, CSIC-UPV/EHU)
Born in 1999 as a joint initiative of the Spanish National Research Council (CSIC) and the University of the Basque Country (UPV/EHU), CFM aims to foster the frontiers of knowledge in advanced materials science research, by bringing together permanent teams with a track record of excellence in scientific research, thereby creating an environment of international excellence, based on diversity and equal opportunities, that actively contributes to promoting scientific culture. The quality of the CFM's activity has been recognised by the Basque Government, which has awarded the MPC association, the CFM's instrumental body, the status of Basque Excellence Research Centre (BERC).
Basque Center for Macromolecular Design and Engineering POLYMAT Fundazioa (POLYMAT, UPV/EHU)
POLYMAT was recognised in 2012 by the Basque Government as Basque Excellence Research Centre (BERC). Located in Donostia / San Sebastian, its mission is to be an internationally oriented and strategic research centre in polymers in collaboration with the University of the Basque Country (UPV/EHU) and in cooperation with the main research centres in its field at a national and international level, in accordance with the interests of society, contributing to its development and social welfare. The main objective is to contribute to the social challenges of the 21st century, such as energy, sustainability and health, by promoting the dissemination and transfer of knowledge in polymeric materials for their use by the scientific community and society in general.
University of Texas at Arlington (UTA)
The University of Texas at Arlington is a public research university in Arlington, Texas, midway between Dallas and Fort Worth. The university was founded in 1895 and was in the Texas A&M University System for several decades until joining The University of Texas System in 1965.

Virtually captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms
UNIVERSITY OF FREIBURG
IMAGE
IMAGE: VENUS FLYTRAP WITH PREY. view more 
CREDIT: PHOTO: PLANT BIOMECHANICS GROUP
Freiburg biologists Dr. Anna Westermeier, Max Mylo, Prof. Dr. Thomas Speck and Dr. Simon Poppinga and Stuttgart structural engineer Renate Sachse and Prof. Dr. Manfred Bischoff show that the trap of the carnivorous plant is under mechanical prestress. In addition, its three tissue layers of each lobe have to deform according to a special pattern. The team has published its results in the journal Proceedings of the National Academy of Sciences USA.
The diet of the Venus flytrap consists mainly of crawling insects. When the animals touch the sensory hairs inside the trap twice within about 20 seconds it snaps shut. Aspects such as how the trap perceives its prey and how it differentiates potential prey from a raindrop falling into the trap were already well known to scientists. However the precise morphing process of the halves of the trap remained largely unknown.
In order to gain a better understanding of these processes, the researchers have analyzed the interior and exterior surfaces of the trap using digital 3D image correlation methods. Scientists typically use these methods for the examination of technical materials. Using the results the team then constructed several virtual traps in a finite element simulation that differ in their tissue layer setups and in the mechanical behavior of the layers.
Only the digital traps that were under prestress displayed the typical snapping. The team confirmed this observation with dehydration tests on real plants: only well-watered traps are able to snap shut quickly and correctly by releasing this prestress. Watering the plant changed the pressure in the cells and with it the behavior of the tissue. In order to close correctly, the traps also had to consist of three layers of tissue: an inner which constricts, an outer which expands, and a neutral middle layer.
Speck and Mylo are members of the Living, Adaptive and Energy-autonomous Materials Systems (livMatS) cluster of excellence of the University of Freiburg. The Venus flytrap serves there as a model for a biomimetic demonstrator made of artificial materials being developed by researchers at the cluster. The scientists use it to test the potential uses of materials systems that have life-like characteristics: the systems adapt to changes in the environment and harvest the necessary energy from this environment.
###
The research was funded by the German Research Foundation (DFG) within the framework of the livMatS cluster of excellence, by the State Ministry of Baden-Württemberg for Sciences, Research and Arts within the framework of the BioElast project, and by the academic research alliance JONAS ("Joint Research Network on Advanced Materials and Systems") established jointly with BASF SE and the University of Freiburg.
Original publication:
Sachse R, Westermeier A, Mylo M, Nadashi J, Bischoff M, Speck T, Poppinga S. (2020) Snapping mechanics of the Venus flytrap (Dionaea muscipula). In: Proceedings of the National Academy of Sciences USA, doi: 10.1073/pnas.2002707117
Contact:
Institute of Biology II
University of Freiburg
Disclaimer: AAAS and Eure

Towards a green future: Efficient laser technique can convert cellulose into biofuel

Scientists developed a novel laser-based strategy for the effective degradation of cellulose into useful products
TOKYO UNIVERSITY OF SCIENCE
With the imminent threat of a climate crisis hanging over our heads, it has become crucial to develop efficient alternatives to fossil fuels. One option is to use clean sources of fuels called biofuels, which can be produced from natural sources such as biomass. The plant-based polymer cellulose is the most abundant form of biomass globally and can be converted into raw materials such as glucose and xylose for the production of bioethanol (a type of biofuel). But, this process is challenging owing to the molecule's rigid and dense structure, which makes it insoluble in water. Chemists and biotechnologists globally have used conventional techniques like microwave radiation, hydrolysis, and ultrasonication to degrade this polymer, but these processes require extreme conditions and are thus unsustainable.
To this end, in a new study published in Energy & Fuels, a research team in Japan, including Dr Takayasu Kawasaki (Tokyo University of Science), Dr Heishun Zen (Institute of Advanced Energy, Kyoto University), Prof Yasushi Hayakawa (Laboratory of Electron Beam Research and Application, Institute of Quantum Science, Nihon University), Prof Toshiaki Ohta (SR Center, Ritsumeikan University), and Prof Koichi Tsukiyama (Tokyo University of Science), developed a novel technique for cellulose degradation. This technique was based on a type of laser called the infrared-free electron laser (IR-FEL), whose wavelength is tunable in the range of 3 to 20 μm. This new method is a promising green technology for the zero-emission degradation of cellulose. Dr Kawasaki says, "One of the unique features of the IR-FEL is that it can induce a multiphoton absorption for a molecule and can modify the structure of a substance. So far, this technology has been used in the basic fields of physics, chemistry, and medicine, but we wanted to use to spur advances in environmental technology."
The scientists knew that IR-FEL could be used to perform dissociation reactions on various biomolecules. Cellulose is a biopolymer composed of carbon, oxygen, and hydrogen molecules, which form covalent bonds of varying lengths and angles with each other. The polymer has three infrared bands at the wavelengths of 9.1, 7.2, and 3.5 μm, which correspond to three different bonds: the C?O stretching mode, H?C?O bending mode, and C?H stretching mode, respectively. Based on this, the scientists irradiated powdered cellulose by tuning the wavelength of the IR-FEL to these three wavelengths. Then, they analyzed the products using techniques such as electrospray ionization mass spectrometry and synchrotron radiation infrared microscopy, which revealed that the cellulose molecules had successfully decomposed into glucose and cellobiose (precursor molecules for bioethanol production). Not just this, their products were obtained at high yields, making this process extremely efficient. Dr Kawasaki explains, "This was the first method in the world to efficiently obtain glucose from cellulose by using an IR-FEL. Because this method does not require harsh reaction conditions such as harmful organic solvents, high temperature, and high pressure, it is superior to other conventional methods."
Apart from generating biofuels, cellulose has several applications--for example, as functional biomaterials in biocompatible cell membranes, antibacterial sheets, and hybrid paper materials. Thus, the new method developed in this study shows promise for various industries, such as healthcare, technology, and engineering. Moreover, Dr Kawasaki is optimistic that their method is useful to process not only cellulose but also other wood constituents and can prove to be an innovative method for recycling forest biomass. He concludes, "We hope that this study will contribute to the development of an 'oil-free' society."
###
About The Tokyo University of Science
Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.
With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field. Website: https://www.tus.ac.jp/en/mediarelations/
Dr Takayasu Kawasaki from Tokyo University of Science
Dr Takayasu Kawasaki is a researcher at the Infrared Free Electron Laser Research Center at the Tokyo University of Science (FEL-TUS). He is specialized in the area of bioorganic chemistry and materials science. A respected and senior researcher, he has more than 20 research articles published in prestigious international journals to his credit.
Funding information
This research was supported in part by the Open Advanced Research Facilities Initiative and Photon Beam Platform Project of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This research was also conducted by a joint use research with Institute of Advanced Energy, Kyoto University (Joint Usage/Research Program on Zero-Emission Energy Research, ZE31A-12), SR center, Ritsumeikan University (S19001), and Laboratory of Electron Beam Research and Application, Institute of Quantum Science, Nihon University.

An environmental warning system to monitor the coast

The SBPQ methodology is based on studying the evolution of certain marine species deemed to have bioindicator potential in order to detect changes that may point towards shifts in the environment
UNIVERSITY OF SEVILLE
Researchers at the University of Seville Marine Biology Laboratory, working in the research team of Dr. José Carlos García Gómez, have demonstrated the usefulness of using the SBPQ (Sessile Bioindicators Permanent Quadrats) methodology to detect potential shifts in coastal areas. This technique acts a warning of incidents of a local nature, such as water pollution from poorly treated urban wastewater discharges; or of a more global nature, which become evident by monitoring climate change through species that are sensitive to temperature increases; or incidents caused by the intrusion of potential invasive species.
The first step in applying the SBPQ methodology is to select areas where sensitive native species are present and live in their adult form attached to the rocks (sessile), such as corals and sponges. These species have are unable to escape or relocate if environmental conditions deteriorate, meaning they can be used as environmental sentinels. To do this, the evolution over time of their presence in specific enclaves is monitored closely so that it is possible to detect changing circumstances if they begin to disappear. This early detection of environmental impacts in the coastal environment enables researchers to locate the source of the impact and, potentially, to correct it swiftly when the first signs of change are observed.
These conclusions flow from data collected over a ten year period (2005-2014), making this study one of the longest in the field of pre-coral and coral reefs. Long-term series are key to establishing trends and solving many unanswered questions around developments in ecosystems and possible changes to them. The study, published in the scientific journal PloS One, sought to confirm the validity and usefulness of the SBPQ methodology by focusing on a ten-year historical series which it was designed to test.
Furthermore, the researchers were able to confirm the hypothesis that in very stable and biostructured, high diversity beds, coral reef communities are very stable and tend not to vary over time unless disturbed by environmental factors that change the system. For ten years no change was recorded in the presence/absence of the monitored indicator species or in their abundances on the monitored fixed surfaces, meaning that, in that period of time no change--at least no change of significance--occurred leading to lethal or maladaptive effects on selected sensitive organisms in native biota.
Further research, also using the SBPQ method, led to the detection in 2015 of the invasive Asian algae Rugulopteryx okamurae (although not yet formally declared as such) in the Strait of Gibraltar. Its presence was detected for the first time in the area associated with pre-coral enclaves of high stability, spatial structure and associated biodiversity, which are very sensitive to environmental changes in the system. In this case, researchers from the University of Seville Marine Biology Laboratory tentatively linked this shift to global warming, since the invasion of the species occurred in 2015, coinciding with the highest peak in surface water temperature on the Andalusian coast in the period between 2000 and 2017. These considerations were reflected in another recent article by the team led by Dr. García Gómez, published in the scientific journal Science of The Total Environment (STOTEN).
The Strait of Gibraltar is an especially interesting area to test the usefulness of the SBPQ methodology as it presents coral habitats in pristine waters, especially in the Estrecho Natural Park, featuring excellent indicator species which are highly sensitive to environmental changes.
Based on the results obtained, the researchers underscored the importance of promoting a network to monitor environmental impacts in the coastal environment, tracking invasive species and monitoring global warming in the western Mediterranean. "But perhaps the most important thing about the SBPQ methodology is that it is a tool for social participation that reaches out to diving clubs and centres who want to get involved, under scientific supervision, in the underwater environment to monitor our coastal ecosystems," says Professor José Carlos García Gómez, director of the University of Seville Marine Biology Laboratory. "It is a tool that aims to fit into the recent world trend of Citizen Science, which has shown engagement with the conservation of underwater nature". It is a promising line of research developed by the University of Seville to transfer research results and social innovation in the field of marine biology.
The study was conducted thanks to financing from various European projects, the Network of Northern Mediterranean Protected Areas (Med-PAN), the RAC/SPA (Activity Centre for Special Protected Areas), the Department of the Environment of the Andalusian Regional Government (now CAGPyDS), the Port Authority of Seville (APS), the CEPSA Foundation and Red Eléctrica de España. The Port Authority of Algeciras (APBA) is currently studying the idea of including the waters around its facilities

Getting real with immersive sword fights

Computer Scientists at Bath have created Touche: a solution to the challenges of creating realistic VR sword fights.
UNIVERSITY OF BATH
IMAGE
IMAGE: COMPUTER SCIENTISTS AT THE UNIVERSITY OF BATH HAVE FOUND A SOLUTION TO THE CHALLENGES OF CREATING REALISTIC VR SWORD FIGHTS, AND IT'S CALLED TOUCHÉ. view more 
CREDIT: CHRISTOF LUTTEROTH
Sword fights are often the weak link in virtual reality (VR) fighting games, with digital avatars engaging in battle using imprecise, pre-recorded movements that barely reflect the player's actions or intentions. Now a team at the University of Bath, in collaboration with the game development studio Ninja Theory, has found a solution to the challenges of creating realistic VR sword fights: Touche - a data-driven computer model based on machine learning.
Dr Christof Lutteroth, who created Touche with colleague Dr Julian Padget and EngD student Javier Dehesa, said: "Touche increases the realism of a sword fight by generating responsive animations against attacks and eliminating non-reactive behaviour from characters.
"Using our model, a game character can anticipate all possible fight situations and react to them, resulting in a more enjoyable and immersive game experience."
The unpredictability of user actions presents a major conundrum for designers of VR games, explained Dr Lutteroth, who is a senior lecturer in Computer Science, director of Real and Virtual Environments Augmentation Labs (REVEAL) and co-investigator at the Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA). "VR games offer new freedom for players to interact naturally using motion, but this makes it harder to design games that react to player motions convincingly," he said.
He added: "There are different expectations for screen-based video games. With these, a player presses 'attack' and their character displays a sequence of animations. But in a VR game, the player input is much harder to process."
The Touche framework for VR sword fighting simplifies the necessary technical work to achieve a convincing simulation. It eliminates the need for game designers to add layer upon layer of detail when programming how a character should move in a particular situation (for instance, to block a particular sword attack). Instead, actors wearing motion capture equipment are asked to perform a range of sword fighting movements, and Touche builds a model from these movements. The virtual version of the actor is able to react to different situations in a similar fashion to a flesh-and-blood fighter. Game designers can then fine-tune this model to meet their needs by adjusting high-level parameters, such as how skilled and aggressive the game character should be. All this saves game developers a lot of time and leads to more realistic results.
For the Bath study, 12 volunteers were asked to take part in two three-minute sword fights: for the first fight, they used technology that is currently available and for the second, they used Touche. Touche had a strong positive effect on realism and the perceived sword fighting skills of game characters. Feedback from participants pointed to a convincing preference for Touche, with current sword fights being described as 'unresponsive' and 'clumsy' by comparison.
"Based on this, we are convinced that Touche can deliver more enjoyable, realistic and immersive sword fighting experiences, presenting a more skilled and less repetitive opponent behaviour," said Dr Lutteroth. "I'm convinced this framework is the future for games - not only for sword fighting but also for other types of interaction between game characters. It will save developers a lot of time."
Javier Dehesa Javier, who is based at the Centre for Digital Entertainment, interviewed game developers who had tested this new technology. He said: "Developers see the Touche framework as an important practical step in the industry towards data-driven interaction techniques. We could see this technology appear in commercial games very soon."
Touche: Data-Driven Interactive Sword Fighting in Virtual Reality is published by CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
Video to accompany press release: https://vimeo.com/430682565
###