Showing posts sorted by date for query CONVERSION. Sort by relevance Show all posts
Showing posts sorted by date for query CONVERSION. Sort by relevance Show all posts

Sunday, May 19, 2024

 

Using AI to improve building energy use and comfort


New study from Waterloo researchers creating climate change-proof buildings with deep learning-powered inspections  



UNIVERSITY OF WATERLOO

Hot spots of heat loss detection from the building examined in the study 

IMAGE: 

THE IMAGE SHOWS HOT SPOTS OF HEAT LOSS DETECTION FROM A MULTI-UNIT RESIDENTIAL BUILDING USING DEEP LEARNING WITH BOUNDING BOXES.

view more 

CREDIT: UNIVERSITY OF WATERLOO




University of Waterloo researchers have developed a new method that can lead to significant energy savings in buildings. The team identified 28 major heat loss regions in a multi-unit residential building with the most severe ones being at wall intersections and around windows. A potential energy savings of 25 per cent is expected if 70 per cent of the discovered regions are fixed.    

Building enclosures rely on heat and moisture control to avoid significant energy loss due to airflow leakage, which makes buildings less comfortable and more costly to maintain. This problem will likely be compounded by climate change due to volatile temperature fluctuations. Since manual inspection is time-consuming and infrequently done due to a lack of trained personnel, energy inefficiency becomes a widespread problem for buildings.   

Researchers at Waterloo, which is a leader in sustainability research and education and a catalyst forenvironmental innovation, solutions and talent, created an autonomous, real-time platform to make buildings more energy efficient. The platform combines artificial intelligence, infrared technology, and a mathematical model that quantifies heat flow to better identify areas of heat loss in buildings.

 Using the new method, the researchers conducted an advanced study on a multi-unit residential building in the extreme climate of Canadian prairies, where elderly residents reported discomfort and higher electricity bills due to increased demand for heating in their units. Using AI tools, the team trained the program to examine thermal images in real time, achieving 81 percent accuracy in detecting regions of heat loss in the building envelope.   

“The almost 10 per cent increase in accuracy with this AI-based model is impactful, as it enhances occupants’ comfort as well as reduces energy bills,” said Dr. Mohamad Araji, director of Waterloo’s Architectural Engineering Program and head of the Symbiosis Lab, an interdisciplinary group at the university that specializes in developing innovative building systems and building more environmentally friendly buildings.   

The new AI tools helped to remove the element of human error in examining the results and increased the speed of getting the data analyzed by a factor of 12 compared to traditional building inspection methods.  

Future expansions to this work will include utilizing drones equipped with cameras to inspect high-rise buildings.  

“The hope is that our methodology can be used to analyze buildings and lead to millions in energy savings in a much faster way than previously possible,” Araji said.   

 More information about this work can be found in a research paper published recently by Energy Conversion and Management.  

Saturday, May 18, 2024

 

Can we revolutionise the chemical industry and create a circular economy? Yes, with the help of catalysts



GRIFFITH UNIVERSITY
Catalysis in circular economy 

IMAGE: 

SUSTAINABLE RESOURCE MANAGEMENT IN THE CIRCULAR ECONOMY WITH EMPHASIS ON RESOURCE RECOVERY AND WASTE REDUCTION

view more 

CREDIT: ELSEVIER




The chemical industry is a cornerstone of global development, driving innovation, and providing essential products that support our modern way of life.  

However, its reliance on unsustainable fossil resources has posed significant threats to global ecosystems through climate change and chemical pollution.  

A new commentary published in Cell Press’ OneEarth co-authored by Griffith University researchers puts forth a transformative solution: catalysis to leverage sustainable waste resources, ushering the industry from a linear to a circular economy. 

“If we look at recent statistics, the chemical industry contributes a staggering US$5.7 trillion to the global economy and sustains 150 million jobs worldwide, excluding refined fossil fuels,” said Professor Karen Wilson, one of the lead authors and Director of Griffith’s Centre for Catalysis and Clean Energy

"But it remains the largest industrial energy consumer and the third-largest emitter of direct CO2 emissions globally.”  

In 2022, the industry emitted 935 million metric tons of CO2 during primary chemicals production. Moreover, its operations have led to significant water contamination and the release of toxic chemicals into the environment, perpetuating a cycle of ecological harm. 

Co-lead author Professor Adam Lee, also based at Griffith, said: “Catalytic processes could minimise reliance on finite fossil fuels and curb CO2 emissions significantly by harnessing agricultural, municipal, and plastic waste as feedstocks. 

“This feedstock transition not only mitigates environmental damage but also addresses vulnerabilities in the industry's supply chain, which are susceptible to geopolitical and natural disruptions.” 

Professor Wilson added: “Catalysis has historically played a key role in transforming fossil resources into essential fuels and products, and now offers a beacon of hope for revolutionising the chemical industry and promoting a circular economy.” 

However, the authors acknowledge that this vision demands concerted innovation in catalyst formulation and process integration.  

“Prioritising Earth-abundant elements over precious metals will unlock sustainable catalytic systems for the efficient conversion of organic waste into benign and recyclable products,” Professor Wilson said. 

“Already, pioneering initiatives such as the co-location of different industries in Kalundborg, Denmark to foster symbiosis have demonstrated new collaborative models to improve resource efficiency and waste reduction.” 

"Catalysis offers a pathway towards sustainability, enabling us to transform waste into valuable resources and pave the way for a circular economy," Professor Lee added. 

In the OneEarth commentary, the team explored sources of catalysis for sustainable and circular chemical processes through the following lenses: 

  • Catalysis to enable waste biomass utilisation 

  • Catalysis for circular polymers 

  • Catalysis to remediate chemical pollution 

The commentary ‘Catalysis at the Intersection of Sustainable Chemistry and a Circular Economy’ has been published in OneEarth.  


A review on recovery processes of metals from E-waste: A green perspective

https://doi.org/10.1016/j.scitotenv.2022.160391Get rights and content

Highlights

  • Technologies for metal recovery from E-waste have been reviewed comprehensively.

  • Hydrometallurgy and biometallurgy are considered to be efficient technologies.

  • Circular economic model of E-waste management has been illustrated.

  • Impact of E-waste management on global economy is discussed.

Abstract

E-waste management has become a global concern because of the enormous rise in the rate of end-of-life electrical and electronic equipment's (EEEs). Disposal of waste EEE directly into the environment leads to adverse effects on the environment as well as on human health. For the management of E-waste, numerous studies have been carried out for extracting metals (base, precious, and rare earth) following pyrometallurgyhydrometallurgy, and biometallurgy. Irrespective of the advantages of these processes, certain limitations still exist with each of these options in terms of their adoption as treatment techniques. Several journal publications regarding the different processes have been made which aids in future research in the field of E-waste management. This review provides a comprehensive summary of the various metal recovery processes (pyrometallurgy, hydrometallurgy, and biometallurgy) from E-waste, along with their advantages and limitations. A bibliometric study based on the published articles using different keywords in Scopus has been provided for a complete idea about E-waste with green technology perspective like bioleaching, biosorption, etc. The present study also focussed on the circular economic approach towards sustainable E-waste management along with its socio-economic aspects and the economic growth of the country. The present study would provide valuable knowledge in understanding E-waste and its different treatment processes to the students, researchers, industrialists, and policymakers of the country.

Introduction

Recycling and recovery of metals and other components present in electronic and electrical waste or E-waste has become a major concern in terms of environment and socio-economic aspects. Approximately, 53.6 million metric tons (Mt) of E-waste was generated in 2019 and is expected to reach 74 Mt. in 2030 (Al-Salem et al., 2022). About 9.3 Mt. of E-waste has been reported as collected and recycled formally which is 17.4 % of the total amount of E-waste generated (Forti et al., 2020; Singh and Ogunseitan, 2022). Management of E-waste has become the most significant challenge across the world as it is made up of >100 various ‘hazardous’ or ‘non-hazardous compounds which include organics materials (glass-fibre, flame retardants, polymers), non-organics materials (ferrous metals and non-ferrous metals), and ceramics (Kaya, 2016; Shittu et al., 2021). Therefore, disposal of E-waste directly in the environment causes environmental and human health risks (Mohammed et al., 2013; Ankit et al., 2021; Parvez et al., 2021; Dutta et al., 2022). Improper E-waste recycling practices in the developing countries resulted in the generation of toxic gases, such as dioxin and furan (polychlorinated dibenzo-p-dioxins, and dibenzofurans (PCDD/Fs), and hazardous components comprising heavy metals, such as lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PCDEs), etc. (Song and Li, 2014; Awasthi et al., 2019). In view of the overall demand for valuable metals (base, precious, and rare earth metals (REMs)) for the production of new EEEs, E-waste has been considered as a secondary source (Vats and Singh, 2015; Maneesuwannarat et al., 2016; Debnath et al., 2018; Pourhossein and Mousavi, 2018). The lower recycling rates also show that significant amounts of REMs precious and base metals, and other high-value recoverable critical raw materials that were present in E-waste, valued at about US $57 billion, were either landfilled, burned, or processed using crude recycling techniques (Sengupta et al., 2022).

E-waste has been recycled mostly using mechanical and chemical processes for the last few decades (Pant and Singh, 2013; Kaya, 2016). For proper E-waste treatment, several studies are carried out which include physical, chemical, and biological processes. Presently, the hybrid of biological with the chemical process for metal recovery from E-waste is in high demand as it has been considered as a green technology (Kim et al., 2016). Each of these recycling processes has limitations like high capital costs in mechanical processes, and chemical process which leads to the generation of toxic gases and liquid waste (Arshadi and Mousavi, 2014; Hong and Valix, 2014; Baniasadi et al., 2019; Rozas et al., 2019). Thus, it is the utmost requirement at present to emphasize cost-effective methodology for the management of E-waste in a scientific way ensuring environmental protection, safe human health finally leading to the economic growth of the country.

Although several research and review papers are published regarding E-waste recycling technologies, yet there are only few publications comprising all the E-waste technologies (pyrometallurgy, hydrometallurgy, bioleaching and/or biometallurgy), their advantages, disadvantages, socio and techno-economic aspects. This review has summarized the major publications in last 5 years which provided an idea about the most promising technology for E-waste recycling. On comparing all the technologies, biometallurgy has been considered as a green technology and hence different processes involved in biometallurgy have been explained comprehensively. Along with the description of the processes, the circular economic framework has also been incorporated with the socio-economic and techno-economic analyses. The gaps and limitation of different technologies have been identified and potential future perspectives are discussed.

E-wastes comprise a heterogenous mixture of metals, glass, plastics, and ceramics. It contains precious metals (gold (Au), silver (Ag), palladium (Pd), and platinum (Pt)), and; hazardous materials (Pd, Cd, Cr, Hg, arsenic (As), nickel (Ni), copper (Cu), cobalt (Co), lithium (Li), etc.); non-hazardous materials (iron and steel) as well as REMs (neodymium, praseodymium, tantalum, and indium) (Wath et al., 2010; Dasgupta et al., 2014). The presence of various valuable metals in E-waste have been summarized in Table 1.

The plethora of toxic metals and other materials present in E-waste causes adverse effects (directly or indirectly) on the entire biota. Release of acids, heavy metals, lethal chemicals and compounds can be explained under the direct impacts, whereas, indirect impact comprises the heavy metal biomagnification concept. In the E-waste informal sector, the workers including women and children are exposed to the toxic metals and these contaminants get stored in fatty acids, resulting in health complications such as risk of causing cancer, DNA damage, etc. (Li and Achal, 2020; Dutta and Goel, 2021). Direct disposal of E-waste and improper recycling activities leads to air, soil, surface water, and ground water contamination as shown in Fig. 1. Studies are present which reported the adverse effect of E-waste on human health and on the environment (Sankhla et al., 2016; Fu et al., 2018; Li and Achal, 2020; Rautela et al., 2021; Dutta and Goel, 2021; Dutta et al., 2021a, Dutta et al., 2022).

This review consolidated the methodologies adapted for recovering metals and managing E-waste. In view of the limitations of different processes, an environmentally sound E-waste management practice has been identified which can provide potential solutions, and highlight the importance of advanced E-waste recycling technologies.

A bibliometric study was carried out in VOSviewer software version 1.6.18 with help of scopus database using different keywords such as i) E-waste, bioleaching, ii) E-waste, bioremediation, and iii) E-waste, circular economy. The authors, abstract, keywords, document title, and references for the data analysis, synthesis, and interpretation are all included in the information of the publications that were taken from the SCOPUS platform. A cluster analysis of the literature is particularly possible when all the data from the bibliometric database are analysed and the co-occurrence of text data is investigated (Bhattacharyya et al., 2022). The data obtained have been shown in Fig. 2. (a), (b) and (c), it can be seen that the minimum number of documents of authors (2 clusters) using keywords (a), (b), and (c) were 97, 88, and 109 respectively. Also, the density map of countries showed that the maximum number of documents were published in countries like India, China, Australia, etc. Moreover, the density map of keywords (E-waste, circular economy) was generated with a co-occurrence >2 cluster, including 806 keywords in the map. Whereas, the density map of keywords (E-waste, bioremediation) and (E-waste, bioleaching) were generated with a co-occurrence >2 cluster, including 649 and 526 keywords respectively, in the map.

Based on the bibliometric study, a holistic picture of the publications and their authors, countries and different keywords related to E-waste have been represented in the present study which would help in identifying the suitable processes for future research studies on recovery of metals from E-waste.

Section snippets

Treatment technologies for metal recovery from E-waste

Different techniques have been developed for recovering value-added products from the E-waste likes pyrometallurgy, hydrometallurgy, electrometallurgy, and biometallurgy or bioleaching have been used successfully (Kaya, 2016). Hybrid of pyro- and hydro-metallurgy have also been developed for attaining maximum efficiency and consumption of less time (Kumari et al., 2010; Khaliq et al., 2014). Before following the processes, pre-treatment is the major step for maximizing the metal recovery from

Biological treatment technologies

Biological treatment technologies for recovering metals from E-waste can be defined as the process of converting metals from their insoluble form to their soluble counterparts through the intervention of microbial agents viz., bacteria, archaea, fungi, and their mixture followed by purification of the dissolved metal (Cui and Zhang, 2008; Mohanty et al., 2018). The different biological aspects for metal recovery from E-waste have been presented in Fig. 3.

Bioeconomic aspects of the biological treatment technologies

The bioeconomy concept is the part of the technology whose main goal is to benefit businesses, society, and nature with the use of renewable biological resources from soil and water in a responsible manner. The main focus of the bioeconomy is to achieve maximum yield while the consumption of natural resources should be minimum. These approaches are based on waste reduction, recycling, and resource recovery (Logakanthi et al., 2020). Biological treatment technologies like bioleaching or

Remaining challenges

Usually, the current industrial processes for metal recovery from E-waste are focused mainly on hydrometallurgical and pyrometallurgical processes because these processes have high recycling efficiencies in short duration. However, there are some serious challenges which needs to be mended for theses processes. During the pyrometallurgy process, toxic gases like dioxins, furans, flame retardants, volatile metals, SO2, CO2, Br2 etc. along with with Cr, Pb, Cd, and Hg gets released and energy

Future perspectives

E-waste management is the most challenging concern at present time. Several technologies have been identified for recycling E-waste. Future research can aim at the development of new technology which can be considered ‘green technology’ leading towards the concept of the circular economy. The application of new materials, nanotechnology, and hybrid techniques for more efficiency should be the new research area. The life cycle analysis of the EEE may aid in finding innovative ideas to manage

Conclusion

Development of proper and scientific techniques for E-waste management is very much needed to achieve the concept of the circular economy for the protection of the environment and human health. Pyrometallurgy, hydrometallurgy, and biometallurgy are the common technologies being reviewed in this study. The advantages and limitations of each of the technologies have been provided and in comparison to other processes like biometallurgy has been found to be safe, eco-friendly, and cost-effective.

CRediT authorship contribution statement

Deblina Dutta: Conceptualization and writing original draft; Deblina Dutta, Rahul Rautela, Gujjala Lohit Kumar Srinivas, Debajyoti Kundu, Pooja Sharma, Mamta Tembhare: Writing original draft; Sunil Kumar: Supervision; Writing: Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Authors would like to acknowledge the Director, CSIR-NEERI for providing infrastructural support to carry out the work.

References (175)