Friday, February 28, 2020

A Failure of Intelligence: Part I
Prominent physicist Freeman Dyson recalls the time he spent developing analytical methods to help the British Royal Air Force bomb German targets during World War II.
by Freeman Dyson

Nov 1, 2006

Editor's note: Freeman Dyson, who died on February 28, 2020, wrote this essay in two parts for MIT Technology Review in 2006.
I began work in the Operational Research Section (ORS) of the British Royal Air Force’s Bomber Command on July 25, 1943. I was 19 years old, fresh from an abbreviated two years as a student at the University of Cambridge. The headquarters of Bomber Command was a substantial set of red brick buildings, hidden in the middle of a forest on top of a hill in the English county of Buckinghamshire. The main buildings had been built before the War. The ORS was added in 1941 and was housed in a collection of trailers at the back. Trees were growing right up to our windows, so we had little daylight even in summer. The Germans must have known where we were, but their planes never came to disturb us.
Air War: A British Lancaster bomber is silhouetted against flares and explosions during the attack on Hamburg, Germany, on the night of January 30, 1943. (Credit: Imperial War Museum)
This story is part of our November/December 2006

I was billeted in the home of the Parsons family in the village of Hughenden. Mrs. Parsons was a motherly soul and took good care of me. Once a week, she put her round tin bathtub out on her kitchen floor and filled it with hot water for my weekly splash. Each morning I bicycled the five miles up the hill to Bomber Command, and each evening I came coasting down. Sometimes, as I was struggling up the hill, an air force limousine would zoom by, and I would have a quick glimpse of our commander in chief, Sir Arthur Harris, sitting in the back, on his way to give the orders that sent thousands of boys my age to their deaths. Every day, depending on the weather and the readiness of the bombers, he would decide whether to send their crews out that night or let them rest. Every day, he chose the targets for the night.

“Bomber” Harris’s entire career had been devoted to the proposition that strategic bombing could defeat Germany without the use of land armies. The mammoth force of heavy bombers that he commanded had been planned by the British government in 1936 as our primary instrument for defeating Hitler without repeating the horrors of the trench warfare of World War I. Bomber Command, by itself, was absorbing about one-quarter of the entire British war effort.

The members of Bomber Command’s ORS were civilians, employed by the Ministry of Aircraft Production and not by the air force. The idea was that we would provide senior officers with independent scientific and technical advice. The experimental physicist Patrick Blackett had invented the ORS system in order to give advice to the navy. One of the crucial problems for the navy was to verify scientifically the destruction of U-boats. Every ship or airplane that dropped a depth charge somewhere near a U-boat was apt to claim a kill. An independent group of scientists was needed to evaluate the evidence impartially and find out which tactics were effective.

Bomber Command had a similar problem in evaluating the effectiveness of bombing. Aircrew frequently reported the destruction of targets when photographs showed they had missed by several miles. The navy ORS was extremely effective and made great contributions to winning the war against the U-boats in the Atlantic. But Blackett had two enormous advantages. First, he was a world-renowned scientist (who would later win a Nobel Prize), with a safe job in the academic world, so he could threaten to resign if his advice was not followed. Second, he had been a navy officer in World War I and was respected by the admirals he advised. Basil Dickins, the chief of our ORS at Bomber Command, had neither of these advantages. He was a civil servant with no independent standing. He could not threaten to resign, and Sir Arthur Harris had no respect for him. His career depended on telling Sir Arthur things that Sir Arthur wanted to hear. So that is what he did. He gave Sir Arthur information rather than advice. He never raised serious questions about Sir Arthur’s tactics and strategy.

Our ORS was divided into sections and subsections. The sections were ORS1, concerned with bombing effectiveness; ORS2, concerned with bomber losses; ORS3, concerned with history. My boss, Reuben Smeed, was chief of ORS2. The subsections of ORS2 were ORS2a, collecting crew reports and investigating causes of losses; ORS2b, studying the effectiveness of electronic countermeasures; ORS2c, studying damage to returning bombers; ORS2d, doing statistical analysis and other jobs requiring some mathematical skill. I was put into ORS2d.

Two other new boys arrived at the same time I did. One was John Carthy, who was in ORS1; the other was Mike O’Loughlin, who shared an office with me in ORS2d. John had been a leading actor in the Cambridge University student theater. Mike had been briefly in the army but was discharged when he was found to be epileptic. John and Mike and I became lifelong friends. John was cheerful, Mike was bitter, and I was somewhere in between. In later life, John was a biologist at the University of London, and Mike taught engineering at the Cambridge Polytechnic. After retiring from the Polytechnic, Mike became an Anglican minister in the parish of Linton, near Cambridge.

The ORS consisted of about 30 people, a mixed bunch of civil servants, academic experts, and students. Working with us were an equal number of WAAFs, girls of the Women’s Auxiliary Air Force, who wore blue uniforms and were subject to military discipline. The WAAFs were photographic interpreters, calculators, technicians, drivers, and secretaries. They did most of the real work of the ORS. They also supplied us with tea and sympathy. They made a depressing situation bearable. Their leader was Sergeant Asplen, a tall and strikingly beautiful girl whose authority was never questioned. The sergeant kept herself free of romantic entanglements. But two of her charges, a vivacious redhead named Dorothy and a more thoughtful brunette called Betty, became attached to my friends John and Mike. Love affairs were not officially discouraged. We cele­brated two weddings before the War was over, with Dorothy and Betty discarding their dumpy blue uniforms for an afternoon and appearing resplendent in white silk. The marriages endured, and each afterwards produced four children.

My first day of work was the day after one of our most successful operations, a full-force night attack on Hamburg. For the first time, the bombers had used the decoy system, which we called WINDOW and the Americans called CHAFF. WINDOW consisted of packets of paper strips coated with aluminum paint. One crew member in each bomber was responsible for throwing packets of WINDOW down a chute, at a rate of one packet per minute, while flying over Germany. The paper strips floated slowly down through the stream of bombers, each strip a resonant antenna tuned to the frequency of the German radars. The purpose was to confuse the radars so that they could not track individual bombers in the clutter of echoes from the WINDOW.

That day, the people at the ORS were joyful. I never saw them as joyful again until the day that the war in Europe ended. WINDOW had worked. The bomber losses the night before were only 12 out of 791, or 1.5 percent, far fewer than would have been expected for a major operation in July, when the skies in northern Europe are never really dark. Losses were usually about 5 percent and were mostly due to German night fighters, guided to the bombers by radars on the ground. WINDOW had cut the expected losses by two-thirds. Each bomber carried a crew of seven, so WINDOW that night had saved the lives of about 180 of our boys.

The first job that Reuben Smeed gave me to do when I arrived was to draw pictures of the cloud of WINDOW trailing through the stream of bombers as the night progressed, taking into account the local winds at various altitudes as measured and reported by the bombers. My pictures would be shown to the aircrew to impress on them how important it was for them to stay within the stream after bombing the target, rather than flying home independently.

Smeed explained to me that the same principles applied to bombers flying at night over Germany and to ships crossing the Atlantic. Ships had to travel in convoys, because the risk of being torpedoed by a U-boat was much greater for a ship traveling alone. For the same reason, bombers had to travel in streams: the risk of being tracked by radar and shot down by an enemy fighter was much greater for a bomber flying alone. But the crews tried to keep out of the bomber stream, because they were more afraid of collisions than of fighters. Every time they flew in the stream, they would see bombers coming close and almost colliding with them, but they almost never saw fighters. The German night fighter force was tiny compared with Bomber Command. But the German pilots were highly skilled, and they hardly ever got shot down. They carried a firing system called Schräge Musik, or “crooked music,” which allowed them to fly underneath a bomber and fire guns upward at a 60-degree angle. The fighter could see the bomber clearly silhouetted against the night sky, while the bomber could not see the fighter. This system efficiently destroyed thousands of bombers, and we did not even know that it existed. This was the greatest failure of the ORS. We learned about Schräge Musik too late to do anything to counter it.

Smeed believed the crew’s judgement was wrong. He thought a bomber’s chance of being shot down by a fighter was far greater than its chance of colliding with another bomber, even in the densest part of the bomber stream. But he had no evidence: he had been too busy with other urgent problems to collect any. He told me that the most useful thing I could do was to become Bomber Command’s expert on collisions. When not otherwise employed, I should collect all the scraps of evidence I could find about fatal and nonfatal collisions and put them all together. Then perhaps we could convince the aircrew that they were really safer staying in the stream.

There were two possible ways to study collisions, using theory or using observations. I tried both. The theoretical way was to use a formula: collision rate for a bomber flying in the stream equals density of bombers multiplied by average relative velocity of two bombers multiplied by mutual presentation area (MPA). The MPA was the area in a geometric plane perpendicular to the relative velocity within which a collision could occur. It was the same thing that atomic and particle physicists call a collision cross section. For vertical collisions, it was roughly four times the area of a bomber as seen from above. The formula assumes that two bombers on a collision course do not see each other in time to break off. For bombers flying at night over Germany, that assumption was probably true.

All three factors in the collision formula were uncertain. The MPA would be smaller for a sideways collision than for an up-and-down collision, but I assumed that most of the collisions would be up-and-down, with the relative velocity vertical. The relative velocity would depend on how vigorously the bombers were corkscrewing as they flew. Except during bombing runs over a target, they never flew straight and level; that would have left them sitting ducks for antiaircraft guns. The standard maneuver for avoiding antiaircraft fire was the corkscrew, combining side-to-side with up-and-down weaving. For predicting collisions, it was the up-and-down motion that was most important. From crew reports I estimated up-and-down motions averaging 40 miles an hour, uncertain by a factor of two. But the dominant uncertainty in the collision formula was the density of bombers in the stream.

I studied the crew reports, which sometimes described large deviations from the tracks that the bombers were supposed to fly. For the majority of crews, who reported no large deviations, there was no way to tell how close to their assigned tracks they actually flew. My best estimate of the density of bombers was uncertain by a factor of 10. This made the collision formula practically worthless as a predictive tool. But it still had value as a way to set an upper bound on the collision rate. If I assumed maximum values for all three factors in the formula, it gave a loss rate due to collisions of 1 percent per operation. One percent was much too high to be acceptable, but still less than the overall loss rate of 5 percent. Even if we squeezed the bomber stream to the highest possible density, collisions would not be the main cause of losses.

How common, really, were collisions? Observational evidence of lethal crashes over Germany was plentiful but unreliable. The crews frequently reported seeing events that looked like collisions: first an explosion in the air, and then two flaming objects falling to the ground. These events were visible from great distances and were often multiply reported. The crews tended to believe that they were seeing collisions, but there was no way to be sure. Most of the events probably involved single bombers, hit by antiaircraft shells or by fighter cannon fire, that broke in half as they disintegrated.

In the end I found only two sources of evidence that I could trust: bombers that collided over England and bombers that returned damaged by nonlethal collisions over Germany. The numbers of incidents of both kinds were reliable, and small enough that I could investigate each case individually. The case that I remember best was a collision between two Mosquito bombers over Munich. The Mosquito was a light, two-seat bomber that Bomber Command used extensively for small-scale attacks, to confuse the German defenses and distract attention from the heavy attacks. Two Mosquitoes flew alone from England to Munich and then collided over the target, with only minor damage. It was obvious that the collision could not have been the result of normal operations. The two pilots must have seen each other when they got to Munich and started playing games. The Mosquito was fast and maneuverable and hardly ever got shot down, so the pilots felt themselves to be invulnerable. I interviewed Pilot-Officer Izatt, who was one of the two pilots. When I gently questioned him about the Munich operation, he confessed that he and his friend had been enjoying a dogfight over the target when they bumped into each other. So I crossed the Munich collision off my list. It was not relevant to the statistics on collisions between heavy bombers in the bomber stream. There remained seven authentic nonlethal collisions between heavy bombers over Germany.

For bombers flying at night over England in training exercises, I knew the numbers of lethal and non­lethal collisions. After more than 60 years, I can’t recall them precisely, but I remember that the ratio of lethal to nonlethal collisions was three to one. If I assumed that the chance of surviving a collision was the same over Germany as over England, then it was simple to calculate the number of lethal collisions over Germany. But there were two reasons that assumption might be false. On the one hand, a badly damaged aircraft over Germany might fail to get home, while an aircraft with the same damage over England could make a safe landing. On the other hand, the crew of a damaged aircraft over England might decide to bail out and let the plane crash, while the same crew over Germany would be strongly motivated to bring the plane home. There was no way to incorporate these distinctions into my calculations. But since they pulled in opposite directions, I decided to ignore them both. I estimated the number of lethal collisions over Germany in the time since the massive attacks began to be three times the number of nonlethal collisions, or 21. These numbers referred to major operations over Germany with high-density bomber streams, in which about 60,000 sorties had been flown at the time I did the calculation. So collisions destroyed 42 aircraft in 60,000 sorties, a loss rate of .07 percent. This was the best estimate I could make. I could not calculate any reliable limits of error, but I felt confident that the estimate was correct within a factor of two. It was consistent with the less accurate estimate obtained from the theoretical formula, and it strongly confirmed Smeed’s belief that collisions were a smaller risk than fighters.

For a week after I arrived at the ORS, the attacks on Hamburg continued. The second, on July 27, raised a firestorm that devastated the central part of the city and killed about 40,000 people. We succeeded in raising firestorms only twice, once in Hamburg and once more in Dresden in 1945, where between 25,000 and 60,000 people perished (the numbers are still debated). The Germans had good air raid shelters and warning systems and did what they were told. As a result, only a few thousand people were killed in a typical major attack. But when there was a firestorm, people were asphyxiated or roasted inside their shelters, and the number killed was more than 10 times greater. Every time Bomber Command attacked a city, we were trying to raise a firestorm, but we never learnt why we so seldom succeeded. Probably a firestorm could happen only when three things occurred together: first, a high concentration of old buildings at the target site; second, an attack with a high density of incendiary bombs in the target’s central area; and, third, an atmospheric instability. When the combination of these three things was just right, the flames and the winds produced a blazing hurricane. The same thing happened one night in Tokyo in March 1945 and once more at Hiroshima the following August. The Tokyo firestorm was the biggest, killing perhaps 100,000 people.

The third Hamburg raid was on the night of July 29, and the fourth on August 2. After the firestorm, the law of diminishing returns was operating. The fourth attack was a fiasco, with high and heavy clouds over the city and bombs scattered over the countryside. Our bomber losses were rising, close to 4 percent for the third attack and a little over 4 percent for the fourth. The Germans had learnt quickly how to deal with WINDOW. Since they could no longer track individual bombers with radar, they guided their fighters into the bomber stream and let them find their own targets. Within a month, loss rates were back at the 5 percent level, and WINDOW was no longer saving lives.

Another job that Smeed gave me was to invent ways to estimate the effectiveness of various counter­measures, using all the evidence from a heterogeneous collection of operations. The first countermeasure that I worked on was MONICA. MONICA was a tail-mounted warning radar that emitted a high-pitched squeal over the intercom when a bomber had another aircraft close behind it. The squeals came more rapidly as the distance measured by the radar became shorter. The crews disliked MONICA because it was too sensitive and raised many false alarms. They usually switched it off so that they could talk to each other without interruption. My job was to see from the results of many operations whether MONICA actually saved lives. I had to compare the loss rates of bombers with and without MONICA. This was difficult because MONICA was distributed unevenly among the squadrons. It was given preferentially to Halifaxes (one of the two main types of British heavy bomber), which usually had higher loss rates, and less often to Lancaster bombers, which usually had lower loss rates. In addition, Halifaxes were sent preferentially on less dangerous operations and Lancasters on more dangerous operations. To use all the evidence from Halifax and Lancaster losses on a variety of operations, I invented a method that was later reinvented by epidemiologists and given the name “meta-­analysis.” Assembling the evidence from many operations to judge the effectiveness of MONICA was just like assembling the evidence from many clinical trials to judge the effectiveness of a drug.

My method of meta-analysis was the following: First, I subdivided the data by operation and by type of aircraft. For example, one subdivision would be Halifaxes on Bremen on March 5; another would be Lancasters on Berlin on December 2. In each sub­division I tabulated the number of aircraft with and without MONICA and the number lost with and without MONICA. I also tabulated the number of MONICA aircraft expected to be lost if the warning system had no effect, and the statistical variance of that number. So I had two quantities for each subdivision: observed-minus-expected losses of MONICA aircraft, and the variance of this difference. I assumed that the distributions of losses in the various subdivisions were uncorrelated. Thus, I could simply add up the two quantities, observed-minus-expected losses and variance, over all the subdivisions. The result was a total observed-minus-expected losses and variance for all the MONICA aircraft, unbiased by the different fractions of MONICA aircraft in the various subdivisions. This was a sensitive test of effectiveness, making use of all the available information. If the total of observed-minus-expected losses was significantly negative, it meant that MONICA was effective. But instead, the total was slightly positive and less than the square root of the total variance. ­MONICA was statistically worthless. The crews had been right when they decided to switch it off.

I later applied the same method of analysis to the question of whether experience helped crews to survive. Bomber Command told the crews that their chances of survival would increase with experience, and the crews believed it. They were told, After you have got through the first few operations, things will get better. This idea was important for morale at a time when the fraction of crews surviving to the end of a 30-­operation tour was only about 25 percent. I subdivided the experienced and inexperienced crews on each operation and did the analysis, and again, the result was clear. Experience did not reduce loss rates. The cause of losses, whatever it was, killed novice and expert crews impartially. This result contradicted the official dogma, and the Command never accepted it. I blame the ORS, and I blame myself in particular, for not taking this result seriously enough. The evidence showed that the main cause of losses was an attack that gave experienced crews no chance either to escape or to defend themselves. If we had taken the evidence more seriously, we might have discovered Schräge Musik in time to respond with effective countermeasures.

Smeed and I agreed that Bomber Command could substantially reduce losses by ripping out two gun turrets, with all their associated hardware, from each bomber and reducing each crew from seven to five. The gun turrets were costly in aerodynamic drag as well as in weight. The turretless bombers would have flown 50 miles an hour faster and would have spent much less time over Germany. The evidence that experience did not reduce losses confirmed our opinion that the turrets were useless. The turrets did not save bombers, because the gunners rarely saw the fighters that killed them. But our proposal to rip out the turrets went against the official mythology of the gallant gunners defending their crewmates. Dickins never had the courage to push the issue seriously in his conversations with Harris. If he had, Harris might even have listened, and thousands of crewmen might have been saved.

The part of his job that Smeed enjoyed most was interviewing evaders. Evaders were crew members who had survived being shot down over German-occupied countries and made their way back to England. About 1 percent of all those shot down came back. Each week, Smeed would go to London and interview one or two of them. Sometimes he would take me along. We were not supposed to ask them questions about how they got back, but they would sometimes tell us amazing stories anyway. We were supposed to ask them questions about how they were shot down. But they had very little information to give us about that. Most of them said they never saw a fighter and had no warning of an attack. There was just a sudden burst of cannon fire, and the aircraft fell apart around them. Again, we missed an essential clue that might have led us to Schräge Musik.

On November 18, 1943, Sir Arthur Harris started the Battle of Berlin. This was his last chance to prove the proposition that strategic bombing could win wars. He announced that the Battle of Berlin would knock Germany out of the War. In November 1943, Harris’s bomber force was finally ready to do what it was designed to do: smash Hitler’s empire by demolishing Berlin. The Battle of Berlin started with a success, like the first attack on Hamburg on July 24. We attacked Berlin with 444 bombers, and only 9 were lost. Our losses were small, not because of WINDOW, but because of clever tactics. Two bomber forces were out that night, one going to Berlin and one to Mannheim. The German controllers were confused and sent most of the fighters to Mannheim.

After that first attempt on Berlin, Sir Arthur ordered 15 more heavy attacks, expecting to destroy that city as thoroughly as he had destroyed Hamburg. All through the winter of 1943 and ‘44, the bombers hammered away at Berlin. The weather that winter was worse than usual, covering the city with cloud for weeks on end. Our photoreconnaissance planes could bring back no pictures to show how poorly we were doing. As the attacks went on, the German defenses grew stronger, our losses heavier, and the “scatter” of the bombs worse. We never raised a firestorm in Berlin. On March 24, in the last of the 16 attacks, we lost 72 out of 791 bombers, a loss rate of 9 percent, and Sir Arthur admitted defeat. The battle cost us 492 bombers with more than 3,000 aircrew. For all that, industrial production in Berlin continued to increase, and the operations of government were never seriously disrupted.

There were two main reasons why Germany won the Battle of Berlin. First, the city is more modern and less dense than Hamburg, spread out over an area as large as London with only half of London’s population; so it did not burn well. Second, the repeated attacks along the same routes allowed the German fighters to find the bomber stream earlier and kill bombers more efficiently.

A week after the final attack on Berlin, we suffered an even more crushing defeat. We attacked Nuremberg with 795 bombers and lost 94, a loss rate of almost 12 percent. It was then clear to everybody that such losses were unsustainable. Sir Arthur reluctantly abandoned his dream of winning the War by himself. Bomber Command stopped flying so deep into Germany and spent the summer of 1944 giving tactical support to the Allied armies that were, by then, invading France.

The history of the 20th century has repeatedly shown that strategic bombing by itself does not win wars. If Britain had decided in 1936 to put its main effort into building ships instead of bombers, the invasion of France might have been possible in 1943 instead of 1944, and the war in Europe might have ended in 1944 instead of 1945. But in 1943, we had the bombers, and we did not have the ships, and the problem was to do the best we could with what we had.

One of our group of young students at the ORS was Sebastian Pease, known to his friends as Bas. He had joined the ORS only six months before I had, but by the time I got there, he already knew his way around and was at home in that alien world. He was the only one of us who was actually doing what we were all supposed to be doing: helping to win the War. The rest of us were sitting at Command Headquarters, depressed and miserable because our losses of aircraft and aircrew were tremendous and we were unable to do much to help. The Command did not like it when civilians wandered around operational squadrons collecting information, so we were mostly confined to our gloomy offices at the headquarters. But Bas succeeded in breaking out. He spent most of his time with the squadrons and came back to headquarters only occasionally. Fifty years later, when he was visiting Princeton (where I spent most of my life, working as a professor of physics), he told me what he had been doing.

Bas was able to escape from Command Headquarters because he was the expert in charge of a precise navigation system called G-H. Only a small number of bombers were fitted with G-H, because it required two-way communication with ground stations. These bombers belonged to two special squadrons, 218 Squadron being one of them. The G-H bombers were Stirlings, slow and ponderous machines that were due to be replaced by the smaller and more agile Lancasters. They did not take part in mass-bombing operations with the rest of the Command but did small, precise operations on their own with very low losses. Bas spent a lot of time at 218 Squadron and made sure that the G-H crews knew how to use their equipment to bomb accurately. He had “a good war,” as we used to say in those days. The rest of us were having a bad war.

Sometime early in 1944, 218 Squadron stopped bombing and started training for a highly secret operation called GLIMMER, which Bas helped to plan, and whose purpose was to divert German attention from the invasion fleet that was to invade France in June. The operation was carried out on the night of June 5-6. The G-H bombers flew low, in tight circles, dropping WINDOW as they moved slowly out over the English Channel. In conjunction with boats below them that carried specially designed radar transponders, they appeared to the German radars to be a fleet of ships. While the real invasion fleet was moving out toward Normandy, the fake invasion fleet of G-H bombers was moving out toward the Pas de Calais, 200 miles to the east. The ruse was successful, and the strong German forces in the Pas de Calais did not move to Normandy in time to stop the invasion. While Bas was training the crews, he said nothing about it to his friends at the ORS. We knew only that he was out at the squadrons doing something useful. Even when GLIMMER was over and the invasion had succeeded, Bas never spoke about it. My boss, Reuben Smeed, was a man of considerable wisdom. One day at Bomber Command, he said, “In this business, you have a choice. Either you get something done or you get the credit for it, but not both.” Bas’s work was a fine example of Smeed’s dictum. He made his choice, and he got something done. In later life he became a famous plasma physicist and ran the Joint European Torus, the main fusion program of the European Union.

The one time that I did something practically useful for Bomber Command was in spring 1944, when Smeed sent me to make accurate measurements of the brightness of the night sky as a function of time, angle, and altitude. The measurements would be used by our route planners to minimize the exposure of bombers to the long summer twilight over Germany. I went to an airfield at the village of Shawbury in Shropshire and flew for several nights in an old Hudson aircraft, unheated and unpressurized. The pilot flew back and forth on a prescribed course at various altitudes, while I took readings of sky brightness through an open window with an antiquated photometer, starting soon after sunset and ending when the sun was 18 degrees below the horizon. I was surprised to find that I could function quite well without oxygen at 20,000 feet. I shared this job with J. F. Cox, a Belgian professor who was caught in England when Hitler overran Belgium in 1940. Cox and I took turns doing the measurements. My flights were uneventful, but on the last of Cox’s flights, both of the Hudson’s engines failed, and the pilot decided to bail out. Cox also bailed out and came to earth still carrying the photometer. He broke an ankle but saved the device. In later years, he became rector of the Free University in Brussels.

After the War, Smeed worked for the British government on road traffic problems and then taught at University College London, where he was the first professor of traffic studies. He applied the methods of operational research to traffic problems all over the world and designed intelligent traffic-light control systems to optimize the flow of traffic through cities. Smeed had a fatalistic view of traffic flow. He said that the average speed of traffic in central London would always be nine miles per hour, because that is the minimum speed that people will tolerate. Intelligent use of traffic lights might increase the number of cars on the roads but would not increase their speed. As soon as the traffic flowed faster, more drivers would come to slow it down.

Smeed also had a fatalistic view of traffic accidents. He collected statistics on traffic deaths from many countries, all the way back to the invention of the automobile. He found that under an enormous range of conditions, the number of deaths in a country per year is given by a simple formula: number of deaths equals .0003 times the two-thirds power of the number of people times the one-third power of the number of cars. This formula is known as Smeed’s Law. He published it in 1949, and it is still valid 57 years later. It is, of course, not exact, but it holds within a factor of two for almost all countries at almost all times. It is remarkable that the number of deaths does not depend strongly on the size of the country, the quality of the roads, the rules and regulations governing traffic, or the safety equipment installed in cars. Smeed interpreted his law as a law of human nature. The number of deaths is determined mainly by psychological factors that are independent of material circumstances. People will drive recklessly until the number of deaths reaches the maximum they can tolerate. When the number exceeds that limit, they drive more carefully. Smeed’s Law merely defines the number of deaths that we find psychologically tolerable.

The last year of the War was quiet at ORS Bomber Command. We knew that the War was coming to an end and that nothing we could do would make much difference. With or without our help, Bomber Command was doing better. In the fall of 1944, when the Germans were driven out of France, it finally became possible for our bombers to make accurate and devastating night attacks on German oil refineries and synthetic-oil-production plants. We had long known these targets to be crucial to Germany’s war economy, but we had never been able to attack them effectively. That changed for two reasons. First, the loss of France made the German fighter defenses much less effective. Second, a new method of organizing attacks was invented by 5 Group, the most independent of the Bomber Command groups. The method originated with 617 Squadron, one of the 5 Group squadrons, which carried out the famous attack on the Ruhr dams in March 1943. The good idea, as usually happens in large organizations, percolated up from the bottom rather than trickling down from the top. The approach called for a “master bomber” who would fly a Mosquito at low altitude over a target, directing the attack by radio in plain language. The master bomber would first mark the target accurately with target indicator flares and then tell the heavy bombers overhead precisely where to aim. A deputy master bomber in another Mosquito was ready to take over in case the first one was shot down. Five Group carried out many such precision attacks with great success and low losses, while the other groups flew to other places and distracted the fighter defenses. In the last winter of the War, the German army and air force finally began to run out of oil. Bomber Command could justly claim to have helped the Allied armies who were fighting their way into Germany from east and west.

While the attacks on oil plants were helping to win the War, Sir Arthur continued to order major attacks on cities, including the attack on Dresden on the night of February 13, 1945. The Dresden attack became famous because it caused a firestorm and killed a large number of civilians, many of them refugees fleeing from the Russian armies that were overrunning Pomerania and Silesia. It caused some people in Britain to question the morality of continuing the wholesale slaughter of civilian populations when the War was almost over. Some of us were sickened by Sir Arthur’s unrelenting ferocity. But our feelings of revulsion after the Dresden attack were not widely shared. The British public at that time still had bitter memories of World War I, when German armies brought untold misery and destruction to other people’s countries, but German civilians never suffered the horrors of war in their own homes. The British mostly supported Sir Arthur’s ruthless bombing of cities, not because they believed that it was militarily necessary, but because they felt it was teaching German civilians a good lesson. This time, the German civilians were finally feeling the pain of war on their own skins.

I remember arguing about the morality of city bombing with the wife of a senior air force officer, after we heard the results of the Dresden attack. She was a well-educated and intelligent woman who worked part-time for the ORS. I asked her whether she really believed that it was right to kill German women and babies in large numbers at that late stage of the War. She answered, “Oh yes. It is good to kill the babies especially. I am not thinking of this war but of the next one, 20 years from now. The next time the Germans start a war and we have to fight them, those babies will be the soldiers.” After fighting Germans for ten years, four in the first war and six in the second, we had become almost as bloody-minded as Sir Arthur.

At last, at the end of April 1945, the order went out to the squadrons to stop offensive operations. Then the order went out to fill the bomb bays of our bombers with food packages to be delivered to the starving population of the Netherlands. I happened to be at one of the 3 Group bases at the time and watched the crews happily taking off on their last mission of the War, not to kill people but to feed them.

Freeman Dyson was for many years professor of physics at the Institute for Advanced Study in Princeton. He is famous for his contributions to mathematical physics, particularly for his work on quantum electrodynamics. He was awarded the Lorentz Medal in 1966 and the Max Planck Medal in 1969, both for his contributions to modern physics. In 2000, he was awarded the Templeton Prize for Progress in Religion.

A Failure of Intelligence: Part II

Prominent physicist Freeman Dyson recalls the time he spent developing analytical methods to help the British Royal Air Force bomb German targets during World War II.
by Freeman Dyson
Dec 5, 2006

Another job that Smeed gave me was to invent ways to estimate the effectiveness of various counter­measures, using all the evidence from a heterogeneous collection of operations. The first countermeasure that I worked on was MONICA. MONICA was a tail-mounted warning radar that emitted a high-pitched squeal over the intercom when a bomber had another aircraft close behind it. The squeals came more rapidly as the distance measured by the radar became shorter. The crews disliked MONICA because it was too sensitive and raised many false alarms. They usually switched it off so that they could talk to each other without interruption. My job was to see from the results of many operations whether MONICA actually saved lives. I had to compare the loss rates of bombers with and without MONICA. This was difficult because MONICA was distributed unevenly among the squadrons. It was given preferentially to Halifaxes (one of the two main types of British heavy bomber), which usually had higher loss rates, and less often to Lancaster bombers, which usually had lower loss rates. In addition, Halifaxes were sent preferentially on less dangerous operations and Lancasters on more dangerous operations. To use all the evidence from Halifax and Lancaster losses on a variety of operations, I invented a method that was later reinvented by epidemiologists and given the name “meta-­analysis.” Assembling the evidence from many operations to judge the effectiveness of MONICA was just like assembling the evidence from many clinical trials to judge the effectiveness of a drug.

My method of meta-analysis was the following: First, I subdivided the data by operation and by type of aircraft. For example, one subdivision would be Halifaxes on Bremen on March 5; another would be Lancasters on Berlin on December 2. In each sub­division I tabulated the number of aircraft with and without MONICA and the number lost with and without MONICA. I also tabulated the number of MONICA aircraft expected to be lost if the warning system had no effect, and the statistical variance of that number. So I had two quantities for each subdivision: observed-minus-expected losses of MONICA aircraft, and the variance of this difference. I assumed that the distributions of losses in the various subdivisions were uncorrelated. Thus, I could simply add up the two quantities, observed-minus-expected losses and variance, over all the subdivisions. The result was a total observed-minus-expected losses and variance for all the MONICA aircraft, unbiased by the different fractions of MONICA aircraft in the various subdivisions. This was a sensitive test of effectiveness, making use of all the available information. If the total of observed-minus-expected losses was significantly negative, it meant that MONICA was effective. But instead, the total was slightly positive and less than the square root of the total variance. ­MONICA was statistically worthless. The crews had been right when they decided to switch it off.

I later applied the same method of analysis to the question of whether experience helped crews to survive. Bomber Command told the crews that their chances of survival would increase with experience, and the crews believed it. They were told, After you have got through the first few operations, things will get better. This idea was important for morale at a time when the fraction of crews surviving to the end of a 30-­operation tour was only about 25 percent. I subdivided the experienced and inexperienced crews on each operation and did the analysis, and again, the result was clear. Experience did not reduce loss rates. The cause of losses, whatever it was, killed novice and expert crews impartially. This result contradicted the official dogma, and the Command never accepted it. I blame the ORS, and I blame myself in particular, for not taking this result seriously enough. The evidence showed that the main cause of losses was an attack that gave experienced crews no chance either to escape or to defend themselves. If we had taken the evidence more seriously, we might have discovered Schräge Musik in time to respond with effective countermeasures.


Smeed and I agreed that Bomber Command could substantially reduce losses by ripping out two gun turrets, with all their associated hardware, from each bomber and reducing each crew from seven to five. The gun turrets were costly in aerodynamic drag as well as in weight. The turretless bombers would have flown 50 miles an hour faster and would have spent much less time over Germany. The evidence that experience did not reduce losses confirmed our opinion that the turrets were useless. The turrets did not save bombers, because the gunners rarely saw the fighters that killed them. But our proposal to rip out the turrets went against the official mythology of the gallant gunners defending their crewmates. Dickins never had the courage to push the issue seriously in his conversations with Harris. If he had, Harris might even have listened, and thousands of crewmen might have been saved.

The part of his job that Smeed enjoyed most was interviewing evaders. Evaders were crew members who had survived being shot down over German-occupied countries and made their way back to England. About 1 percent of all those shot down came back. Each week, Smeed would go to London and interview one or two of them. Sometimes he would take me along. We were not supposed to ask them questions about how they got back, but they would sometimes tell us amazing stories anyway. We were supposed to ask them questions about how they were shot down. But they had very little information to give us about that. Most of them said they never saw a fighter and had no warning of an attack. There was just a sudden burst of cannon fire, and the aircraft fell apart around them. Again, we missed an essential clue that might have led us to Schräge Musik.

On November 18, 1943, Sir Arthur Harris started the Battle of Berlin. This was his last chance to prove the proposition that strategic bombing could win wars. He announced that the Battle of Berlin would knock Germany out of the War. In November 1943, Harris’s bomber force was finally ready to do what it was designed to do: smash Hitler’s empire by demolishing Berlin. The Battle of Berlin started with a success, like the first attack on Hamburg on July 24. We attacked Berlin with 444 bombers, and only 9 were lost. Our losses were small, not because of WINDOW, but because of clever tactics. Two bomber forces were out that night, one going to Berlin and one to Mannheim. The German controllers were confused and sent most of the fighters to Mannheim.

After that first attempt on Berlin, Sir Arthur ordered 15 more heavy attacks, expecting to destroy that city as thoroughly as he had destroyed Hamburg. All through the winter of 1943 and ‘44, the bombers hammered away at Berlin. The weather that winter was worse than usual, covering the city with cloud for weeks on end. Our photoreconnaissance planes could bring back no pictures to show how poorly we were doing. As the attacks went on, the German defenses grew stronger, our losses heavier, and the “scatter” of the bombs worse. We never raised a firestorm in Berlin. On March 24, in the last of the 16 attacks, we lost 72 out of 791 bombers, a loss rate of 9 percent, and Sir Arthur admitted defeat. The battle cost us 492 bombers with more than 3,000 aircrew. For all that, industrial production in Berlin continued to increase, and the operations of government were never seriously disrupted.


There were two main reasons why Germany won the Battle of Berlin. First, the city is more modern and less dense than Hamburg, spread out over an area as large as London with only half of London’s population; so it did not burn well. Second, the repeated attacks along the same routes allowed the German fighters to find the bomber stream earlier and kill bombers more efficiently.

A week after the final attack on Berlin, we suffered an even more crushing defeat. We attacked Nuremberg with 795 bombers and lost 94, a loss rate of almost 12 percent. It was then clear to everybody that such losses were unsustainable. Sir Arthur reluctantly abandoned his dream of winning the War by himself. Bomber Command stopped flying so deep into Germany and spent the summer of 1944 giving tactical support to the Allied armies that were, by then, invading France.

The history of the 20th century has repeatedly shown that strategic bombing by itself does not win wars. If Britain had decided in 1936 to put its main effort into building ships instead of bombers, the invasion of France might have been possible in 1943 instead of 1944, and the war in Europe might have ended in 1944 instead of 1945. But in 1943, we had the bombers, and we did not have the ships, and the problem was to do the best we could with what we had.

One of our group of young students at the ORS was Sebastian Pease, known to his friends as Bas. He had joined the ORS only six months before I had, but by the time I got there, he already knew his way around and was at home in that alien world. He was the only one of us who was actually doing what we were all supposed to be doing: helping to win the War. The rest of us were sitting at Command Headquarters, depressed and miserable because our losses of aircraft and aircrew were tremendous and we were unable to do much to help. The Command did not like it when civilians wandered around operational squadrons collecting information, so we were mostly confined to our gloomy offices at the headquarters. But Bas succeeded in breaking out. He spent most of his time with the squadrons and came back to headquarters only occasionally. Fifty years later, when he was visiting Princeton (where I spent most of my life, working as a professor of physics), he told me what he had been doing.

Bas was able to escape from Command Headquarters because he was the expert in charge of a precise navigation system called G-H. Only a small number of bombers were fitted with G-H, because it required two-way communication with ground stations. These bombers belonged to two special squadrons, 218 Squadron being one of them. The G-H bombers were Stirlings, slow and ponderous machines that were due to be replaced by the smaller and more agile Lancasters. They did not take part in mass-bombing operations with the rest of the Command but did small, precise operations on their own with very low losses. Bas spent a lot of time at 218 Squadron and made sure that the G-H crews knew how to use their equipment to bomb accurately. He had “a good war,” as we used to say in those days. The rest of us were having a bad war.


Sometime early in 1944, 218 Squadron stopped bombing and started training for a highly secret operation called GLIMMER, which Bas helped to plan, and whose purpose was to divert German attention from the invasion fleet that was to invade France in June. The operation was carried out on the night of June 5-6. The G-H bombers flew low, in tight circles, dropping WINDOW as they moved slowly out over the English Channel. In conjunction with boats below them that carried specially designed radar transponders, they appeared to the German radars to be a fleet of ships. While the real invasion fleet was moving out toward Normandy, the fake invasion fleet of G-H bombers was moving out toward the Pas de Calais, 200 miles to the east. The ruse was successful, and the strong German forces in the Pas de Calais did not move to Normandy in time to stop the invasion. While Bas was training the crews, he said nothing about it to his friends at the ORS. We knew only that he was out at the squadrons doing something useful. Even when GLIMMER was over and the invasion had succeeded, Bas never spoke about it. My boss, Reuben Smeed, was a man of considerable wisdom. One day at Bomber Command, he said, “In this business, you have a choice. Either you get something done or you get the credit for it, but not both.” Bas’s work was a fine example of Smeed’s dictum. He made his choice, and he got something done. In later life he became a famous plasma physicist and ran the Joint European Torus, the main fusion program of the European Union.

The one time that I did something practically useful for Bomber Command was in spring 1944, when Smeed sent me to make accurate measurements of the brightness of the night sky as a function of time, angle, and altitude. The measurements would be used by our route planners to minimize the exposure of bombers to the long summer twilight over Germany. I went to an airfield at the village of Shawbury in Shropshire and flew for several nights in an old Hudson aircraft, unheated and unpressurized. The pilot flew back and forth on a prescribed course at various altitudes, while I took readings of sky brightness through an open window with an antiquated photometer, starting soon after sunset and ending when the sun was 18 degrees below the horizon. I was surprised to find that I could function quite well without oxygen at 20,000 feet. I shared this job with J. F. Cox, a Belgian professor who was caught in England when Hitler overran Belgium in 1940. Cox and I took turns doing the measurements. My flights were uneventful, but on the last of Cox’s flights, both of the Hudson’s engines failed, and the pilot decided to bail out. Cox also bailed out and came to earth still carrying the photometer. He broke an ankle but saved the device. In later years, he became rector of the Free University in Brussels.

After the War, Smeed worked for the British government on road traffic problems and then taught at University College London, where he was the first professor of traffic studies. He applied the methods of operational research to traffic problems all over the world and designed intelligent traffic-light control systems to optimize the flow of traffic through cities. Smeed had a fatalistic view of traffic flow. He said that the average speed of traffic in central London would always be nine miles per hour, because that is the minimum speed that people will tolerate. Intelligent use of traffic lights might increase the number of cars on the roads but would not increase their speed. As soon as the traffic flowed faster, more drivers would come to slow it down.


Smeed also had a fatalistic view of traffic accidents. He collected statistics on traffic deaths from many countries, all the way back to the invention of the automobile. He found that under an enormous range of conditions, the number of deaths in a country per year is given by a simple formula: number of deaths equals .0003 times the two-thirds power of the number of people times the one-third power of the number of cars. This formula is known as Smeed’s Law. He published it in 1949, and it is still valid 57 years later. It is, of course, not exact, but it holds within a factor of two for almost all countries at almost all times. It is remarkable that the number of deaths does not depend strongly on the size of the country, the quality of the roads, the rules and regulations governing traffic, or the safety equipment installed in cars. Smeed interpreted his law as a law of human nature. The number of deaths is determined mainly by psychological factors that are independent of material circumstances. People will drive recklessly until the number of deaths reaches the maximum they can tolerate. When the number exceeds that limit, they drive more carefully. Smeed’s Law merely defines the number of deaths that we find psychologically tolerable.

The last year of the War was quiet at ORS Bomber Command. We knew that the War was coming to an end and that nothing we could do would make much difference. With or without our help, Bomber Command was doing better. In the fall of 1944, when the Germans were driven out of France, it finally became possible for our bombers to make accurate and devastating night attacks on German oil refineries and synthetic-oil-production plants. We had long known these targets to be crucial to Germany’s war economy, but we had never been able to attack them effectively. That changed for two reasons. First, the loss of France made the German fighter defenses much less effective. Second, a new method of organizing attacks was invented by 5 Group, the most independent of the Bomber Command groups. The method originated with 617 Squadron, one of the 5 Group squadrons, which carried out the famous attack on the Ruhr dams in March 1943. The good idea, as usually happens in large organizations, percolated up from the bottom rather than trickling down from the top. The approach called for a “master bomber” who would fly a Mosquito at low altitude over a target, directing the attack by radio in plain language. The master bomber would first mark the target accurately with target indicator flares and then tell the heavy bombers overhead precisely where to aim. A deputy master bomber in another Mosquito was ready to take over in case the first one was shot down. Five Group carried out many such precision attacks with great success and low losses, while the other groups flew to other places and distracted the fighter defenses. In the last winter of the War, the German army and air force finally began to run out of oil. Bomber Command could justly claim to have helped the Allied armies who were fighting their way into Germany from east and west.


While the attacks on oil plants were helping to win the War, Sir Arthur continued to order major attacks on cities, including the attack on Dresden on the night of February 13, 1945. The Dresden attack became famous because it caused a firestorm and killed a large number of civilians, many of them refugees fleeing from the Russian armies that were overrunning Pomerania and Silesia. It caused some people in Britain to question the morality of continuing the wholesale slaughter of civilian populations when the War was almost over. Some of us were sickened by Sir Arthur’s unrelenting ferocity. But our feelings of revulsion after the Dresden attack were not widely shared. The British public at that time still had bitter memories of World War I, when German armies brought untold misery and destruction to other people’s countries, but German civilians never suffered the horrors of war in their own homes. The British mostly supported Sir Arthur’s ruthless bombing of cities, not because they believed that it was militarily necessary, but because they felt it was teaching German civilians a good lesson. This time, the German civilians were finally feeling the pain of war on their own skins.

I remember arguing about the morality of city bombing with the wife of a senior air force officer, after we heard the results of the Dresden attack. She was a well-educated and intelligent woman who worked part-time for the ORS. I asked her whether she really believed that it was right to kill German women and babies in large numbers at that late stage of the War. She answered, “Oh yes. It is good to kill the babies especially. I am not thinking of this war but of the next one, 20 years from now. The next time the Germans start a war and we have to fight them, those babies will be the soldiers.” After fighting Germans for ten years, four in the first war and six in the second, we had become almost as bloody-minded as Sir Arthur.

At last, at the end of April 1945, the order went out to the squadrons to stop offensive operations. Then the order went out to fill the bomb bays of our bombers with food packages to be delivered to the starving population of the Netherlands. I happened to be at one of the 3 Group bases at the time and watched the crews happily taking off on their last mission of the War, not to kill people but to feed them.
Humans and Technology
Freeman Dyson in his own words

One of the 20th century’s foremost physicists died today.
by Konstantin Kakaes
Feb 28, 2020

WIKIMEDIA

Freeman Dyson died today, at age 96. He was one of the foremost physicists of his generation, and also wrote widely on the relationships between science, technology, and the world. He wrote occasionally for the New Yorker in the 1970s and 1980s, and, for many years, was a frequent contributor to the New York Review of Books. He also wrote a handful of articles for MIT Technology Review, including a two-part series about his role in World War II.

Here are some selected quotes from his prolific writing. They are by no means representative of the entire range of his interests, but are simply glimpses into a lively, perceptive mind that the world lost today.


On the space race, from a letter to his family in England, January 1, 1958:

"I have nothing original to say about Sputniks. I feel cheerful about them. It seems to me clear that the Soviet government does not intend to throw bombs at anybody but does intend to dominate the earth by rapid scientific and industrial growth. This will in turn stimulate the Americans to undertake major projects which they would be too parsimonious to do otherwise. There is no question that colonization of the moon and planets will be one of them. I expect eventually to take a hand in this. The prospect seems to me exciting and hopeful.”

On technology and ideology, from Disturbing the Universe, the New Yorker, August 6, 1979:

“Scientists are not the only people who play with intellectual toys that suddenly explode and cause the crash of empires. Philosophers, prophets, and poets do it, too. In the long run, the technological means that scientists place in our hands may be less important than the ideological ends to which these means are harnessed. Technology is powerful, but it does not rule the world.”

On genetic engineering, from Infinite in All Directions, 1985:

“I do not think that the theoretically possible dangers of genetic engineering will turn out to be real. I think that the benefits of it will be large and important ... Instead of destroying tropical forests to make room for agriculture, we could leave the forests in place while teaching the trees to synthesize a variety of useful chemicals. Huge areas of arid land could be made fruitful either for agriculture or for biochemical industry. There are no laws of physics and chemistry which say that potatoes cannot grow on trees.”

On the spiritual value of science, from “The Scientist as Rebel,” New York Review of Books, May 25, 1995:

“Historians who believe in the transcendence of science have portrayed scientists as living in a transcendent world of the intellect, superior to the transient, corruptible, mundane realities of the social world. Any scientist who claims to follow such exalted ideals is easily held up to ridicule as a pious fraud. We all know that scientists, like television evangelists and politicians, are not immune to the corrupting influences of power and money. Much of the history of science, like the history of religion, is a history of struggles driven by power and money. And yet this is not the whole story. Genuine saints occasionally play an important role, both in religion and in science. Einstein was an important figure in the history of science, and he was a firm believer in transcendence. For Einstein, science as a way of escape from mundane reality was no pretense. For many scientists less divinely gifted than Einstein, the chief reward for being a scientist is not the power and the money but the chance of catching a glimpse of the transcendent beauty of nature.”

On nuclear energy, from Imagined Worlds, 1998:

“They wrote the rules of the game so that nuclear energy could not lose. The rules for cost-accounting were written so that the cost of nuclear electricity did not include the huge public investments that had been made to develop the technology and to manufacture the fuel. The rules for reactor safety were written so that the type of light-water reactor originally developed by the United States Navy for propelling submarines was by definition safe. The rules for environmental cleanliness were written so that the ultimate disposal of spent fuel and worn-out machinery was left out of consideration. With the rules so written, nuclear energy confirmed the beliefs of its promoters. According to these rules, nuclear energy was indeed cheap and clean and safe. The people who wrote the rules did not intend to deceive the public. They deceived themselves, and then fell into a habit of suppressing evidence that contradicted their firmly held beliefs.”

On evolution and free will, from Origins of Life, 1999:

“As the grandfather of a pair of five-year-old identical twins, I see every day the power of the genes and the limits to that power. George and Donald are physically so alike that in the bathtub I cannot tell them apart. They not only have the same genes but have shared the same environment since the day they were born. And yet, they have different brains and are different people. Life has escaped the tyranny of the genes by evolving brains with neural connections that are not genetically determined. The detailed structure of the brain is partly shaped by genes and environment and is partly random. Earlier, when the twins were two years old, I asked their older brother how he tells them apart. He said, ‘Oh, that’s easy. The one that bites is George.’ Now that they are five years old, George is the one who runs to give me a hug, and Donald is the one who keeps his distance. The randomness of the synapses in their brains is the creative principle that makes George George and Donald Donald ... George and Donald are different people because they started life with different random samples of neurological junk in their heads. The weeding out of the junk is never complete. Adult humans are only a little more rational than five-year-olds. Too much weeding destroys the soul."
Freeman Dyson's Solution to the Problem of Evil

Dyson’s principle of maximum diversity says that without hardship and suffering, life would be too dull
By John Horgan on May 8, 2018
Dyson's principle of maximum diversity decrees that "when things are dull, something turns up to challenge us and to stop us from settling into a rut. Examples of things which made life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death." Credit: Randall Hagadorn, Institute for Advanced Study, Princeton, NJ US

Freeman Dyson, at the age of 94, is still disturbing the universe. He has a new book out, Maker of Patterns, a collection of annotated letters that tells his life story through the 1970s. He continues writing splendid essays for The New York Review of Books. His latest, in the May 10 issue, ends with the Dysonian sentence, “Freedom is the divine spark that causes human children to rebel against grand unified theories imposed by their parents.”

Hoping to do a Q&A with him, I sent him a dozen questions. I asked, for example, about his assertions that the environmental movement has been “hijacked by a bunch of climate fanatics” and that “paranormal phenomena are real.” (See my 2011 post on Dyson’s “bunkrapt” ideas.) He ignored all the questions except for one about the Singularity. Here is our exchange:

Horgan: You have speculated about the long-term evolution of intelligence since the 1970s. What do you think about the predictions of Ray Kurzweil and others that we are on the verge of a radical transformation of intelligence, or “Singularity”?
Dyson: The Kurzweil singularity is total nonsense. For better or for worse, human nature is a tough beast, designed to prevail over technological revolutions and natural disasters. It changed only a little in response to the agricultural and industrial revolutions, not to mention ice-ages. It is absurd to imagine it changing radically in a single century.

That’s not enough for a column, so I thought I’d dust off a profile I wrote after interviewing Dyson in 1993 at the Institute for Advanced Study. In the profile, which ended up in The End of Science, I tried to convey Dyson’s personality, and his vision of humanity’s ultimate purpose and destiny. Here is an edited version:

Freeman Dyson is a slight man, all sinew and veins, with a cutlass of a nose and deep-set, watchful eyes. His demeanor is cool, reserved--until he laughs. Then he snorts through his nose, shoulders heaving, like a 12-year-old schoolboy hearing a dirty joke. It is a subversive laugh, the laugh of a man who envisions space as a haven for “religious fanatics” and “recalcitrant teenagers,” who insists that science at its best is “a rebellion against authority.”

Dyson was once at the forefront of the search for a unified theory of physics. In the early 1950s, he contributed to the construction of the quantum theory of electromagnetism. Other physicists have told me that Dyson deserved a Nobel Prize for his work, or at least more credit. They have also suggested that disappointment, as well as a contrarian streak, nudged Dyson away from particle physics and toward pursuits unworthy of his powers.

When I mentioned this assessment to Dyson, he gave me a tight-lipped smile and responded, as he often did, with an anecdote. Lawrence Bragg, he noted, was “a sort of role model.” After Bragg became the director of the University of Cambridge's legendary Cavendish Laboratory in 1938, he steered it away from nuclear physics, on which its mighty reputation rested, and into new territory.


“Everybody thought Bragg was destroying the Cavendish by getting out of the mainstream,” Dyson said. “But of course it was a wonderful decision, because he brought in molecular biology and radio astronomy. Those are the two things which made Cambridge famous over the next 30 years or so.”

Dyson, too, has spent much of his career swerving away from the mainstream. He veered from mathematics, his focus in college, into quantum theory, and then into solid-state physics, nuclear engineering, arms control, climate studies and speculation about humanity’s destiny.

He wrote his 1979 paper “Time Without End: Physics and Biology in an Open Universe,” in response to Steven Weinberg’s infamous remark that “the more the universe seems comprehensible, the more it also seems pointless.” No universe with intelligence is pointless, Dyson retorted. He argued that in an open, eternally expanding universe, our descendants could resist heat death and endure virtually forever through shrewd conservation of energy.

Dyson did not think biological intelligence would soon yield to artificial intelligence. In his 1988 book Infinite in All Directions, he conjectured that genetic engineers might someday “grow” spacecraft “about as big as a chicken and about as smart,” which could flit on sunlight-powered wings through the solar system and beyond, acting as our scouts. (Dyson called them “astrochickens.”) Civilizations concerned about dwindling energy supplies could capture the radiation of stars by constructing energy-absorbing shells--sometimes called Dyson spheres--around them.

Eventually, Dyson predicted, intelligence might spread through the entire universe, transforming it into one great mind. He asked, “What will mind choose to do when it informs and controls the universe?” The question, for Dyson, has theological significance. “I do not make any clear distinction between mind and God,” he wrote. “God is what mind becomes when it has passed beyond the scale of our comprehension. God may be considered to be either a world-soul or a collection of world souls. We are the chief inlets of God on this planet at the present stage in his development. We may later grow with him as he grows, or we may be left behind.”

Dyson insisted that “no matter how far we go into the future, there will always be new things happening, new information coming in, new worlds to explore, a constantly expanding domain of life, consciousness and memory.” The quest for knowledge would be--must be—“infinite in all directions.” In other words, even a God-like intelligence cannot know everything.

Dyson admitted to me that his vision of the future reflected wishful thinking. When I asked if science is infinite, he replied, “I hope so! It's the kind of world I’d like to live in.” If minds make the universe meaningful, they must have something to think about. Science must, therefore, be eternal. Contrary to what Weinberg and other physicists have suggested, there can be no “final theory” that answers all our questions.

“The only way to think about this is historical,” Dyson explained. Two thousand years ago some “very bright people” invented something that, while not science in the modern sense, was obviously its precursor. “If you go into the future, what we call science won't be the same thing anymore, but that doesn't mean there won't be interesting questions.”

Dyson hoped Godel’s incompleteness theorem might apply to physics as well as to mathematics. “Since we know the laws of physics are mathematical, and we know that mathematics is an inconsistent system, it’s sort of plausible that physics will also be inconsistent”--and therefore open-ended. “So I think these people who predict the end of physics may be right in the long run. Physics may become obsolete. But I would guess myself that physics might be considered something like Greek science: an interesting beginning but it didn't really get to the main point. So the end of physics may be the beginning of something else.”

In Infinite In All Directions Dyson addressed, obliquely, the only theological issue that really matters, the problem of evil. If we were created by a loving, all-powerful God, why is life so painful and unfair? The answer, Dyson suggested, might have something to do with “the principle of maximum diversity.” This principle, he explained, “operates at both the physical and the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible. As a result, life is possible but not too easy. Always when things are dull, something turns up to challenge us and to stop us from settling into a rut. Examples of things which made life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death. Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth.”

When I asked Dyson about the principle of maximum diversity, he downplayed it. “I never think of this as a deep philosophical belief,” he said. “It's simply, to me, just a poetic fancy.” Perhaps Dyson was being modest, but to my mind, the principle of maximum diversity has profound implications. It suggests that, even if the cosmos was designed for us, we will never figure it out, and we will never create a blissful paradise, in which all our problems are solved. Without hardship and suffering--without “challenges,” from the war between the sexes to World War II and the Holocaust--life would be too boring. This is a chilling answer to the problem of evil, but I haven’t found a better one.

Postscript: After I emailed this column to Dyson, he replied: Dear John Horgan, Thank you for sending your summary of my more oracular statements. I find the summary accurate and thoughtful. I have nothing to add or subtract, except for one correction. The “Time Without End” paper is obsolete because it assumed a linearly expanding universe, which the cosmologists believed to be correct in 1979. We now have strong evidence that the universe is accelerating, and this makes a big difference to the future of life and intelligence. I prefer not to speculate further until the observational evidence becomes clearer. 
Yours sincerely, Freeman Dyson.


Freeman Dyson, global warming, ESP and the fun of being "bunkrapt"
By John Horgan on January 7, 2011

Should a scientist who believes in extrasensory perception—the ability to read minds, intuit the future and so on—be taken seriously? This question comes to mind when I ponder the iconoclastic physicist Freeman Dyson, whom the journalist Kenneth Brower recently profiled in The Atlantic's December issue.

"The Danger of Cosmic Genius" explores Dyson’s denial that global warming will wreak havoc on Earth unless we drastically curtail carbon emissions. Dyson questions the computer models on which these scary scenarios are based, and he suggests that the upside of global warming—including faster plant growth and longer growing seasons in certain regions—may outweigh the downside.

This article resembles Nicholas Dawidoff's 2009 profile of Dyson in The New York Times Magazine—with a crucial difference. Whereas Dawidoff teased us with the possibility that Dyson could be right about global warming, Brower declares right off the bat that Dyson is "dead wrong, wrong on the facts, wrong on the science." Brower's goal is to explain how "someone as smart as Freeman Dyson could be so dumb."

Brower has known Dyson for decades. Brower's 1978 book The Starship and the Canoe was an affectionate study of Dyson and his equally quirky son George, a kayak-designer who in the 1970s lived in a tree in the Pacific Northwest. In his Atlantic article, Brower recounts Dyson's brilliant contributions to particle physics (he helped formulate quantum electrodynamics), nuclear engineering (he designed a method of space transport based on repeated nuclear explosions) and other fields.


Brower weighs several explanations for Dyson's stance on global warming: Brower rejects one obvious possibility, that Dyson, at 87, has "gone out of his beautiful mind"; by all accounts, Dyson's intellect is still formidable (and I found it to be so three years ago when I attended a three-day conference with Dyson in Lisbon). Brower gives more weight to the notion that Dyson—one of whose books is titled The Scientist as Rebel (New York Review Books, 2006)—has always been a provocateur who loves tweaking the status quo. I emphasized this contrarian aspect of Dyson's personality in my 1993 profile of him for Scientific American, titled "Perpendicular to the Mainstream".

Brower's favorite theory is that Dyson possesses a kind of religious faith in the power of science and technology to help us overcome all problems. We can bioengineer ourselves and other species, Dyson asserts, to help us adapt to a warmer world; if Earth becomes uninhabitable, we can colonize other planets, perhaps in other solar systems. "What the secular faith of Dysonism offers is, first, a hypertrophied version of the technological fix," Brower wrote, "and, second, the fantasy that should the fix fail we have someplace else to go."

This analysis makes sense to me. Dyson's worldview seems both oddly retro, in a Jules Verne-ish or even Jetsons-esque way, and hyper-futuristic, so much so that humanity's current problems—notably global warming—fade into insignificance. His remarkable 1979 paper, "Time without end: Physics and biology in an open universe," calculates how intelligent beings, perhaps in the form of clouds of charged particles, can ward off heat death—the polar opposite of global warming!—even after all the stars in the cosmos have dimmed.


Much more damaging to Dyson's credibility, however, is his belief in extrasensory perception, sometimes called "psi". Dyson disclosed this belief in his essay "One in a Million" in the March 25, 2004, New York Review of Books, which discussed a book about ESP. His family, Dyson revealed, included two "fervent believers in paranormal phenomena," a grandmother who was a "notorious and successful faith healer" and a cousin who edited the Journal of the Society for Psychical Research.

Dyson proposed that "paranormal phenomena are real but lie outside the limits of science." No one has produced empirical proof of psi, he conjectured, because it tends to occur under conditions of "strong emotion and stress," which are "inherently incompatible with controlled scientific procedures." This explanation reminds me of the physicist Richard Feynman's quip that string theorists don't make predictions; they make excuses.

Dyson even offered an explanation for what the parapsychologist Joseph Rhine called the "decline effect," which I discussed in a previous post. "In a typical card-guessing experiment," Dyson wrote, "the participants may begin the session in a high state of excitement and record a few high scores, but as the hours pass, and boredom replaces excitement, the scores decline." When I ran into Dyson three years ago in Lisbon, he cheerfully affirmed his belief in psi and reiterated his explanations for why it hasn't been empirically demonstrated.

I disagree with Dyson that global warming is no big deal—I urge doubters to read Storms of My Grandchildren (Bloomsbury, 2009) by the climatologist James Hansen—and that ESP is real. Yes, some researchers still claim to have found tentative evidence for psi, as The New York Times reported in a page-one story last week. But if ESP existed, surely someone would have provided definitive proof of it by now and claimed James Randi's $1-million prize for "anyone who can show under proper observing conditions evidence of any paranormal, supernatural or occult power or event."

Despite this lack of evidence, lots of people—including scientists—share Dyson's belief in ESP, just as many share his lack of concern about global warming. And let's not forget that many leading scientists—notably Francis Collins, director of the National Institutes of Health—believe in a God who performs miracles, like resurrecting the dead. Eminent physicists also postulate the existence of parallel universes, higher dimensions, strings and other phenomena that I find as incredible as psi.

In his 1984 book, The Limits of Science, the biologist Peter Medawar coined the term "bunkrapt" to describe people infatuated with "bunk," meaning religious beliefs, superstitions and other claims lacking empirical evidence. "It is fun sometimes to be bunkrapt," Medawar wrote. That's a nice way of putting it. The gleeful rebel Dyson, it seems to me, embodies our bunkrapt era, when the delineation between knowledge and pseudo-knowledge is becoming increasingly blurred; genuine authorities are mistaken for hucksters and vice versa; and we all believe whatever damn thing we want to believe.

Photo of Dyson courtesy Wiki Common

The views expressed are those of the author(s) and are not necessarily those of Scientific American.
ABOUT THE AUTHOR(S)

John Horgan
John Horgan directs the Center for Science Writings at the Stevens Institute of Technology. His books include The End of Science, The End of War and Mind-Body Problems, available for free at mindbodyproblems.com.
Recent Articles
Scientific Rebel Freeman Dyson Dies
Astrology, Tarot Cards and Psychotherapy
Responses to "The Cancer Industry: Hype vs. Reality"
Freeman Dyson, legendary theoretical physicist,  dies at 96


Andrea Stone
A great figure in 20th-century physics, Freeman J. Dyson—the theorist who unified the world of the atom and the electron, a critic of nuclear weapons tests, a designer of space civilizations, and a steadfast climate change contrarian—died on February 28, 2020, in Princeton, New Jersey. He was 96 years old.
© Photograph by William E. Sauro, The New York Times via Reuters Professor Freeman J. Dyson of ​the Institute for Advanced Stu​dy in Princeton is shown at Ja​dwyn Hall where he had an offi​ce and taught, November 15, 19​72.

At his death, Dyson still maintained an office at the Institute for Advanced Study (IAS) in Princeton, New Jersey, where he took up residence in 1953 as a professor of physics. The IAS confirmed Dyson's passing to National Geographic.

"No life is more entangled with the Institute and impossible to capture—architect of modern particle physics, free-range mathematician, advocate of space travel, astrobiology and disarmament, futurist, eternal graduate student, rebel to many preconceived ideas including his own, thoughtful essayist, all the time a wise observer of the human scene," Robbert Dijkgraaf, director of the IAS, said in a statement. "His secret was simply saying yes to everything in life, till the very end."

When Dyson began his appointment at the IAS, Albert Einstein still roamed the grounds. Though he would later be called an "heir" to his renowned colleague, Dyson never came up with a general theory of anything. Modest, shy, and self-effacing, he was always content to work with others on their ideas.

"I'm not a person for big questions," he told Quanta Magazine shortly after his 90th birthday. "I look for puzzles. I look for interesting problems that I can solve. I don't care whether they're important or not, and so I'm definitely not obsessed with solving some big mystery. That's not my style."

"He did not propose radical new ideas, but instead helped clean up the details of the theories first proposed in the quantum revolution of the 1920s," said Declan Fahy, an associate professor of communications at Dublin City University in Dublin, Ireland, who studies scientists as public intellectuals. "In the 1940s and 1950s, he and others proved experimentally that the theories were correct, and this resulted ultimately in the theory of quantum electrodynamics, which describes how atoms behave. It's hugely significant in science, but does not capture public imagination in the same way as string theory."

Dyson became famous for translating the ideas of Richard Feynman and two other physicists into more accessible mathematical calculations in a seminal 1949 paper, "The Radiation Theories of Tomonaga, Schwinger, and Feynman." But before that, he and Feynman spent four memorable days driving from upstate New York to Albuquerque that included not only deep, inspirational conversations but also taking shelter from an Oklahoma flood in a brothel.

Despite Dyson's key role in synthesizing their ideas, he was overlooked in 1965 when Feynman, Harvard physicist Julian Schwinger, and Japanese scientist Sin-Itiro Tomonaga won the Nobel Prize for their work on the physics of elementary particles.

Though he was passed over for the Nobel—his 2000 Templeton Prize cited that work as his "most useful contribution to science"—Dyson's improvement of the early understanding of how atoms behave was a major advance from earlier ideas regarding both relativity and quantum mechanics, said Virginia Trimble, a physicist at the University of California at Irvine.

"You could say that, without this understanding, you wouldn't have modern computers or telephones or digital cameras," she said.

You also wouldn’t have certain radiation therapies used for cancer to this day. In the late 1950s, building on an idea by Edward Teller, Dyson led a team that designed and patented the TRIGA (which stands for Training, Research, Isotopes, General Atomic), a small, low-power nuclear reactor that is still used in research hospitals to produce medical isotopes to treat various forms of cancer.

Dyson's nuclear energy work also extended to the Air Force's secret Project Orion, which sought to build a spaceship propelled by exploding atomic bombs that would take humans to the farthest reaches of the solar system. The fantastical venture was canceled after NASA opted for more conventional rockets and the nuclear test ban treaty put an end to aboveground atomic experiments.

Dyson's interest in nuclear weapons also brought controversy. As a member during the Vietnam War of JASON, a defense industry advisory panel, he spearheaded research on the feasibility of using small, tactical nuclear weapons against the enemy. His ease in separating the technical from the moral aspects of the project made him a target of the anti-war movement.

Still, the scientist had other, less divisive ideas that became the stuff of science fiction. His hypothetical Dyson Sphere, a megastructure that would encompass a star to capture its energy, was portrayed in novels and in an episode of TV's Star Trek: The Next Generation. The hypothetical Dyson tree would grow on comets to support future space colonists.
Proud not to be a Ph.D.

Freeman John Dyson was born on December 15, 1923, in Crowthorne, England. His father was the prominent British composer Sir George Dyson, and his mother, Mildred Atkey, was a social worker. He was a math prodigy who by the age of 5 had calculated how many atoms were in the sun.

Dyson attended Winchester College, where his father was a music instructor, before working as a civilian targeting analyst for the Royal Air Force during World War II.

Not long after earning a degree in mathematics from Cambridge University in 1945, Dyson moved to the United States. He enrolled at New York's Cornell University and, despite lacking a Ph.D., was a professor there from 1951 to 1953. Although he would eventually receive some two dozen honorary degrees, Dyson never completed his doctorate. Instead, he became an outspoken opponent of the "Ph.D. system," which he called "an abomination" that discouraged many budding scientists, especially women.

After Dyson's mentor at Cornell, physicist Hans Bethe, wrote a letter to Robert Oppenheimer at the Institute for Advanced Study, Dyson was invited to become a fellow. It was there that he wrote his epochal paper on quantum electrodynamics, which launched his career and led to a permanent place at the institute.

The versatile scientist worked on a wide range of areas in theoretical physics. While Wolfgang Pauli won the Nobel Prize for his exclusion principle stating that no two electrons in an atom can have identical quantum numbers, it was Dyson and mathematician Andrew Lenard who later proved it definitively.

Dyson wrote more than a dozen books that made complex scientific and moral concepts comprehensible to nonspecialists. Among his best-selling books are Origins of Life and Weapons and Hope, which won the National Book Critics Circle Award for general nonfiction in 1984.

The scientist, who became a U.S. citizen in 1957, married twice and had six children. His two children with mathematician Verena Huber Dyson are technology venture capitalist Esther Dyson and science historian George Dyson. In 1958, he married Imme Jung, his wife for more than 60 years when he died. She and their daughters Dorothy, Mia, Rebecca, and Emily, as well as 16 grandchildren, also survive him.

So, too, does his controversial stance on climate change.

Dyson's criticism of climate science grew out of his own involvement with the JASON group and developed amid the nuclear winter debate with Carl Sagan and others. In his own simple climate model, Dyson underplayed the effects of greenhouse gases. Atmospheric physicists savaged his model for going against a broad consensus. That stung Dyson, who insisted that "global warming is grossly exaggerated as a problem." His skepticism continued to bring scathing criticism during his final years, as evinced in a New York Times Magazine article headlined "The Civil Heretic."


"An important theme in his popular science books was the value of the scientific contrarian," Fahy said. "At the end of his life, it was this issue that increasingly came to define him in public, rather than his vital contributions to physics."

Dan Vergano and Michael Greshko contributed to this article.


Legendary mathematician and physicist Freeman Dyson has died at the age of 96

Mathematician and physicist Freeman Dyson Bryan Bedder/Getty Images

Mathematician and physicist Freeman Dyson has died at the age of 96, according to a press release issued by the Institute for Advanced Study

yson was perhaps most famous for contributions to quantum electrodynamics, his biography on the the institute website noted. 

Dyson's contributions to both science and popular culture are many: he won the Max Planck Medal and the Templeton prize, wrote books like "The Scientist as Rebel," was an outspoken supporter of Obama's nuclear deal with Iran, and his Dyson Sphere concept even made an appearance in Star Trek


Legendary mathematician and physicist Freeman Dyson has died at the age of 96, according to a press release issued by the Institute for Advanced Study. 

The British-born mathematician and physicist, best known for unifying the three versions of quantum electrodynamics invented by Richard Feynman, suffered a fall on his way to his office, his daughter Mia Dyson first told the Maine Public. He passed away on Friday.

Dyson had a colorful career: He worked as a civilian scientist for the Royal Airforce in World War II, before attending Cambridge University to get his undergraduate degree in mathematics. He went on to do graduate work in Cornell University, and became a professor there despite never having formally gotten a PhD.

Dyson worked on a diverse range of physics and mathematical problems: nuclear reactors, solid-state physics, ferromagnetism, astrophysics, and biology (one of his ideas, the Dyson Sphere, was even featured in a "Star Trek" episode). He won the Max Planck Medal and the Templeton Prize, and wrote often-quoted books like "Disturbing the Universe" and "The Scientist as Rebel."

He also kept track of the politics that later surrounded his expertise. Notably, he was among 29 scientists who supported the Obama administration's 2015 nuclear deal with Iran. He also acted as a a military adviser regarding the use of nuclear weapons during the Vietnam War in 1967.

And in 2009, he was the subject of a lengthy profile in the New York Times Magazine after expressing his skepticism about the scientific predictions surrounding climate change. He stuck to that conviction, telling NPR in 2015 that, "I'm not saying the climate disasters aren't real, I'm merely saying we don't know how to prevent them."

Dyson is survived by his wife of 64 years and six children.
BUSINESS INSIDER 

Scientific Rebel Freeman Dyson Dies

The iconoclastic physicist rejected the idea of an endpoint to the human quest for knowledge and happiness.
By John Horgan on February 28, 2020
Credit: Getty Images

Freeman Dyson, who possessed one of the truly original minds of the modern era, has died. Dyson, 96, helped construct the standard model of particle physics, and he envisioned the Singularity decades before that term was adopted to describe the radical transformation of human intelligence. Below is a eulogy cobbled together from The End of Science and other writings. –John Horgan

Humanity, Nietzsche proclaimed, is just a steppingstone, a bridge leading to the Superman. If Nietzsche were alive today, he would surely entertain the notion that the Superman might be made not of flesh and blood but of silicon. As human science wanes, those who hope that the quest for knowledge will continue must put their faith not in Homo sapiens but in intelligent machines. Only machines can overcome our physical and cognitive weaknesses--and our indifference. 

In fact, there is an odd little sub-culture within science whose members speculate about how intelligence might evolve when or if it sheds its mortal coil. Participants are not practicing science, of course, but ironic science, or wishful thinking. They are concerned with what the world might be or should be centuries or millennia or eons hence. The literature of this field—which I call scientific theology--may nonetheless shed new light on age-old philosophical and even theological questions: What could we do if we could do anything? What is the point of life? What are the ultimate limits of knowledge? Is suffering a necessary component of existence, or can we attain eternal bliss?

Physicist Freeman Dyson was the leading practitioner of scientific theology. In his 1988 essay collection Infinite in All Directions, Dyson speculated on why there is so much violence and hardship in the world. The answer, he suggested, might have something to do with what he called "the principle of maximum diversity." This principle, he continued,

operates at both the physical and the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible. As a result, life is possible but not too easy. Always when things are dull, something turns up to challenge us and to stop us from settling into a rut. Examples of things which made life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death. Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth.

Dyson, it seemed to me, was suggesting that we cannot solve all our problems, we cannot create heaven, we cannot find The Answer to the riddle of existence. Life is--and must be--an eternal struggle. Was I reading too much into Dyson's remarks? I hoped to find out when I interviewed him in 1993 at the Institute for Advanced Study, his home since the early 1940's.

Dyson was a slight man, all sinew and veins, with a cutlass of a nose and deep-set, watchful eyes. He resembled a gentle raptor. His demeanor was generally cool and reserved--until he laughed. Then he snorted through his nose, shoulders heaving, like a 12-year-old schoolboy hearing a dirty joke. It was a subversive laugh, the laugh of a man who envisioned space as a haven for "religious fanatics" and "recalcitrant teenagers," who insisted that science at its best is "a rebellion against authority."

I did not ask Dyson about his maximum-diversity idea right away. First I inquired about the choices that had characterized his career. Dyson had once been at the forefront of the search for a unified theory of physics. In the early 1950s, the British-born physicist strove with Richard Feynman and other titans to forge a quantum theory of electromagnetism. It has often been said that Dyson deserved a Nobel prize for his efforts--or at least more credit. In fact, some colleagues have suggested that disappointment and, perhaps, a contrarian streak, later drove Dyson toward pursuits unworthy of his powers.

When I mentioned this assessment to Dyson, he gave me a tight-lipped smile. He then responded, as he was wont to do, with an anecdote. The British physicist Lawrence Bragg, he noted, was "a sort of role model." After Bragg became the director of the University of Cambridge's legendary Cavendish Laboratory in 1938, he steered it away from nuclear physics, on which its mighty reputation rested, and into new territory.

"Everybody thought Bragg was destroying the Cavendish by getting out of the mainstream," Dyson said. "But of course it was a wonderful decision, because he brought in molecular biology and radio astronomy. Those are the two things which made Cambridge famous over the next 30 years or so."

Dyson, too, had spent his career swerving toward unknown lands. He veered from mathematics, his focus in college, to particle physics and from there to solid state physics, nuclear engineering, arms control, climate studies--and speculation about the long-term prospects of intelligence.

Dyson was provoked into taking up this final topic by physicist Steven Weinberg, who once remarked that "the more the universe seems comprehensible, the more it also seems pointless." No universe with intelligence is pointless, Dyson retorted in a 1979 paper in Reviews of Modern Physics. He sought to show that in an open, eternally expanding universe, intelligence could persist forever--perhaps in the form of a cloud of charged particles--through shrewd conservation of energy. 

Dyson did not think organic intelligence would soon give way to artificial intelligence. In Infinite in All Directions, he speculated that genetic engineers might someday "grow" spacecraft "about as big as a chicken and about as smart," which could flit on sunlight-powered wings through the solar system and beyond, acting as our scouts. (Dyson called them "astrochickens.") Still more distant civilizations, perhaps concerned about dwindling energy supplies, could capture the radiation of stars by encasing them in energy-absorbing shells--now called Dyson spheres.

Eventually, Dyson predicted, intelligence might spread through the entire universe, transforming it into one great mind. But he insisted that "no matter how far we go into the future, there will always be new things happening, new information coming in, new worlds to explore, a constantly expanding domain of life, consciousness and memory." The quest for knowledge would be--must be--"infinite in all directions."

Dyson addressed the most important question raised by this prophecy: "What will mind choose to do when it informs and controls the universe?" The question, Dyson made clear, was theological rather than scientific:

I do not make any clear distinction between mind and God. God is what mind becomes when it has passed beyond the scale of our comprehension. God may be considered to be either a world-soul or a collection of world souls. We are the chief inlets of God on this planet at the present stage in his development. We may later grow with him as he grows, or we may be left

Ultimately, we “cannot hope to answer" the question of what this superbeing, this God, will do or think. Dyson admitted that his view of the future reflected wishful thinking. When I asked if science could keep evolving forever, he replied, "I hope so! It's the kind of world I'd like to live in." If minds make the universe meaningful, they must have something to think about, so science must be eternal.

"The only way to think about this is historical," he explained. Two thousand years ago some "very bright people" invented something that, while not science in the modern sense, was obviously its precursor. "If you go into the future, what we call science won't be the same thing anymore, but that doesn't mean there won't be interesting questions."

Like physicist Roger Penrose, Dyson hoped that Godel's theorem might apply to physics as well as mathematics. "Since we know the laws of physics are mathematical, and we know that mathematics is an inconsistent system, it's sort of plausible that physics will also be inconsistent" and therefore open-ended. "So I think these people who predict the end of physics may be right in the long run. Physics may become obsolete. But I would guess myself that physics might be considered something like Greek science: an interesting beginning but it didn't really get to the main point. So the end of physics may be the beginning of something else." 

When, finally, I asked Dyson about his maximum diversity idea, he shrugged. Oh, he didn't intend anyone to take that too seriously. He insisted that he was not really interested in "the big picture." One of his favorite quotes, he said, is "God is in the details." But given his insistence that diversity is somehow essential to existence, I asked, didn't he find it disturbing that so many scientists and others seemed compelled to reduce everything to a single insight? Didn't such efforts represent a dangerous game?

"Yes, that's true in a way," Dyson replied, with a small smile that suggested he found my interest in his little idea amusing. "I never think of this as a deep philosophical belief," he added. "It's simply, to me, just a poetic fancy." Dyson was maintaining an appropriate ironic distance between himself and his ideas, but there was something disingenuous about his attitude. After all, throughout his own eclectic career, he seemed to be striving to adhere to the principle of maximum diversity.

The 1984 book The Limits of Science by biologist Peter Medawar consisted for the most part of regurgitated Popperisms. Medawar kept insisting, for example, that "there is no limit upon the power of science to answer questions of the kind science can answer," as if this were a profound truth rather than a vacuous tautology. Medawar did offer some felicitous phrases, however. He concluded a section on "bunk"--by which he meant myths, superstitions and other beliefs lacking an empirical basis--with the remark, "It is fun sometimes to be bunkrapt."

Dyson was both brilliant and bunkrapt. He thought that global warming, on balance, might be beneficial, and he took extrasensory perception seriously. In a 2004 essay in the New York Review of Books, he proposed that "paranormal phenomena are real but lie outside the limits of science." No one has produced empirical proof of ESP, Dyson conjectured, because it tends to occur under conditions of "strong emotion and stress," which are "inherently incompatible with controlled scientific procedures." 

Dyson’s vision of the far future is bunkrapt, too—and also one of the most profound bits of ironic science I have encountered. The principle of maximum diversity suggests that, even if the cosmos was designed for us, we will never figure it out, and we will never create a blissful paradise in which all our problems are solved. No theory of everything, no heaven. Without hardship and suffering--without “challenges,” from the war between the sexes to World War II and the Holocaust--life would be too boring. This is a chilling answer to the problem of evil, but I haven’t found a better one.

Further Reading:












The views expressed are those of the author(s) and are not necessarily those of Scientific American.

ABOUT THE AUTHOR(S)
John Horgan
John Horgan directs the Center for Science Writings at the Stevens Institute of Technology. His books include The End of Science, The End of War and Mind-Body Problems, available for free at mindbodyproblems.com.

Recent Articles




Volcanic eruption sparked a week long thunderstorm, and scientists want to know why


Maya Wei-Haas 

In December 2018, after months of sputtering, the Anak Krakatau volcano in Indonesia collapsed. Its southwestern flank slid into the sea, shoving a wall of water into the neighboring islands of Sumatra and Java. The catastrophic event and resulting tsunami killed more than 430 people and injured thousands more.

The collapse was only the start of Anak Krakatau’s fiery fit. The volcano continued to billow a gaseous plume miles into the sky, feeding a rare six-day thunderstorm that sparkled with lightning. The event offered scientists an incredibly detailed look at how some eruptions can affect local weather in remarkable ways. As described in a new study in Scientific Reports, this intense volcanic storm was supercharged by vaporized seawater that chilled to ice in the rising plume, unleashing more than 100,000 flashes of lightning.


“It blew me away how much lightning was there,” says Andrew Prata, a post-doctoral researcher at the Barcelona Supercomputing Center and lead author of the study. At its peak, the volcanic lightning storm crackled with 72 flashes a minute.

Volcanologists are starting to unravel how these flashy shows could be used to track the ever-shifting dangers of volcanic eruptions, yet the specific processes that drive the lightning are just coming into focus. Another volcano, Bogoslof in the Aleutian Islands of Alaska, began a series of eruptive events in December 2016 that continued for nearly nine months, resulting in thousands of lightning strikes that scientists are also using to piece together the inner workings of volcanic storms.

The latest studies of Anak Krakatau and Bogoslof emphasize the watery mechanisms that drive the varied personalities of volcanic eruptions.

“We have to think broadly about the full range of eruption styles ... to use lightning in a meaningful way,” says Alexa Van Eaton, a volcanologist with the U.S. Geological Survey's Cascades Volcano Observatory and lead author of the study on Bogoslof in Bulletin of Volcanology.



smoke coming out of the water: Billowing clouds of vaporized water shroud Anak Krakatau at the start of the lengthy volcanic thunderstorm in December 2018.
2 SLIDES © Photograph by Antara Foto/Bisnis Indonesia/Nurul Hidayat via Reuters

Billowing clouds of vaporized water shroud Anak Krakatau at the start of the lengthy volcanic thunderstorm in December 2018.






1-4/19 SLIDES © Photograph by Randy Olson, Nat Geo Image Collection
GRASSLAND BIRDS OF THE GREAT PLAINS WADE BY THE WATER'S EDGE AS A STORM BEGINS TO TAKE SHAPE IN THE BACKGROUND.

The science behind the flash

Whether sparked by a springtime shower or an eruption of volcanic fury, all lightning requires what’s known as a charge separation, which develops as positively and negatively charged particles accumulate in different parts of a cloud. As the opposing charges build up, they generate an imbalance that nature resolves by releasing a bolt of electricity—lightning.

In an atmospheric thunderstorm, the charges form in a chaotic swirl of ice, slush, and liquid water. Collisions between these phases of water can shear electrons from the particles, leaving some positively charged and others negatively charged.

In volcanic eruptions, on the other hand, ash particles play a critical role. These tiny fragments form as the rapid expansion of gases in magma shatter the molten rock into glassy shards, which gain a charge in the process. The ashier the plume, the higher the chance these particles collide and fracture within the billowing clouds, producing even more charge that might spark lightning.

Researchers have long suspected that ice also plays an important role in driving volcanic light shows. Eruption plumes, even from volcanoes not surrounded by the ocean, are laden with water that was previously entrained in the magma. When these plumes rise high enough in the atmosphere for ice to form, the lightning rates and intensity often skyrocket, explains Stephen McNutt, an expert in volcanic lightning at the University of South Florida who was not involved in the new work.

“It’s a really intriguing grey area of how volcanic lightning comes about,” Van Eaton says.
Anak Krakatau’s icy tower

Indonesia’s Anak Krakatau first peeked its head above the ocean waves in 1929, nearly half a century after its parent volcano Krakatau blew a massive crater in the seafloor in one of the largest eruptions in recorded history. Over the decades, Anak Krakatau has continued to reach higher into the sky, but two years ago, its ascent halted when one of its sloping sides crumpled back into the sea.

Seawater flooded the system and vaporized into towering volcanic clouds that stretched as high as 11 miles, according to satellite analyses. At the lower levels, ash was likely abundant, evidenced by a hefty sprinkle of glassy shards on nearby shores. But the ash didn’t seem to reach up to the cloud tops, leaving white puffs like a run-of-the-mill thunderstorm.

Infrared data and modeling suggest that the volcanic clouds were remarkably rich with ice, containing a mass of frozen water equivalent to 600,000 Asian elephants—five times the amount of ice found in non-volcanic clouds nearby. This wasn’t the most ice-rich eruption volcanologists have seen, but the storm lasted nearly a week thanks to a steady supply of seawater. The rates of lightning were also startlingly high, with an average of 8.7 flashes each minute.

In satellite imagery of the event, puffy clouds and tropical thunderstorms faded in and out of view over the Indian and Pacific Oceans, but the storm over Anak Krakatau remained steadfastly in place—“right where the action is happening,” Prata says.

“It’s a fantastically massive thunderstorm,” says the University of Bristol’s Karen Aplin, who specializes in atmospheric electricity and was not part of the new research.
Lightning switch

Hints of ice supercharging volcanic storms date back to the mid-1960s, when daring scientists risked their lives to study the eruptions of the Surtsey volcano off the coast of Iceland, Van Eaton says. The researchers took boats perilously close to the rumbling shores of the volcanic island and flew planes through the hazardous plumes to document Surtsey’s blasts.

While much of the lightning they observed was tied to black jets of volcanic ash, the researchers spotted one period of intense electricity flashing in the sky. They suggested it could have been driven by a process similar to a meteorologic thunderstorm, which would mean it was driven by ice.

Decades of research since, however, have shown just how complex these icy processes can be in volcanic lightning. The patterns of lightning at one eruption don’t necessarily translate to another. For example, lightning only flashed for half of the explosions during the 2016 and 2017 eruption at Alaska’s Bogoslof volcano.

Later analysis revealed that only the plumes rising above the altitude where ice forms produced strong lightning. This dramatic change surprised Van Eaton, who "previously thought about the role of ice as sort of an extra boost for lightning," she says. Instead, the presence or absence of ice was like a switch at Bogoslof, clicking the tendrils of light on and off.

The pair of analyses of Bogoslof and Anak Krakatau provide a detailed peek at the complex array of factors that must unite to stir a spark. As current methods improve, researchers will likely continue to tease out more details of volcanic lightning mechanics.

Van Eaton vividly recalls videos of the death-defying work at Surtsey in the 1960s: “We’re just now circling back with more modern tools and techniques to sort of show that, yeah, they got it right.”