Monday, April 17, 2023

Increasing use of asset building programs could lead to increase in wealth for low income families

Peer-Reviewed Publication

BOSTON MEDICAL CENTER

BOSTON – New research from Boston Medical Center found that increasing the use of underutilized asset building programs could be part of the solution to help build wealth for low income families. Published in Pediatrics, the study showed that a novel approach–incorporating wealth-building programs into healthcare–may make them more accessible to families in need.

Financial strain is a common problem in the United States and associated with many adult and child health problems, including life expectancy, gestational age at birth, birth weight, suicidality and depression, smoking, food insecurity, and child behavioral and developmental outcomes. In response to the well-documented connection between wealth and health, income maximization and asset building programs have emerged in healthcare (Medical Financial Partnerships) as potential solutions to address adverse social determinants of health, rooted in poverty. Incorporating financial interventions into routine clinical care may help address the negative health impacts of financial strain.

There are structural barriers to the uptake of these programs for families with low incomes, such as the “cliff effect,” which remains one of the largest barriers to asset building. Many benefits are income and asset limited – as income increases, benefits decrease or disappear, which can push families “over the cliff” and actually render them financially worse off after an incremental raise. Families living in subsidized housing, in which residents pay 30% of their income as rent, are at a particularly high risk for the cliff effect.

One tool to mitigate the cliff effect is Family Self-Sufficiency (FSS), an asset building program for residents in some types of federally subsidized housing. Created by the Department of Housing and Urban Development (HUD), FSS provides coordinator services, like financial coaching, and the opportunity to save the amount of their rent increase (when their income increases) in an escrow account. This money can be used towards their financial goals during the program and can be accessed without restriction once they finish the program.

FSS enrollees are more likely to be employed, have higher incomes than their peers by the end of the program, and leave with an average of $5,294 in savings. Though a potentially powerful tool to build wealth for families with low incomes, FSS is drastically underutilized with a national enrollment level of only 3%. Many families have not heard about this program or find government programs like FSS to be time consuming, confusing, and untrustworthy, especially given the historical disenfranchisement of Black and Latino communities and communities with low incomes.

“Knowing helpful programs exist but are so underutilized or mistrusted by the very families they are meant to help is unacceptable and must be addressed,” said senior author Lucy Marcil, MD, MPH, Associate Director for Economic Mobility in the Center for the Urban Child and Healthy Family and co-founder and Executive Director of StreetCred at Boston Medical Center and assistant professor of General Pediatrics at Boston University Chobanian & Avedisian School of Medicine. “For better or worse, wealth is intrinsically linked to the health and well-being of individuals, so it is vital we do what we can to educate and empower those who need these programs the most.”

To increase education and access to asset building opportunities, this study piloted the use of a trusted and frequented healthcare system to engage eligible families for FSS. Researchers tracked eligibility, interest, and enrollment rates and evaluated the pilots using an implementation science framework, in addition to reviewing feedback from staff who introduced the program to eligible families. 

More systematic and qualitative work is needed to amplify families’ voices and interrogate the root causes of low enrollment. Partnering with families to understand their lived experiences is an important next step to maximize enrollment. Some areas to consider for successful future implementation include: 1) timeline of outreach, 2) families’ relationships with individuals performing outreach, and 3) current bandwidth of the families. Systematic implementation trials are needed to study these outcomes in more detail. 

 

###

 

About Boston Medical Center

Boston Medical Center is a leading academic medical center with a deep commitment to health equity and a proud history of serving all who come to us for care. BMC provides high-quality healthcare and wrap around support that treats the whole person, extending beyond our physical campus into our vibrant and diverse communities. BMC is advancing medicine, while training the next generation of healthcare providers and researchers as the primary teaching affiliate of Boston University Chobanian & Avedisian School of Medicine. BMC is a founding member of Boston Medical Center Health System, which supports patients and health plan members through a value based, coordinated continuum of care.

Technology advance paves way to more realistic 3D holograms for virtual reality and more

Researchers overcome two bottlenecks in current digital holographic techniques

Peer-Reviewed Publication

OPTICA

High-density multi-plane projection illustration 

IMAGE: RESEARCHERS HAVE DEVELOPED A NEW WAY TO ACHIEVE DYNAMIC PROJECTION OF 3D OBJECTS ONTO ULTRAHIGH-DENSITY SUCCESSIVE PLANES. BY PACKING MORE DETAILS INTO A 3D IMAGE, THIS APPROACH COULD ENABLE REALISTIC REPRESENTATIONS FOR USE IN VIRTUAL REALITY AND OTHER APPLICATIONS. view more 

CREDIT: LEI GONG, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

WASHINGTON — Researchers have developed a new way to create dynamic ultrahigh-density 3D holographic projections. By packing more details into a 3D image, this type of hologram could enable realistic representations of the world around us for use in virtual reality and other applications.

“A 3D hologram can present real 3D scenes with continuous and fine features,” said Lei Gong, who led a research team from the University of Science and Technology of China. “For virtual reality, our method could be used with headset-based holographic displays to greatly improve the viewing angles, which would enhance the 3D viewing experience. It could also provide better 3D visuals without requiring a headset.”

Producing a realistic-looking holographic display of 3D objects requires projecting images with a high pixel resolution onto a large number of successive planes, or layers, that are spaced closely together. This achieves high depth resolution, which is important for providing the depth cues that make the hologram look three dimensional.

In OpticaOptica Publishing Group’s journal for high-impact research, Gong’s team and Chengwei Qiu’s research team at the National University of Singapore describe their new approach, called three-dimensional scattering-assisted dynamic holography (3D-SDH). They show that it can achieve a depth resolution more than three orders of magnitude greater than state-of-the-art methods for multiplane holographic projection.

“Our new method overcomes two long-existing bottlenecks in current digital holographic techniques — low axial resolution and high interplane crosstalk — that prevent fine depth control of the hologram and thus limit the quality of the 3D display,” said Gong. “Our approach could also improve holography-based optical encryption by allowing more data to be encrypted in the hologram.”

Producing more detailed holograms

Creating a dynamic holographic projection typically involves using a spatial light modulator (SLM) to modulate the intensity and/or phase of a light beam. However, today’s holograms are limited in terms of quality because current SLM technology allows only a few low-resolution images to be projected onto sperate planes with low depth resolution.

To overcome this problem, the researchers combined an SLM with a diffuser that enables multiple image planes to be separated by a much smaller amount without being constrained by the properties of the SLM. By also suppressing crosstalk between the planes and exploiting scattering of light and wavefront shaping, this setup enables ultrahigh-density 3D holographic projection.

To test the new method, the researchers first used simulations to show that it could produce 3D reconstructions with a much smaller depth interval between each plane. For example, they were able to project a 3D rocket model with 125 successive image planes at a depth interval of 0.96 mm in a single 1000×1000-pixel hologram, compared to 32 image planes with a depth interval of 3.75 mm using another recently developed approach known as random vector-based computer-generated holography.

To validate the concept experimentally, they built a prototype 3D-SDH projector to create dynamic 3D projections and compared this to a conventional state-of- the-art setup for 3D Fresnel computer-generated holography. They showed that 3D-SDH achieved an improvement in axial resolution of more than three orders of magnitude over the conventional counterpart.

The 3D holograms the researchers demonstrated are all point-cloud 3D images, meaning they cannot present the solid body of a 3D object. Ultimately, the researchers would like to be able to project a collection of 3D objects with a hologram, which would require a higher pixel-count hologram and new algorithms.

Paper: P. Yu, Y. Liu, Z. Wang, J. Liang, X. S. Liu, Y. Li, C. Qiu, L. Gong, “Ultrahigh-density 3D Holographic Projection by Scattering-assisted Dynamic Holography,” 10, 4 (2023).

DOI: 10.1364/OPTICA.483057.

About Optica

Optica is an open-access journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by Optica Publishing Group, the Journal provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 60 associate editors from around the world and is overseen by Editor-in-Chief Prem Kumar, Northwestern University, USA. For more information, visit Optica.

About Optica Publishing Group (formerly OSA)

Optica Publishing Group is a division of Optica, the society advancing optics and photonics worldwide. It publishes the largest collection of peer-reviewed content in optics and photonics, including 18 prestigious journals, the society’s flagship member magazine, and papers from more than 835 conferences, including 6,500+ associated videos. With over 400,000 journal articles, conference papers and videos to search, discover and access, Optica Publishing Group represents the full range of research in the field from around the globe.

New software marketplace expands licensing opportunities

Business Announcement

DOE/IDAHO NATIONAL LABORATORY

INL MALCOM software 

IMAGE: MALCOM IS ONE OF MANY SOFTWARE AVAILABLE THROUGH INL’S NEW SOFTWARE MARKETPLACE WEBSITE. view more 

CREDIT: IDAHO NATIONAL LABORATORY

Idaho National Laboratory’s software marketplace is officially open for business.   

The marketplace is a new website developed to widely distribute INL’s innovative software. Its goal: to accelerate industry adoption and fuel innovation in other research organizations. Ultimately, the marketplace is designed to help fulfill the lab’s vision to change the world’s energy future and secure our nation’s critical infrastructure.  

“At INL, technology transfer into the marketplace is important to our mission as it puts our innovations to use and makes actual impact in our community,” said INL Technology Deployment Director Jason Stolworthy. “The website gives us another outlet to distribute and license our software to achieve our mission.” 

The marketplace provides access to software codes and data sets developed at INL through various forms of licenses, including open-source and proprietary options. The site will expand as more software is developed and becomes available.  

View the site at inlsoftware.inl.gov. Questions about licensing or available software can be emailed to td@inl.gov.   

About Idaho National Laboratory
Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. INL is the nation’s center for nuclear energy research and development, and also performs research in each of DOE’s strategic goal areas: energy, national security, science and the environment. For more information, visit www.inl.gov. Follow us on social media: Twitter, Facebook, Instagram and LinkedIn.

INL’s Software Marketplace website provides access to a variety of software, like MARMOT, to fuel innovation.


MSU to refurbish world’s first superconducting cyclotron for chip testing

MSU’s decades-long tradition of heavy-ion accelerator expertise tapped to help meet current national shortfall of testing capacity for advanced microelectronics, including for space-based applications

Business Announcement

MICHIGAN STATE UNIVERSITY FACILITY FOR RARE ISOTOPE BEAMS

MSU/FRIB chip-testing image 1 

IMAGE: MICHIGAN STATE UNIVERSITY WILL ESTABLISH AT THE FACILITY FOR RARE ISOTOPE BEAMS A NEW CHIP-TESTING FACILITY FOR NEXT-GENERATION SEMICONDUCTOR DEVICES, SUPPORTED BY THE DEPARTMENT OF DEFENSE THROUGH A $14.2 MILLION CONTRACT AWARDED BY THE MISSILE DEFENSE AGENCY WITH FUNDING FROM THE TEST RESOURCE MANAGEMENT CENTER. view more 

CREDIT: FACILITY FOR RARE ISOTOPE BEAMS

Michigan State University (MSU) will build on its 60-year track record in accelerator-based nuclear physics leadership by refurbishing the history-making K500 cyclotron and installing it as the heart of a new chip-testing facility for next-generation semiconductor devices. The facility establishment, supported by a $14.2 million contract funded by the U.S. Department of Defense Test Resource Management Center (TRMC) and awarded through the U.S. Department of Defense Missile Defense Agency (MDA), will be based at the Facility for Rare Isotope Beams (FRIB). The facility will help meet the current national shortfall of testing capacity for advanced microelectronics, including those used for commercial spaceflight, 5/6G wireless technology and autonomous vehicles.

The new East Lansing facility will be what amounts to the third act for the K500, which burst onto the nuclear science scene 40 years ago, making history as the world’s first superconducting cyclotron.             

“This new FRIB-adjacent facility at MSU will provide the United States several thousand additional hours of capacity for chip testing annually,” said MSU Interim President Teresa K. Woodruff, Ph.D. “We are ready to leverage a six-decade-long investment by the National Science Foundation in basic nuclear science at MSU for a new purpose that is so central to this critical industry, to U.S. competitiveness, and to national security.”

Among the most immediate goals is the testing of electronic components for use in space, where levels of ionizing radiation are much higher than at the Earth’s surface and where devices must operate for years or even decades with little if any maintenance. The MSU proposal for funding was in direct response to the 2018 National Academies report, “Testing at the Speed of Light,” which outlined a critical national shortfall of testing capacity of space-bound electronic components.

New chapter, same story

The K500’s newest chapter – one relevant to daily headlines that cut across the domains of geopolitics, business and technology – is set to continue a long MSU story of fueling disruptive innovation to create novel physics hardware, which is then leveraged to create sustained and broad-based benefits to support the nation. Perhaps the most prominent example of this pattern: a near copy of the K500 operates today at Texas A&M University where it’s used for nuclear physics research.

“MSU has been purposeful in leveraging its accelerator assets for new applications over the course of its nearly 60-year history in accelerator-based nuclear science leadership,” explained Thomas Glasmacher, FRIB Laboratory director. “This award enables us to continue that tradition at FRIB while delivering on our mission of addressing societal problems by providing this additional resource to advance current U.S. interests.”

The K500’s first act ushered in the superconducting cyclotron era for research with heavy ions. It was built on a shoestring budget, as is typical for the one-of-a-kind nature of devices in accelerator physics, and was often quite unreliable in its early days. Act two followed a hiatus and refurbishment in the late 1990s for coupling with the more powerful K1200 cyclotron. Initially approved by the NSF in 1996, the Coupled Cyclotron Facility (CCF) began operations in 2001 and was used more or less continually until November 2020. It enabled research with fast rare isotope beams at the National Superconducting Cyclotron Laboratory (NSCL), supported by the NSF. Among other things, the lab was known for its efficiency and uptime, eventually surpassing 90 percent, which is noteworthy given the complexity of the equipment.

This track record loomed large in MSU’s successful bid for FRIB, which the FRIB Project team built ahead of schedule and on budget. FRIB experiments are underway using what will be the world’s most powerful heavy-ion linear accelerator (linac).

The new linac might have finally spelled the end of the lower energy K500. However, in a pattern that has recurred in the history of innovation, the older technology instead has found new and, given the more than $500 billion semiconductor market and strategic importance of the chip industry, perhaps even wider relevance.

“The laboratory has always had an emphasis on building instruments that advanced the options available for solving basic and applied research problems in nuclear science,” said Andreas Stolz, MSU professor and FRIB rare isotope operations department manager. "We are excited to apply our operational expertise and the K500 cyclotron to a new purpose, especially one so relevant to the national interest.” Stolz is the principal investigator on the MDA contract.

Creating an ‘unparalleled ecosystem’

The new facility will complement a host of related work and initiatives at MSU and furthers university leadership in nuclear science, microelectronics and semiconductors. FRIB’s Single Event Effects (FSEE) facility is already operational, offering a menu of beams and ion cocktails for use in research. Another example: MSU’s new Space Electronics Center, a collaboration with Texas Instruments, was announced this fall and leverages FRIB to provide a range of services to industry, including research projects, workforce development, technical workshops and forums for small corporate delegations to have a presence on MSU’s campus. MSU’s nuclear physics graduate program has been ranked No. 1 since 2010 by U.S. News and World Report.

“MSU, FRIB and the College of Engineering, through the Space Electronics Center, are creating an unparalleled ecosystem that will include strong industry and government participation to advance the state-of-the-art in radiation-hardened components and space electronics, and above all, to develop the necessary talent that will support this technology discipline for years to come and solidify the U.S. position as a leader in this field,” said John Papapolymerou, MSU Research Foundation Professor and chair of the MSU Electrical and Computer Engineering Department.

Use of the new MSU facility will extend far beyond defense and aerospace applications since today more than ever, the semiconductor industry is marked by the creation of ever smaller, denser and more complex custom circuitry. Following the broad outlines of Moore’s Law, the industry has delivered a steady march of faster, cheaper and more power-efficient computing technologies for decades. Advanced semiconductor devices, with nanometer-scale features and often purpose-built with stacked interconnected chips to further increase capability, are increasingly susceptible to ionizing radiation.

Usually such effects – bit-flips of memory elements in a chip – don’t permanently damage the device. However, there are examples of real-world problems, from the trivial (impacting the outcome of a 2013 Super Mario game contest) to the more serious (causing injuries on a 2008 Qantas flight, which plunged downward when the onboard computer malfunctioned.) Risks only increase as more of daily life becomes dependent on applications ultimately mediated by computer hardware and software.

“Space electronics applications can act as a catalyst to attract a brand-new generation of engineers and scientists needed to fill the more than 50,000 positions in the general area of semiconductors over the next five years or so, said Papapolymerou. “MSU will play a central and pivotal role in this talent pipeline development.”

Experts, experience will guide the next transition

FRIB will draw on a deep well of institutional and operational expertise to transition the K500 cyclotron into its third act.

"Downtime to tune the equipment or fix problems is expensive, not only in dollars but also in lost opportunities for discovery and education, so we've long been incentivized to be efficient and meet the needs of our experimenters," says Sam Austin, University Distinguished Professor Emeritus in nuclear physics and former NSCL Director. "We're proud of our culture and approach, which is to do what it takes to make our users successful.”

NSF investment in accelerator-related research at MSU dates back to 1961 and resulted in many important advances in basic and applied rare isotope research, many of which are outlined in Austin’s 2016 book “Up from Nothing.” These advances include dozens of examples of experimental apparatus and techniques, from spectrographs to superconducting solenoids to stopping fast beams.        

“This is really about the value of sustained vision and concomitant actions over decades,” said Glasmacher. “Part of building resiliency in U.S. science and technology, whether in nuclear science or semiconductors, is not to forget work that’s come before, but rather to leverage assets for future discoveries.” 


Michigan State University will establish at the Facility for Rare Isotope Beams a new chip-testing facility for next-generation semiconductor devices, supported by the Department of Defense through a $14.2 million contract awarded by the Missile Defense Agency with funding from the Test Resource Management Center.

The new facility will increase by thousands of hours annually the nation’s chip-testing capacity for next-generation semiconductor devices, including those used in applications such as commercial spaceflight, 5/6G wireless technology and autonomous vehicles.

Michigan State University has been advancing the common good with uncommon will for more than 165 years. One of the world's leading research universities, MSU pushes the boundaries of discovery to make a better, safer, healthier world for all while providing life-changing opportunities to a diverse and inclusive academic community through more than 400 programs of study in 17 degree-granting colleges.

SPYWARE

AI-equipped eyeglasses read silent speech

Reports and Proceedings

CORNELL UNIVERSITY

ITHACA, N.Y. – Cornell University researchers have developed a silent-speech recognition interface that uses acoustic-sensing and artificial intelligence to continuously recognize up to 31 unvocalized commands, based on lip and mouth movements.

The low-power, wearable interface – called EchoSpeech – requires just a few minutes of user training data before it will recognize commands and can be run on a smartphone.

Ruidong Zhang, doctoral student of information science, is the lead author of “EchoSpeech: Continuous Silent Speech Recognition on Minimally-obtrusive Eyewear Powered by Acoustic Sensing,” which will be presented at the Association for Computing Machinery Conference on Human Factors in Computing Systems (CHI) this month in Hamburg, Germany.

“For people who cannot vocalize sound, this silent speech technology could be an excellent input for a voice synthesizer. It could give patients their voices back,” Zhang said of the technology’s potential use with further development.

In its present form, EchoSpeech could be used to communicate with others via smartphone in places where speech is inconvenient or inappropriate, like a noisy restaurant or quiet library. The silent speech interface can also be paired with a stylus and used with design software like CAD, all but eliminating the need for a keyboard and a mouse.

Outfitted with a pair of microphones and speakers smaller than pencil erasers, the EchoSpeech glasses become a wearable AI-powered sonar system, sending and receiving soundwaves across the face and sensing mouth movements. A deep learning algorithm then analyzes these echo profiles in real time, with about 95% accuracy.

“We’re moving sonar onto the body,” said Cheng Zhang, assistant professor of information science and director of Cornell’s Smart Computer Interfaces for Future Interactions (SciFi) Lab.

“We’re very excited about this system,” he said, “because it really pushes the field forward on performance and privacy. It’s small, low-power and privacy-sensitive, which are all important features for deploying new, wearable technologies in the real world.”

Most technology in silent-speech recognition is limited to a select set of predetermined commands and requires the user to face or wear a camera, which is neither practical nor feasible, Cheng Zhang said. There also are major privacy concerns involving wearable cameras – for both the user and those with whom the user interacts, he said.

Acoustic-sensing technology like EchoSpeech removes the need for wearable video cameras. And because audio data is much smaller than image or video data, it requires less bandwidth to process and can be relayed to a smartphone via Bluetooth in real time, said François Guimbretière, professor in information science.

“And because the data is processed locally on your smartphone instead of uploaded to the cloud,” he said, “privacy-sensitive information never leaves your control.”

For additional information, see this Cornell Chronicle story.

Media note: Pictures of EchoSpeech can be viewed and downloaded here: https://cornell.box.com/v/EchoSpeechGlasses. A video can be found here: https://youtu.be/ZjucAwFqVqQ.

-30-

Researchers create embryo-like structures from monkey embryonic stem cells for the first time


Peer-Reviewed Publication

CELL PRESS

Cynomolgus monkey embryo model captures gastrulation and early pregnancy 

IMAGE: CYNOMOLGUS MONKEY EMBRYO MODEL CAPTURES GASTRULATION AND EARLY PREGNANCY view more 

CREDIT: CELL STEM CELL/LI ET AL.

Human embryo development and early organ formation remain largely unexplored due to ethical issues surrounding the use of embryos for research as well as limited availability of materials to study. In a paper published April 6 in the journal Cell Stem Cell, a team of investigators from China report for the first time the creation of embryo-like structures from monkey embryonic stem cells. The investigators also transferred these embryo-like structures into the uteruses of female monkeys and determined that the structures were able to implant and elicit a hormonal response similar to pregnancy.

“The molecular mechanisms of human embryogenesis and organogenesis are largely unclear,” says co-corresponding author Zhen Liu of the Chinese Academy of Sciences (CAS) in Shanghai. “Because monkeys are closely related to humans evolutionarily, we hope the study of these models will deepen our understanding of human embryonic development, including shedding light on some of the causes of early miscarriages.”

“This research has created an embryo-like system that can be induced and cultured indefinitely,” says co-corresponding author Qiang Sun, also of CAS. “It provides new tools and perspectives for the subsequent exploration of primate embryos and reproductive medical health.”

The investigators started with macaque embryonic stem cells, which they exposed to a number of growth factors in cell culture. These factors induced the stem cells to form embryo-like structures for the first time using non-human primate cells.

When studied under a microscope, the embryo-like structures, also called blastoids, were found to have similar morphology to natural blastocysts. As they further developed in vitro, they formed arrangements that looked like the amnion and yolk sac. The blastoids also started to form the types of cells that eventually make up the three germ layers of the body. Single-cell RNA sequencing revealed that the different types of cells found within the structures had similar gene expression patterns to cells found in natural blastocysts or post-implantation embryos.

The blastoids were then transferred into the uteruses of 8 female monkeys; in 3 of the 8, the structures implanted. This implantation resulted in the release of progesterone and chorionic gonadotropin, hormones normally associated with pregnancy. The blastoids also formed early gestation sacs, fluid-filled structures that develop early in pregnancy to enclose an embryo and amniotic fluid. However, they did not form fetuses and the structures disappeared after about a week.

In future work, the investigators plan to focus on further developing the system of culturing embryo-like structures from monkey cells. “This will provide us with a useful model for future study,” says co-corresponding author Fan Zhou of Tsinghua University. “Further application of monkey blastoids can help to dissect the molecular mechanisms of primate embryonic development.”

The researchers acknowledge the ethical concerns surrounding this type of research but emphasize that there are still many differences between these embryo-like structures and natural blastocysts. Importantly, the embryo-like structures do not have full developmental potential. They note that for this field to advance it’s important to have discussions between the scientific community and the public.

###

This work was supported the National Key Research and Development Program of China, Shanghai Municipal Science and Technology Major Project, the Strategic Priority Research Program of the Chinese Academy of Sciences, the Basic Frontier Scientific Research Program of CAS, the Haihe Laboratory of Cell Ecosystem Innovation Fund, Tsinghua-Peking Center for Life Sciences, the Startup Fund, and the Dushi Special Fund at School of Life Sciences, Tsinghua University.

Cell Stem Cell, Liu et al. “Cynomolgus monkey embryo model captures gastrulation and early pregnancy” https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(23)00080-2

Cell Stem Cell (@CellStemCell), published by Cell Press, is a monthly journal that publishes research reports describing novel results of unusual significance in all areas of stem cell research. Each issue also contains a wide variety of review and analysis articles covering topics relevant to stem cell research ranging from basic biological advances to ethical, policy, and funding issues. Visit: http://www.cell.com/cell-stem-cell. To receive Cell Press media alerts, contact press@cell.com.