Showing posts sorted by date for query BIOFUEL. Sort by relevance Show all posts
Showing posts sorted by date for query BIOFUEL. Sort by relevance Show all posts

Wednesday, May 15, 2024

 

NYK, Tsuneishi and Drax Study Biofuel Bioship Design for Bulkers

bioship
Concept looks to use biomass as a decarbonization fuel for smaller bulkers (NYK)

PUBLISHED MAY 14, 2024 4:09 PM BY THE MARITIME EXECUTIV

 

 

A new study is getting underway exploring the development of a biomass-fueled bioship, which would be the first of its kind in the world. Biomass in pellet form made by compressing sawmill and forestry residue is being promoted as an alternative fuel that is gaining traction in Japan and elsewhere.

Japan’s NYK Line and its NYK Bulk & Projects Carrier company launched a partnership with Tsuneishi Shipbuilding and Drax Group, a British renewable energy company, to develop the technology and the first ship powered by biomass. The companies said the installation of a biomass plant could provide a 22 percent reduction in well-to-wake carbon emissions. If the development project is successful, they will jointly study the possibility of building a bioship by the end of 2029.

“After study of biomass fuel plant and gasifier system, Drax, Tsuneishi Shipbuilding, NYK, and NBP have concluded a memorandum of understanding for the feasibility study on the development of the world’s first wood pellets-powered super low-emission vessel. This is an important step towards decarbonized society,” said Masashi Suda, President of NYK Bulk & Projects Carriers.

NYK highlights that it has experience with biomass as its use grows in Japan as a fuel source for power plants which traditionally were mostly coal-fired. NYK transports biomass manufactured by Drax in Canada to Japan. 

They highlighted the technology possibly as a solution for the smaller handysize bulkers which they said will be more difficult to decarbonize due to their smaller size and smaller fuel capacity. Handysize bulkers are the ones used to transport biomass to Japan.

As part of the project, the companies will conduct research to develop the new shipping technology, including an onboard biomass fuel plant, which would be required to build a bioship. They are also exploring how other renewable technologies could be used to reduce both the emissions and fuel costs of shipping biomass.

“This MoU is an important step in the development of the technology required to power and launch the world’s first bioship, which will support Drax’s decarbonization goals but could also drive the innovation needed to transform shipping and cut carbon emissions and fuel costs in global supply chains,” said Paul Sheffield, Drax Group’s Chief Commercial Officer.

Biomass is a controversial fuel source. Environmentalists argue there are better sustainable and low-emission fuels than using precious forestry resources.

Drax has received strong support from the UK government which looks to incorporate biomass into its strategy. The company already operates a power station in Yorkshire. It burns 6.4 million tonnes of biomass annually contributing more than six percent of the country’s electrical supply.

Tuesday, May 07, 2024

ALT FUELS

Fortescue’s Ammonia-Fueled Ship Runs Propulsion and Maneuverability Tests

Forescue Green Pioneer
Fortescue Green Pioneer completed ammonia propulsion and maneuverability tests using ammonia and biofuel (Fortescue)

PUBLISHED MAY 6, 2024 1:47 PM BY THE MARITIME EXECUTIVE

 

 

Sea trials continue for the first vessel operating on ammonia, an offshore supply vessel converted by Australia’s Fortescue. Earlier this year, the vessel completed the first marine bunkering of ammonia, and now after a second bunkering undertook the next phase of its ongoing sea trials.

The testing and trials are being conducted with the cooperation and close supervision of the Maritime and Port Authority of Singapore, where the vessel is registered. The MPA developed stringent safety protocols and reports it conducted Ammonia plume modeling and drone surveillance to support safety and incident planning and response. With a lack of maritime regulations in place for ammonia as a fuel. the MPA is using these first trials to develop the model for safe handling and operation of ammonia-fueled vessels.

Fortescue completed the conversion of the 2010-built MMA Leveque (3,100 dwt) in 2023 into the world’s first operational ammonia-fueled vessel. One of the four Cummins engines was converted for ammonia. The 246-foot PSV made her debut as the Fortescue Green Pioneer in late in 2023 and received the first notations from DNV and Singapore for ammonia operations after loading three tonnes of liquid ammonia and conducting seven weeks of tests in February and March 2024.

The next round began by loading a further four tonnes of liquid ammonia, along with diesel and Hydrogenated Vegetable Oil, a second-generation biofuel. Between April 23 and May 2, they conducted trials involving propulsion and maneuverability. The trials also included tests to validate the management of nitrogen-based emissions. They also assessed the vessel’s engine capability to operate on varying amounts of biofuel in combination with ammonia.

The trials took place in the Raffles Reserved Anchorage off Singapore. They are looking to complete the certification of the vessel and demonstrate the ammonia-fueled operations for the future of the maritime industry.

During February and March, the vessel completed a series of fuel trials. During those tests, the vessel was at anchor demonstrating the ammonia storage system, associated piping, gas fuel delivery system, retrofitted engines, and seaworthiness.

Fortescue is working with research institutes, industry partners, and government agencies including the MPA and DNV. The company plans to use the PSV to drive awareness of ammonia and demonstrate its operations for the marine sector. 

Several other pioneering projects are also expected to proceed, including NYK is leading an effort in Japan to convert its LNG-fueled tug to begin operations later this year fueled by ammonia. So far, only a handful of ship owners have ordered ammonia-fueled vessels as they wait for these demonstrations and the commercial introduction of the engines and fuel systems required to adopt ammonia as a marine fuel.


USCG Agreement Sets Development Pathway for First Hydrogen-Power US Towboat

hydrogen powered towboat
Rendering of the design for the Hydrogen One towboat (Elliott Bay Design Group)

PUBLISHED MAY 6, 2024 4:14 PM BY THE MARITIME EXECUTIVE

 

The project that has been underway for the past several years to develop the U.S.’s first hydrogen-power towboat reached a critical agreement with the U.S. Coast Guard that provides a pathway forward. Maritime Partners, which is leading the project, signed a Design Basis Agreement with the USCG for the Hydrogen One towboat that will use a novel technology that produces hydrogen aboard the ship eliminating the challenges of bunkering and storing hydrogen.

“The signing of this agreement opens the pathway for us to deploy our technological capabilities,” said Bick Brooks, co-founder and CEO of Maritime Partners. “With this, Hydrogen One is one step closer to becoming the world’s first vessel to utilize hydrogen generator technology greatly reducing emissions, increasing efficiency, and providing a model for cleaner energy use as the industry continues to seek ways to decarbonize.”

The DBA process was established by the U.S. Coast Guard to set the rules for new and novel technology proposed for installation on marine vessels. By reaching the agreement, they explained that the project would be working towards an agreed-upon framework with the U.S. Coast Guard for the design, arrangement, and engineering aspects of the power system and associated safety systems. It established a plan for the review, inspection, and eventual certification of the Hydrogen One.

The towboat is being designed as a first-of-its-kind vessel using new, cleaner, fuel cell technology that works by converting stored methanol to hydrogen. The produced hydrogen is output, on-demand, to the fuel cell to generate power for the vessel.

When the project was revealed in 2021, they said the towboat would be nearly 89 feet (27 meters) and designed to push barges from the Port of New Orleans along the Mississippi River and its tributaries. They projected the vessel will be able to travel for up to about four days at a speed of 6 knots, or cover a total of 550 miles, with a load between fueling. The concept called for a propulsion system capable of generating up to 2,700 HP propulsion power, with 1,700 HP generated by the fuel cell and the remainder from batteries.

The partners report that a string of successful tests of the technology were completed in Sweden in 2023. They said it demonstrated the viability of the technology as the sole power generation source for the vessel’s propulsion.

Maritime Partners worked with several industry leaders on the Hydrogen One project, including Seattle-based Elliott Bay Design Group, which is designing the towboat, and Intracoastal Iron Works which was selected as the shipyard to build the vessel. e1 Marine, which holds the license for the technology also worked with RIX Industries, Power Cell Group, among others, to work through the U.S. Coast Guard requirements. ABB Marine & Ports reported in 2021 that it would also participate in the project providing the electrical propulsion plant, including motors, transformers, and the integration of the fuel cell system.

Only a handful of hydrogen-powered vessels have entered service, mostly in Europe. In the U.S. the Sea Change ferry went through a long development process which experienced delays after the hull was launched in 2021 before it finally arrived in San Francisco in 2023. By entering the DBA process, the goal is to ensure a smooth process to move the Hydrogen One through design and into operation.
 

Saturday, May 04, 2024

 ALTERNATIVE FUELS

Belgium and Namibia to Develop Africa’s First Hydrogen Ship, Infrastructure

Namibia hydrogen
His Majesty King Philippe of the Belgians and H.E. Dr. Nangolo Mbumba - President of the Republic of Namibia during the ceremonial filing at the hydrogen station (Cleanergy)

PUBLISHED MAY 2, 2024 6:43 PM BY THE MARITIME EXECUTIVE

 

Partners from Belgium and the African nation of Namibia mapped out a plan to develop the continent’s hydrogen infrastructure for the production and export of the energy source as well as launching Africa’s first hydrogen-fueled vessel. It is part of an ambitious plan to make Namibia a frontrunner in the global green hydrogen economy and supply the alternative energy source both to passing ships and industrial users in Belgium, Germany, and other industrial clusters in Europe.

The plan was unveiled during an event at Walvis Bay, Namibia that included His Majesty King Philippe of the Belgians and Dr. Nangolo Mbumba, President of the Republic of Namibia. During the event, they officiated at the ceremonial first filling of a dual-fuel truck at the hydrogen refueling station, which is expected to be operational in the fourth quarter of 2024 as part of the Cleanenergy Green Hydrogen site. 

Cleanergy Solutions Namibia is a joint venture between CMB.TECH and the Ohlthaver & List (O&L) Group, a privately held group of companies with interests ranging from food to technology, steel, marine engineering, and real estate. The Port of Antwerp Bruges and the Namibian Ports Authority are also participating.

 

H.E. Dr. Nangolo Mbumba - President of the Republic of Namibia, His Majesty King Philippe of the Belgians, Sven Thieme - Executive Chairman Ohlthaver & List, Marc Saverys - Chairman of the CMB Board of Directors, Alexander Saverys - CEO of CMB.TECH during the launch ceremony

 

The Cleanenergy Green Hydrogen facility uses only solar energy for the on-site production of green hydrogen. Among the first projects will be the hydrogen refueling station used for hydrogen-powered trucks, port equipment, railway applications, and small ships. 

The Port of Antwerp Bruges plans to invest approximately $265 million for the development of a hydrogen and ammonia storage and export facility at Walvis Bay which will be jointly run with the Namibian Ports Authority. They expect to develop the site within three to five years adjacent to the existing port both for the bunkering operations and the export to Europe.

“The port of Walvis Bay will also be in a unique position in Africa: our project will enable them to offer low-carbon logistics supply chains to their customers. This will pave the way for attracting additional logistics flows and investors,” said Alexander Saverys, CEO of CMB.TECH.

They look to leverage the experience of developing Hydrotug, the world’s first hydrogen-fueled tug supported by a fueling operation in Antwerp to develop Africa’s first hydrogen-powered vessel. Cleanenergy, together with CMB.TECH, the Port of Antwerp Bruges, and Namport will launch the vessel. It will be a Multifunctional Port Utility Vessel (MPHUV) powered by dual-fuel hydrogen engines. According to the partnership, the MPHUV's versatile design will enable the integration of different equipment needed for a range of port operations, significantly reducing greenhouse gas emissions during operations.

 

Partnership will launch Africa's first hydrogen-fueled vessel (CMB.TECH)

 

Given the ability of ports to act as hubs for hydrogen technology implementation and efforts to reduce carbon emissions, the partners said the Port of Walvis Bay and Namport emerge as an ideal partner to operate Africa's first hydrogen vessel. The port's involvement will provide invaluable insights into the vessel's specifications during development and refine the concept based on operational experience and feedback from users once it is commissioned.

Other elements of the project include a green hydrogen academy. Working with European universities as well as suppliers and customers they will educate a Namibian workforce for hydrogen operations. The partners said this is part of a 5-year plan that includes projects at different locations for ammonia bunkering, pipelines, and large-scale hydrogen and ammonia production.


Holland America’s Cruise Ship Rotterdam Begins Sustained Biofuel Pilot Test

cruise ship Rotterdam
Holland America's flagship Rotterdam will be testing 100 percent biofuel while sailing in the Norwegian fjords (Holland America Line)

PUBLISHED MAY 2, 2024 8:45 PM BY THE MARITIME EXECUTIVE

 

 

Holland America Line’s flagship cruise ship, Rotterdam (99,935 gross tons) started a long-term test using 100 percent low carbon intensity biofuel while cruising the Norwegian fjord this season. It marks the next advancement in a series of tests by Carnival Corporation using cruise ships from Holland America and AIDA and moving from biofuel blends to 100 percent certified biofuel mirroring similar tests in other parts of the commercial maritime industry.

The cruise ship bunkered with the biofuel derived from feedstocks by GoodFuels and supplied by FincoEneries before leaving the Port of Rotterdam in the Netherlands on April 27. Built by Fincantieri and delivered on July 30, 2021, she is the newest ship operated by the line and one of the newest in the industry. Past experience has confirmed that the Holland America cruise ship can operate on biofuels without modifications to the engine or the fuel structure.

During the initial phase of this test, the Rotterdam will operate one of her four engines during cruises this month using the biofuel which is expected to yield an estimated 86 percent reduction in life-cycle greenhouse gas emissions. The fuel will be used while cruising in Norway’s fjords including Geirangerfjord and Naeroyfjord. The cruise line said there is a potential to expand to multiple engines during the summer as the test progresses. 

Carnival Corporation began its tests with biofuels in 2022. AIDA Cruises tested the use of regenerated biofuels in marine diesel engines together with research partners at the University of Rostock. Based on those tests, the cruise line proceeded to bunker a biofuel blend on July 21, 2022, aboard the AIDAPrima ( 125,572 gross tons), becoming the first larger-scale cruise ship to take on a blend of marine biofuel. Tests were conducted while the ship was cruising in Northern Europe between Rotterdam, Hamburg, and Norway. 

The cruise ship entered service in 2016 and was one of the first two cruise ships outfitted with dual-fuel engines that could also burn LNG supplied by trucks while alongside in the port. The AIDAPrima loaded a second delivery of biofuel in December 2022 receiving that time 140 metric tons of 100 percent biofuel. 

Holland America also conducted the first sustained trial of biofuel aboard its cruise ship Volendam (61,214 gross tons) in August and September 2022 while the vessel was docked in Rotterdam on a temporary charter to house Ukrainian refugees. For the first five days of that test, they used a 70-30 mix of biofuel and marine gas oil in one of the ship’s main auxiliary engines. For the next 15 days, they used 100 percent sustainable biofuel. They reported achieving a minimum 78 percent decrease in lifecycle CO2 emissions compared to marine gas oil emissions.

The cruise sector is catching up to other parts of the commercial shipping industry that have also tested biofuels. Royal Caribbean Group also began tests in 2022 and in the summer of 2023 tested sustainable biofuel blends on Royal Caribbean International’s Symphony of the Seas (228,000 gross tons) sailing from Barcelona and Celebrity Cruises’ Celebrity Apex (129,500 gross tons) sailing from Rotterdam. The company completed 12 consecutive weeks of biofuel testing in Europe calling it a “pivotal moment for Royal Caribbean Group’s alternative fuel journey.”

The tests of biofuels have been successful. The broad shipping industry however reports it is limited by the availability of biofuel.


Trafigura Joins Pioneers Ordering Ammonia-Fueled Vessels from HD Hyundai

ammonia fueled product tanker
Belgium's Exmar placed the first order with Hyundai Mipo for ammonia-fueled tankers now followed by Trafigura as pioneers in the segment (Exmar)

PUBLISHED MAY 2, 2024 4:22 PM BY THE MARITIME EXECUTIVE

 

 

Global commodities trader Trafigura group is joining the growing list of pioneers committing to ammonia-fueled vessels. The company has ordered four dual-fueled product tankers for LPG or ammonia transport as part of the group’s growing efforts to decarbonization. With the vessels scheduled for delivery in 2027, Trafigura will be at the forefront of ammonia-fueled propulsion.

The company provided only a few basic details reporting that it ordered four medium gas carriers capable of using ammonia for propulsion when they are delivered. The vessels, which will be used to transport ammonia or LPG, will be built at HD Hyundai Mipo Dockyard in Ulsan, South Korea. Hyundai reported the order is valued at $286 million.

In placing the order, they join a select group of shipping companies that have already moved forward on ammonia while the engine technology is still being perfected and the infrastructure for bunkering is just being explored. Earlier this year Fortescue and Singapore’s Maritime and Port Authority reported the first-ever ammonia bunkering and tests on the Fortescue’s converted offshore supply vessel renamed Fortescue Green Pioneer. Worldwide, DNV calculates that there are just 19 vessels on order for ammonia-fueled propulsion with most of the orders for bulkers and only two gas carriers, so far. Only two shipyards, Hyundai Mipo and Qingdao Beihai Shipbuilding in China have received orders for ammonia vessels.

“We are excited to embark together with HD Hyundai Mipo on this ambitious project which supports our commitments to decarbonizing shipping and will help us to develop the global low-carbon ammonia bunkering infrastructure needed for zero-carbon shipping to become a reality,” said Andrea Olivi, Head of Wet Freight for Trafigura.

Trafigura is one of the world’s largest charterers of vessels, responsible for more than 5,000 voyages a year with around 400 ships currently under management. The company highlights its commitment to helping to develop low-carbon fuels and vessels while highlighting the range of programs it is testing. They purport to be one of the few operators to have tested a full range of alternative shipping fuels including LNG, methanol, LPG, and biofuels on its owned and chartered vessels. 

Investments are also being made by Trafigura in wider efficiency measures such as silicone hull coating, wake equalizing ducts, ultrasonic propeller antifouling technology, and continuous underwater hull cleaning and propeller polishing. It has also co-sponsored the development of a two-stroke engine by MAN Energy Solutions that can run on green ammonia and is investing in onboard carbon capture technology.

Trafigura looks to lead the industry by example. They are committed to reducing the carbon intensity of its shipping fleet by 25 percent by 2030.


Energy Insetting is the Key to Unlock the Potential of Future Fuels

BV
Illustration courtesy BV

PUBLISHED MAY 1, 2024 2:19 PM BY PAUL DELOUCHE

 

The maritime industry is facing an ever-tightening regulatory environment in its efforts to achieve its ambitious net-zero target by the middle of this century. For meaningful progress to be achieved, the industry needs two things: practical solutions, together with a detailed understanding of the actual impact of various long and short-term measures on the industry’s future decarbonization pathway.

This extends beyond purely technical considerations, encompassing the entire value chain, and accounting for the broader economic context in which the transition is taking place. It also requires approaching the question using the right lens, by considering shipping’s “greenhouse gas (GHG) budget” to 2050, rather than solely focusing on the emissions levels at the end of the journey. To limit global temperature increases to 1.5 degrees Celsius, in line with the Paris Agreement, we need to account for all emissions released into the atmosphere until the point of carbon neutrality is reached. 

Putting those principles into practice, Bureau Veritas (BV) has recently published a report outlining potential decarbonization trajectories for the maritime industry through five distinct scenarios, each considering several parameters such as socio-economic forecasts for the evolution of demand for maritime transport, the possible speed for the uptake of green fuels, and technical efficiency improvements in shipping.

Our study reveals that for shipping to keep within its carbon budget, all available levers will need to be actioned at different points in time over the next three decades.

A central role for energy efficiency

In practice, our study demonstrated two clear findings. The first is that operational and technical efficiency measures and energy-saving technologies need to be actioned in the short term, when emissions are at their highest. This will involve embracing practical solutions such as reducing speed, voyage optimization, weather routing, energy-saving devices, and wind-assisted propulsion, which will all help to drive decarbonization.

Our modeling confirmed the potential hefty cumulative impact of operational and technical efficiency measures in keeping shipping within its “GHG budget” to 2050. BV’s simulations show that without action to reduce speed or waiting time - while ocean transportation volumes grow - GHG emissions would be 92% higher by midcentury, with 44% more emissions over the period than if these levers had been actioned.

Although future fuels are widely acknowledged as the preeminent solution, the limited availability of biofuels and e-fuels generated from wind and solar sources to replace fossil fuels reflects the monumental investment required for adoption at scale. The industry cannot afford to wait for innovative fuel and propulsion technologies to achieve commercial viability before taking action.

A supply chain challenge

Moving the needle on fuel production requires pragmatic solutions to unlock the necessary investments to reach the required scale. As such, the second clear finding from our research established the importance of embracing energy insetting as a means of stimulating the at-scale production of renewable and low-carbon fuels, connecting fuel buyers and sellers across the value chain, while also addressing the cost disparity between conventional and very-low-carbon fuels.

The widespread adoption of low-carbon fuels by the shipping industry will entail significant costs to shipowners and operators compared to fossil fuels. However, energy insetting provides a solution that can help bridge the price gap, whilst making a tangible impact on Scope 3 emissions across value chains.

Digital certificates, known as insets, are issued according to the level of emissions savings achieved using renewable and low-carbon fuels, compared to conventional fossil fuels. These emissions are evaluated using a proof of sustainability (PoS) delivered by an independent body to attest to the sustainability credentials of a given fuel. These insets can then be exchanged using a book-and-claim methodology, which allows the certificates to be verified and exchanged digitally, on a dedicated registry.

Unlike offsets, insets are internationally recognized as concrete reductions realized within the supply chain. So, rather than engaging in compensation through external schemes such as reforestation, insets improve the net environmental performance of the industry as a whole, based on reliable assurance verification. This involves practical measures to monetize the estimated GHG emission savings enabled by using renewable or low-carbon marine fuels and will enable end consumers concerned with sustainable sourcing and supply to exercise their purchasing power to guide upstream decisions.

Ultimately, the development of different iterations of energy insetting could be a vital tool the industry needs to send clear market signals to stimulate the production of renewable and low-carbon fuels at scale.

Furthermore, the use of digitalization to record and validate these emissions savings has the dual benefit of connecting a variety of stakeholders throughout the supply chain. It removes the geographical barriers that arise from sourcing through physical supply chains, bringing the supply and demand sides of low-carbon fuel development together, uniting energy providers, carriers, forwarders and cargo owners, as well as the end consumer. The long-term emergence and efficiency of markets rely on trust and the circulation of information.

It is widely acknowledged that immediate and impactful action needs to be taken to achieve the maritime sector’s decarbonization targets, but these goals will not be achieved without unprecedented levels of collaboration and consensus between different stakeholders across the entire value chain.

While this level of cooperation may strike many within the industry as counterintuitive, it is only by embracing benefit-sharing models – such as energy insetting methodologies – that the industry will achieve its net-zero ambition.

Paul Delouche is the Strategy, Acquisitions, and Advanced Services Director at Bureau Veritas Marine & Offshore.

The opinions expressed herein are the author's and not necessarily those of The Maritime Executive.

  

New Japanese lily species identified, 1st addition to sukashiyuri group in 110 years


Classification of these plants bloom to double the number of taxonomic groups through morphological study, DNA analysis


OSAKA METROPOLITAN UNIVERSITY

The new species of Japanese lily Lilium pacificum 

IMAGE: 

AMONG THE CHARACTERISTICS DIFFERENTIATING THIS LILY FROM OTHER SUKASHIYURI ARE ITS LEAVES, WHICH CURVE ALMOST LIKE A CLAW AT THE TIPS.

view more 

CREDIT: OSAKA METROPOLITAN UNIVERSITY





A new species of the Japanese lily known as sukashiyuri has been identified for the first time since 1914 by a research team led by Dr. Seita Watanabe, a specially appointed assistant professor at the Botanical Gardens and the Graduate School of Science at Osaka Metropolitan University.

Dr. Watanabe questioned the classification used up to now for sukashiyuri group, which usually has orange flowers. These lilies have high ornamental value, having been exported from Japan for more than two centuries. There have been only four taxonomic groups, but Dr. Watanabe and his team sought evidence to prove that there were more.

Traveling across Japan to observe the lilies, record images, gather specimens, and obtain DNA from plant materials, the research team members conducted a detailed analysis of the form and structure of the plants and their DNA. The results of their extensive work revises the conventional classification into eight taxons, including what they have named Lilium pacificum, the first new species of Japanese lily in 110 years.

Lilium pacificum grows on coastal areas facing the Pacific Ocean on Honshu from Ibaraki Prefecture south to Shizuoka Prefecture and the Izu Islands.

“It has an interesting characteristic: the tips of its leaves are curved into a claw-like shape,” Dr. Watanabe enthused. “Based on the new understanding of these eight taxonomic groups, we found that seven are endemic to Japan, each adapted to its environment, whether coastal or mountainous, and evolving unique traits.”

Dr. Watanabe added: “Our research shows that these plants have differentiated through complex processes, and we hope that our work will provide clues for speciation studies. In the past, individual differences may have been overlooked because of the apparent simplicity of the plants. Through this research, I was reminded of the importance of morphological observation.”

The findings were published in Taxon.

###

About OMU 

Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: XFacebookInstagramLinkedIn.

Nature publishes the largest "tree of life" of flowering plants to date



UCO researcher Manuel de la Estrella is part of an international team, which has developed the "tree of life" of flowering plants as a tool with a multitude of uses, from the classification and identification of plants, to conservation



Peer-Reviewed Publication

UNIVERSITY OF CÓRDOBA

Manuel de la Estrella, researcher of the University of Cordoba who participated in the study 

IMAGE: 

MANUEL DE LA ESTRELLA, RESEARCHER OF THE UNIVERSITY OF CORDOBA WHO PARTICIPATED IN THE STUDY

view more 

CREDIT: UNIVERSITY OF CORDOBA




UCO researcher Manuel de la Estrella is part of an international team, led by the Kew Botanical Gardens, which has developed the "tree of life" of flowering plants as a tool with a multitude of uses, from the classification and identification of plants, to conservation in the face of climate change

Charles Darwin, the father of the Theory of Evolution, was haunted by a certain quandaryuntil his death: the sudden appearance and rapid diversification of plants that have flowers and fruits, angiosperms, which represent 90% of the plants on the planet. For him it was an "abominable mystery" that numerous subsequent studies have sought to clarify. An international study published in the journal Nature, and in which Manual Estrella, a researcher in the Department of Botany, Ecology and Plant Physiology at the University of Cordoba Manuel de la Estrella, has participated, sheds a little more light on the mystery by generating a large tree of life of angiosperms after analyzing 9,500 species, 200 fossils and 1.8 billion "letters" of genetic code.

The study, spearheaded by the Kew Botanical Garden an institution that houses one of the largest collections of plants, involved 279 scientists from 139 organizations and 27 countries. This broad participation facilitated access to collections around the world to analyze DNA, compare different sequences and establish relationships between different plant species. Thus, they have worked both with recently collected samples (with well-preserved DNA), and with samples preserved in herbaria, some more than 200 years old, and whose DNA was degraded.

Technological development is what has made it possible to analyze so much information and reconstruct the history of flowering plants' evolution. Previous studies focused on obtaining genetic information from chloroplasts, a part of plant cells related to photosynthesis and which appear in high quantities in plant cells. The problem is that they offered information on just a few genes. Now, thanks to a molecular analysis tool (Angiosperms353), the team has been able to focus on revealing the information of the nuclear genome, another part of cells that, unlike chloroplasts, is not numerous, but rather unique, offering more information. With this tool they have managed to sequence 353 genes from the DNA of each plant. This information, 15 times greater than that from previous studies, has resulted in the development of the largest tree of life so far for angiosperms.

In addition, they have analyzed data from 200 plant fossils, which served to reconstruct the temporal range of kinship relationships between species and verify that plants underwent very rapid diversification, giving rise to more than 80% of the main lineages that exist today, shortly after their origination.

UCO professor Manuel de la Estrella worked with a Marie Skłodowska-Curie scholarship at the Kew Botanical Garden, studying Detarioideae, abundant plants in the tropical area of Africa and belonging to the Leguminosae (pea or carob) family. He states that the tree "will serve as a foundation for many more subsequent studies, thanks to the large amount of information it offers." These studies that can range from the classification and identification of plants, to the discovery of new medicinal compounds,  bioengineering, genetic improvement, and the conservation of plants in the face of climate change and biodiversity loss.

Reference:

Zuntini, A. R., Carruthers, T. et al, Phylogenomics and the rise of the angiosperms, Nature (2024). www.nature.com/articles/s41586-024-07324-0, https://doi.org/10.1038/s41586-024-07324-0

A model estimates the cultivable space at photovoltaic plants, to combine agricultural and photovoltaic production



Peer-Reviewed Publication

UNIVERSITY OF CÓRDOBA

Advance in Agrivoltaics 

IMAGE: 

RESEARCHERS WHO CARRIED OUT THE STUDY LUIS MANUEL FERNÁNDEZ Y RAFAEL LÓPEZ 

view more 

CREDIT: UNIVERSITY OF CORDOBA




production

A team at the University of Cordoba has developed a methodology that defines the cultivable space between two-axis photovoltaic modules, with the aim of promoting the conversion of existing plants over to agrivoltaic production

In Alcarras de Carla Simón, the Solé family glimpses the end of its traditional and not-very-profitable peach plantation due to the arrival of solar panels. The conflict between land use for sustainable energy vs agricultural production is a hot topic that is reflected in cultural products, and also in research.

Agrivoltaics, which is defined as the shared use of land for agricultural and photovoltaic production, is presented as a strategy to resolve this conflict, and the TEP215 - Physics for Renewable Energies research group at the University of Cordoba seeks to promote these types of plants through its research. In one of their latest works they have developed a model that is able to gauge the cultivable space between two-axes solar collectors at existing photovoltaic plants. This type of two-axis module moves following the sun, like a kind of sunflower, to maximize its performance.

"In this work, we chose a type of photovoltaic installation that already existed to see whether we could redirect it and integrate crops for agricultural production into these existing facilities," said Rafael López, a Professor of Applied Physics.

The methodology was developed based on a theoretical simulation of solar astronomy and the spatial geometry of a photovoltaic plant with this type of two-axis solar panel, and indicates the areas in which crops could be located without interfering with the movement of the solar panels or creating shadows; that is, without reducing photovoltaic production.

Another of the authors, a researcher at the Department of Electrical and Automatic Engineering Luis Manuel Fernández, points out that "the work also takes into account backtracking, which is a methodology developed by the group based on a process that prevents the panels from casting shadows on each other during their movement."

Using an actual photovoltaic installation located in Cordoba, "El Molino," with two-axis solar trackers and backtracking, the model reveals the cultivable areas between panels. The simulation at that plant revealed that 74% of the land between the panels is cultivable by crops less than 1.4 m high.

This model could be applied, refining and adjusting parameters, to other existing plants to understand the possibilities of shifting over to agrivoltaic; that is, combining photovoltaic and agricultural production, "both of which are productive and profitable," stated Rafael López.

"This work represents an advance in the possible conversion and agrivoltaic use of existing large photovoltaic plants, improving their sustainability, contributing to the necessary deployment of agrivoltaics, and advancing the fight against climate change," the researchers said.

This system entails a win-win relationship since the crops would also benefit from the panels' shading, especially in extreme climates, maintaining soil moisture for longer.

The establishment of legislation on agrivoltaics and field trials with different types of crops are the next  steps to be taken for this type of land use to be implemented.

Reference

Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C). DOI: 10.1016/j.apenergy.2024.122952

International team cracks genomic code for earliest forms of terrestrial plant life

Discovery answers fundamental question of how earliest land plants evolved from aquatic freshwater algae



UNIVERSITY OF NEBRASKA-LINCOLN

Yanbin Yin 

IMAGE: 

COMPUTATIONAL BIOLOGIST YANBIN YIN (RIGHT) AND POSTDOCTORAL RESEARCHER XUEHAN FENG REVIEW ALGAE SAMPLES. 

view more 

CREDIT: CRAIG CHANDLER/UNIVERSITY COMMUNICATION AND MARKETING;/UNIVERSITY OF NEBRASKA-LINCOLN





Plant life first emerged on land about 550 million years ago, and an international research team co-led by University of Nebraska–Lincoln computational biologist Yanbin Yin has cracked the genomic code of its humble beginnings, which made possible all other terrestrial life on Earth, including humans.

The team — about 50 scientists in eight countries – has generated the first genomic sequence of four strains of Zygnema algae, the closest living relatives of land plants. Their findings shed light on the ability of plants to adjust to the environment and provide a rich basis for future research.

The study was published May 1 in the journal Nature Genetics. 

“This is an evolutionary story,” said Yin, who led the research team with a scientist from Germany. “It answers the fundamental question of how the earliest land plants evolved from aquatic freshwater algae.”

Yin’s lab in the Nebraska Food for Health Center and the Department of Food Science and Technology has a long history of studying plant cell wall carbohydrates, a major component of dietary fibers for humans and farm animals; lignocelluloses for biofuel production; and natural barriers to protect crops from pathogens and environmental stresses.

All current plant life on land burst from a one-off evolutionary event known as plant terrestrialization from ancient freshwater algae. The first land plants, known as embryophyta within the clade of streptophyta, emerged on land about 550 million years ago — their arrival fundamentally changing the surface and atmosphere of the planet. They made all other terrestrial life, including humans and animals, possible by serving as an evolutionary foundation for future flora and food for fauna.

The researchers worked with four algal strains from the genus Zygnema — two from a culture collection in the United States and two from Germany. Scientists combined a range of cutting-edge DNA sequencing techniques to determine the entire genome sequences of these algae. These methods enabled scientists to generate complete genomes for these organisms at the level of whole chromosomes — something that had never been done before on this group of algae. Comparing the genomes with those of other plants and algae led to the discovery of specific overabundances of cell wall enzymes, signalling genes and environmental response factors.

A unique feature of these algae revealed by microscopic imaging — performed at the University of Innsbruck in Austria, the Universität Hamburg in Germany and UNL’s Center for Biotechnology — is a thick and highly sticky layer of carbohydrates outside the cell walls, called the mucilage layer. Xuehuan Feng, the first author of the paper and a Husker postdoctoral research associate, developed a new and effective DNA extraction method to remove this mucilage layer for high purity and high molecular DNAs.

“It is fascinating that the genetic building blocks, whose origins predate land plants by millions of years, duplicated and diversified in the ancestors of plants and algae and, in doing so, enabled the evolution of more specialized molecular machinery,” said Iker Irisarri of the Leibniz Institute for the Analysis of Biodiversity Change and co-first author of the paper.

The team’s other co-leader, Jan de Vries of the University of Göttingen, said, “Not only do we present a valuable, high-quality resource for the entire plant scientific community, who can now explore these genome data, our analyses uncovered intricate connections between environmental responses.”

The four multicellular Zygnema algae belong to the class Zygnematophyceae, the closest living relatives of land plants; it is a class of freshwater and semi-terrestrial algae with more than 4,000 described species. Zygnematophyceae possess adaptations to withstand terrestrial stressors, such as desiccation, ultraviolet light, freezing and other abiotic stresses. The key to understanding these adaptations is the genome sequences. Before this paper, genome sequences were only available for four unicellular Zygnematophyceae.

Yin said this research aligns with one of the National Science Foundation’s 10 Big Ideas — “Understanding the Rules of Life” — to address societal challenges, from clean water to climate resilience. The discovery also holds significance in applied sciences, such as bioenergy, water sustainability and carbon sequestration.

“Our gene network analyses reveal co-expression of genes, especially those for cell wall synthesis and remodifications that were expanded and gained in the last common ancestor of land plants and Zygnematophyceae,” Yin said. “We shed light on the deep evolutionary roots of the mechanism for balancing environmental responses and multicellular cell growth.”

The international research collaboration includes about 50 researchers from 20 research institutions in eight countries — the United States, Germany, France, Austria, Canada, China, Israel and Singapore. Other Husker researchers on the team are Chi Zhang, professor of biological sciences, and Jeffrey Mower, professor of agronomy and horticulture.

Funding for UNL’s portion of the research came primarily from Yin’s NSF CAREER award, the Nebraska Tobacco Settlement Biomedical Research Enhancement Fund, the National Institutes of Health, and the U.S. departments of Agriculture and Energy.

JOURNAL

DOI

METHOD OF RESEARCH

SUBJECT OF RESEARCH

ARTICLE TITLE

ARTICLE PUBLICATION DATE

Genomes of “star algae” shed light on origin of plants


International research team generates first genomes of complex closest relatives of land plants


Peer-Reviewed Publication

UNIVERSITY OF GÖTTINGEN

Liquid samples of different Zygnema circumcarinatum cell cultures 

IMAGE: 

LIQUID SAMPLES OF DIFFERENT ZYGNEMA CIRCUMCARINATUM CELL CULTURES, ALL STORED IN THE CULTURE COLLECTION OF ALGAE AT GÖTTINGEN UNIVERSITY.

view more 

CREDIT: DR TATYANA DARIENKO




Land plants cover the surface of our planet and often tower over us. They form complex bodies with multiple organs that consist of a broad range of cell types. Developing this morphological complexity is underpinned by intricate networks of genes, whose coordinated action shapes plant bodies through various molecular mechanisms. All of these magnificent forms burst forth from a one-off evolutionary event: when plants conquered Earth’s surface, known as plant terrestrialization. Among those algae most closely related to land plants, diverse body types are found – ranging from single-celled algae to more complex cell filaments. From this group of relatives, an international group of researchers led by the Universities of Göttingen and Nebraska–Lincoln has now generated the first genome data of such complex specimens, on four filamentous “star algae” of the genus Zygnema. Their results were published in Nature Genetics.

 

The researchers worked with four algal strains in total, two from a culture collection in the USA and two that have been kept safe in the Algal Culture Collection at Göttingen University (SAG). The research involved more than 50 scientists from nine countries who combined a range of cutting-edge sequencing techniques to elucidate the entire DNA sequence of these algae. The advanced methods enabled them to generate complete genomes for these organisms at the level of whole chromosomes – something that had never been done before on this group of algae. Comparing the genes on the genomes with those of other plants and algae led to the discovery of specific overabundances of signalling genes and environmental response factors. Dr Iker Irisarri, Leibniz Institute for the Analysis of Biodiversity Change, explains: “Many of these genes underpin molecular functions that were important for the emergence of the first multicellular terrestrial plants. It is fascinating that the genetic building blocks, whose origins predate land plants by millions of years, duplicated and diversified in the ancestors of plants and algae and, in doing so, enabled the evolution of more specialized molecular machinery”.

 

Professor Jan de Vries, University of Göttingen, says: “Not only do we present a valuable, high-quality resource for the entire plant scientific community, who can now explore these genome data, our analyses uncovered intricate connections between environmental responses. This sheds light on one of land plants’ most important features: their ability to adjust their growth and development so that it aligns with the environment in which they dwell – a process known as developmental plasticity.”

 

Original publication: Feng X et al: “Genomes of multicellular algal sisters to land plants illuminate signaling network evolution”, Nature Genetics 2024. Doi: 10.1038/s41588-024-01737-3

www.uni-goettingen.de/en/613776.html

Land plants cover the surface of our planet and often tower over us. They form complex bodies with multiple organs that consist of a broad range of cell types. Developing this morphological complexity is underpinned by intricate networks of genes, whose coordinated action shapes plant bodies through various molecular mechanisms. All of these magnificent forms burst forth from a one-off evolutionary event: when plants conquered Earth’s surface, known as plant terrestrialization. Among those algae most closely related to land plants, diverse body types are found – ranging from single-celled algae to more complex cell filaments. From this group of relatives, an international group of researchers led by the Universities of Göttingen and Nebraska–Lincoln has now generated the first genome data of such complex specimens, on four filamentous “star algae” of the genus Zygnema. Their results were published in Nature Genetics.

 

The researchers worked with four algal strains in total, two from a culture collection in the USA and two that have been kept safe in the Algal Culture Collection at Göttingen University (SAG). The research involved more than 50 scientists from nine countries who combined a range of cutting-edge sequencing techniques to elucidate the entire DNA sequence of these algae. The advanced methods enabled them to generate complete genomes for these organisms at the level of whole chromosomes – something that had never been done before on this group of algae. Comparing the genes on the genomes with those of other plants and algae led to the discovery of specific overabundances of signalling genes and environmental response factors. Dr Iker Irisarri, Leibniz Institute for the Analysis of Biodiversity Change, explains: “Many of these genes underpin molecular functions that were important for the emergence of the first multicellular terrestrial plants. It is fascinating that the genetic building blocks, whose origins predate land plants by millions of years, duplicated and diversified in the ancestors of plants and algae and, in doing so, enabled the evolution of more specialized molecular machinery”.

 

Professor Jan de Vries, University of Göttingen, says: “Not only do we present a valuable, high-quality resource for the entire plant scientific community, who can now explore these genome data, our analyses uncovered intricate connections between environmental responses. This sheds light on one of land plants’ most important features: their ability to adjust their growth and development so that it aligns with the environment in which they dwell – a process known as developmental plasticity.”

 

Original publication: Feng X et al: “Genomes of multicellular algal sisters to land plants illuminate signaling network evolution”, Nature Genetics 2024. Doi: 10.1038/s41588-024-01737-3

 

  

Microscope image of Zygnema circumcarinatum, a filamentous alga with a star-shaped chloroplast. Because of this feature, algae of the genus Zygnema are also called "star algae" (scale is 50 µm, corresponding to 0.05 mm)

CREDIT

Dr Tatyana Darienko

Plants utilize drought stress hormone to block snacking spider mites


Spider mite infestation induces a rapid stomatal closure response



UNIVERSITY OF CAMBRIDGE

Spider mite infection of a bean plant. Images provided by Professor Isabel Diaz. 

IMAGE: 

SPIDER MITE INFECTION OF A BEAN PLANT. IMAGES PROVIDED BY Professor Isabel Diaz.

view more 

CREDIT: IMAGES PROVIDED BY PROFESSOR ISABEL DIAZ.




Recent findings that plants employ a drought-survival mechanism to also defend against nutrient-sucking pests could inform future crop breeding programmes aimed at achieving better broadscale pest control.

Using an advanced fluorescent biosensor (ABACUS2) that can detect tiny changes in plant hormone concentrations at the cellular scale, scientists saw that abscisic acid (ABA), usually linked with drought response, started closing the plant’s entry gates within 5 hours of being infested with spider mites.

Microscopic leaf pores (stomata) are important for gas exchange but are also the major sites for water loss. When there is a water shortage, plants act to conserve water by producing the drought stress hormone ABA to close their stomata.

Coincidentally, the closure of stomata also obstructs the preferred entry points for nutrient-sucking pests like spider mites. The two-spotted spider mite is one of the most economically damaging pests – it’s not fussy and attacks a broad range of more than 1000 plants, including 150 crops. Barely visible to the naked eye, these tiny pests pierce and then suck dry plant cells. They can build up to enormous numbers very quickly and can be one of the most destructive pests in the garden and horticulture industry, spoiling house plants and reducing yields of vegetables, fruit and salad crops.

There has been debate about ABA's role in pest resistance. Initially, it was noticed that stomata close when plants are attacked by nutrient-sucking pests, leading to various hypotheses, including that this closure could be a plant response to losing water due to the pests' feeding or even that the pests act to close stomata to prevent plants from sending distress volatiles to pest predators.

In a collaboration between the Centre for Plant Biotechnology and Genomics (CBGP) in Spain and Sainsbury Laboratory Cambridge University (SLCU), researchers studying how thale cress (Arabidopsis thaliana) responds to the two-spotted spider mite (Tetranychus urticae) have determined the plant leaps into action almost immediately, employing the same hormone as for drought to also block spider mites from penetrating plant tissues and, as a result, significantly reducing pest damage.

The findings published in Plant Physiology found the peak closure of stomata is achieved within a time frame of 24 to 30 hours.

“Open stomata are natural apertures where pests like aphids and mites insert their specialised feeding structures, called stylets, to pierce and then suck out the nutrient rich contents from individual sub-epidermal cells”, said Irene Rosa-Díaz, who carried out the spider mite experiments at SLCU and CBGP during her PhD with Professor Isabel Diaz at the Centro de Biotecnología y Genómica de Plantas, Universidad Polytécnica de Madrid, and National Institute of Agricultural and Food Research and Technology (UPM-INIA) .

 

The plant leaps into action almost immediately, employing the same hormone as for drought to also block spider mites from penetrating plant tissues and, as a result, significantly reducing pest damage.

 

“We were able to show mite infestation induced a rapid stomatal closure response, with the plant hormone ABA rising in the leaf tissues – highest in stomatal and vascular cells, but also all other leaf cells measured. We showed through multiple different experiments that stomatal closure hinders mites. Plants that were pre-treated with ABA to induce stomatal closure and then infested with mites showed decreased mite damage, while ABA-deficient mutant plants where stomata cannot close well and plants that have a more stomata are more susceptible to mites.”

Alexander Jones’ research group at SLCU develops in vivo biosensors that are revealing hormone dynamics in plants at unprecedented resolution, including ABACUS2 that quantified cellular ABA in these mite experiments.

Dr Jones said the study highlights the important interactions between biotic and abiotic stresses in plants: “Early warning cues from mite feeding induces a cascade of immune signalling molecules, including jasmonic acid (JA) and salicylic acid (SA), among other chemical responses. Together, these results show that ABA accumulation and stomatal closure are also key defence mechanisms employed to reduce mite damage.

“The next step is to investigate what the initial mite-produced signal is that the plant is detecting that then results in ABA accumulation. The biochemical mechanisms being used by the plant as signals of pest attack could be anything, including mite feeding vibrations, mite salivary proteins, chemicals produced by the mites or mite activity, direct cell damage (wounds) or other molecules associated with the mites.

“Identifying the initial triggers could potentially be used to develop new crop treatments to arm the plants ahead of predicted pest infestations. Importantly, efforts to select for plants with altered stomatal traits, which already must balance a photosynthesis vs water conservation trade-off, could also consider resistance to damaging pests.”

Reference

Irene Rosa-Díaz, James Rowe, Ana Cayuela-Lopez, Vicent Arbona, Isabel Díaz, Alexander M. Jones (2024) Spider mite herbivory induces an abscisic acid-driven stomatal defense. Plant Physiology

https://doi.org/10.1093/plphys/kiae215