Showing posts sorted by date for query NORTHERN GATEWAY. Sort by relevance Show all posts
Showing posts sorted by date for query NORTHERN GATEWAY. Sort by relevance Show all posts

Sunday, April 21, 2024

The Trans Mountain saga is nearing its end — the larger debate will go on
CBC
Sat, April 20, 2024

Protesters outside an event Prime Minister Justin Trudeau is attending in Calgary, Alta., Thursday, Nov. 22, 2018. (Jeff McIntosh/The Canadian Press - image credit)

In November 2018, Prime Minister Justin Trudeau went to Calgary to speak to the chamber of commerce. A crowd gathered outside the venue and chanted, "Build that pipe."

Trudeau might have responded that he was trying to do just that — at least in regards to one pipeline. Trudeau's government had actually purchased the Trans Mountain pipeline six months earlier, with the stated purpose of ensuring its expansion could be completed.

Five and a half years later, Finance Minister Chrystia Freeland used her budget speech to celebrate the fact that the Trans Mountain expansion is nearing completion — an achievement she held out as evidence of what an "activist" federal government can accomplish.


Rising to respond a few minutes later, Conservative Leader Pierre Poilievre begged to differ. The lesson, he said, was the opposite — if the government had just gotten out of the way, a private company would have built the pipeline.

The pipeline is almost complete. The debate, obviously, is far from over.

Freeland's framing is a stretch. The federal government didn't set out to buy a pipeline — it was just willing to do so when that seemed to be the last remaining option.

But when Poilievre says the government should have gotten out of the way, he's aiming at the wrong government. It was the efforts — however futile — of British Columbia's provincial government to stymie the project that led to Kinder Morgan's decision to walk away.

And though it was suggested at the time that the federal government should have somehow compelled or cajoled the NDP government in B.C. to get out of the way, it's worth remembering that the New Democrats were dependent on a confidence-and-supply agreement with Green MLAs that committed the provincial government to using "every tool available" to block the project.

Ultimately, it was federal ownership that rendered all such tools moot.

Why an 'anti-oil' prime minister built a pipeline

On the day oil begins to flow through the new pipeline, it will finally answer the doubts raised by Poilievre's predecessor in 2019 when the Trudeau government gave the project its final approval.

"I don't believe he actually wants it built," Andrew Scheer said of the prime minister.

It takes some imagination to believe Trudeau would agree to purchase a pipeline for $4.5 billion in public funds — inviting no end of criticism from progressive rivals and environmentalists — without intending to see the expansion completed.

But you can easily understand the cognitive dissonance some were experiencing at the time. This was, after all, the prime minister described by Conservatives as the most "anti-oil" leader in Canadian history.

(Nine years into Trudeau's time as prime minister, Canada's oil production is at record highs.)


Scott McBride, of Nanaimo, B.C., holds a caricature of Prime Minister Justin Trudeau during a protest against the Trans Mountain pipeline expansion in Burnaby, B.C., on Saturday, March 10, 2018. (Darryl Dyck/Canadian Press)

Indigenous leaders are calling on people to raise their voices Saturday to stop a $7.4 billion pipeline expansion project that pumps oil from Canada's tar sands to the Pacific Coast. The Trans Mountain pipeline expansion by the Canadian division of Texas-based Kinder Morgan would nearly triple the flow of oil from Alberta's tar sands to the Vancouver area and dramatically increase the number of oil tankers travelling the shared waters between Canada and Washington state.

To fully understand how the Trudeau government ended up buying a pipeline, it might be necessary to review decades of inaction by countless governments against the threat of climate change and their slight efforts to reconcile meaningfully with Indigenous peoples. By the time Trudeau came to office, pipelines had taken on a symbolic value well beyond the practical.

But when Trudeau went to Calgary's Petroleum Club in 2013, he embraced two clear positions. A price on carbon emissions needed to be part of a plan to responsibly develop Canada's resources, he said, but getting Canadian resources to new markets was in the national interest and something for which the federal government should be held responsible.

(He also said that while governments can issue permits, "only communities can grant permission" — a simplistic slogan that did not survive contact with the reality Trudeau faced in 2018.)

There was a straightforward economic argument for building a new pipeline. If more Canadian oil could get to "tidewater," Canadian producers would be less dependent on the American market and would be able to charge a higher price. And by 2019 — after the government had let Northern Gateway die and Energy East had been abandoned — the Trans Mountain expansion was the only pipeline proposal left standing.

Bedford Consulting Group is already projecting that CEO pay will tick higher in 2024. The Trans Mountain expansion project, shown here under construction in Abbotsford, B.C., in May 2023, is expected to add over half a million barrels per day of Canadian oil export capacity. The Trans Mountain expansion project under construction in Abbotsford, B.C., in May 2023. (Darryl Dyck/The Canadian Press)

But there may also have been a question of national unity. Albertans and their government might not be big fans of the federal government right now. It's fair to ask how much more negative the political climate might be if all efforts to build a pipeline out of the province had been thwarted.

The federal government might not recoup all of its investment when it eventually sells the newly expanded pipeline, but it's hard to put a price on holding a country together.

Politically, the purchase of the pipeline obviously didn't lead to great Liberal gains in Alberta. It also didn't save Rachel Notley's NDP government. And it may have hurt the Liberal Party with progressive voters in other provinces. But the purchase didn't lead to the sort of electoral wipeout in B.C. that Liberals might have feared at the time.

The pipeline's nearly done. Now what?

As Freeland noted in her budget speech, the Bank of Canada now expects that the start of operations for the expansion will have a measurable impact on Canada's national GDP. The Liberal government has estimated the project will generate $500 million in corporate tax revenues. (The government has pledged that all profits will be directed toward clean energy.)

At the same time, the Liberals surely will be criticized if the pipeline is sold at a loss. And they risk taking the heat for any spills or accidents that follow in the years ahead.

While his critics insisted that "climate leaders don't build pipelines" — another simplistic slogan — Trudeau positioned the project within the larger cause of transitioning to a clean economy.

"To those who want sustainable energy and a cleaner environment, know that I want that too. But in order to bridge the gap between where we are and where we're going, we need money to pay for it," he said in 2019. "It is in Canada's national interest to protect our environment and invest in tomorrow while making sure that people can feed their families today."

A prominent Alberta-based environmentalist said oil executives told him building the pipeline would better position them financially to make emissions-reducing investments.

In 2021 — the most recent year for which official data is available — Canada's oil and gas sector accounted for 189 megatonnes of greenhouse gas emissions, 28 per cent of the national total. The sector's emissions are expected to have risen in 2022. And if, a decade from now, the sector's emissions continue to rise and Canada has missed its emissions targets, Trans Mountain might be framed, fairly or not, as part of a larger failure.

But since buying Trans Mountain, the Trudeau government has proposed new rules to reduce methane emissions for the industry and a cap on total emissions from the sector. The Liberals have also pledged billions of dollars toward subsidizing the development and use of carbon capture technology.

If nothing else, the flow of oil through the newly expanded pipeline might only strengthen the case for getting on with the work of reducing the oil industry's emissions.

Sunday, April 14, 2024

 SPACE

Brightest gamma-ray burst of all time came from the collapse of a massive star


James Webb Space Telescope observations show no sign of heavy elements


Peer-Reviewed Publication

NORTHWESTERN UNIVERSITY

Visualization of GRB 221009A 

IMAGE: 

ARTIST'S VISUALIZATION OF GRB 221009A SHOWING THE NARROW RELATIVISTIC JETS — EMERGING FROM A CENTRAL BLACK HOLE — THAT GAVE RISE TO THE GRB AND THE EXPANDING REMAINS OF THE ORIGINAL STAR EJECTED VIA THE SUPERNOVA EXPLOSION. USING THE JAMES WEBB SPACE TELESCOPE, NORTHWESTERN UNIVERSITY POSTDOCTORAL FELLOW PETER BLANCHARD AND HIS TEAM DETECTED THE SUPERNOVA FOR THE FIRST TIME, CONFIRMING GRB 221009A WAS THE RESULT OF THE COLLAPSE OF A MASSIVE STAR. THE STUDY’S CO-AUTHORS ALSO FOUND THAT THE EVENT OCCURRED IN A DENSE STAR FORMING REGION OF ITS HOST GALAXY AS DEPICTED BY THE BACKGROUND NEBULA.

view more 

CREDIT: AARON M. GELLER / NORTHWESTERN / CIERA / IT RESEARCH COMPUTING AND DATA SERVICES




In October 2022, an international team of researchers, including Northwestern University astrophysicists, observed the brightest gamma-ray burst (GRB) ever recorded, GRB 221009A.

Now, a Northwestern-led team has confirmed that the phenomenon responsible for the historic burst — dubbed the B.O.A.T. (“brightest of all time”) — is the collapse and subsequent explosion of a massive star. The team discovered the explosion, or supernova, using NASA’s James Webb Space Telescope (JWST). 

While this discovery solves one mystery, another mystery deepens. 

The researchers speculated that evidence of heavy elements, such as platinum and gold, might reside within the newly uncovered supernova. The extensive search, however, did not find the signature that accompanies such elements. The origin of heavy elements in the universe continues to remain as one of astronomy’s biggest open questions.

The research will be published on Friday (April 12) in the journal Nature Astronomy.

“When we confirmed that the GRB was generated by the collapse of a massive star, that gave us the opportunity to test a hypothesis for how some of the heaviest elements in the universe are formed,” said Northwestern’s Peter Blanchard, who led the study. “We did not see signatures of these heavy elements, suggesting that extremely energetic GRBs like the B.O.A.T. do not produce these elements. That doesn’t mean that all GRBs do not produce them, but it’s a key piece of information as we continue to understand where these heavy elements come from. Future observations with JWST will determine if the B.O.A.T.’s ‘normal’ cousins produce these elements.”

Blanchard is a postdoctoral fellow at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), where he studies superluminous supernovae and GRBs. The study includes co-authors from the Center for Astrophysics | Harvard & Smithsonian; University of Utah; Penn State; University of California, Berkeley; Radbound University in the Netherlands; Space Telescope Science Institute; University of Arizona/Steward Observatory; University of California, Santa Barbara; Columbia University; Flatiron Institute; University of Greifswald and the University of Guelph.

Birth of the B.O.A.T.

When its light washed over Earth on Oct. 9, 2022, the B.O.A.T. was so bright that it saturated most of the world’s gamma-ray detectors. The powerful explosion occurred approximately 2.4 billion light-years away from Earth, in the direction of the constellation Sagitta and lasted a few hundred seconds in duration. As astronomers scrambled to observe the origin of this incredibly bright phenomenon, they were immediately hit with a sense of awe.

“As long as we have been able to detect GRBs, there is no question that this GRB is the brightest we have ever witnessed by a factor of 10 or more,” Wen-fai Fong, an associate professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences and member of CIERA, said at the time.

“The event produced some of the highest-energy photons ever recorded by satellites designed to detect gamma rays,” Blanchard said. “This was an event that Earth sees only once every 10,000 years. We are fortunate to live in a time when we have the technology to detect these bursts happening across the universe. It’s so exciting to observe such a rare astronomical phenomenon as the B.O.A.T. and work to understand the physics behind this exceptional event.”

A ‘normal’ supernova

Rather than observe the event immediately, Blanchard, his close collaborator Ashley Villar of Harvard University and their team wanted to view the GRB during its later phases. About six months after the GRB was initially detected, Blanchard used the JWST to examine its aftermath.

“The GRB was so bright that it obscured any potential supernova signature in the first weeks and months after the burst,” Blanchard said. “At these times, the so-called afterglow of the GRB was like the headlights of a car coming straight at you, preventing you from seeing the car itself. So, we had to wait for it to fade significantly to give us a chance of seeing the supernova.”

Blanchard used the JWST’s Near Infrared Spectrograph to observe the object’s light at infrared wavelengths. That’s when he saw the characteristic signature of elements like calcium and oxygen typically found within a supernova. Surprisingly, it wasn’t exceptionally bright — like the incredibly bright GRB that it accompanied.

“It’s not any brighter than previous supernovae,” Blanchard said. “It looks fairly normal in the context of other supernovae associated with less energetic GRBs. You might expect that the same collapsing star producing a very energetic and bright GRB would also produce a very energetic and bright supernova. But it turns out that's not the case. We have this extremely luminous GRB, but a normal supernova.”

Missing: Heavy elements

After confirming — for the first time — the presence of the supernova, Blanchard and his collaborators then searched for evidence of heavy elements within it. Currently, astrophysicists have an incomplete picture of all the mechanisms in the universe that can produce elements heavier than iron.

The primary mechanism for producing heavy elements, the rapid neutron capture process, requires a high concentration of neutrons. So far, astrophysicists have only confirmed the production of heavy elements via this process in the merger of two neutron stars, a collision detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2017. But scientists say there must be other ways to produce these elusive materials. There are simply too many heavy elements in the universe and too few neutron-star mergers.

“There is likely another source,” Blanchard said. “It takes a very long time for binary neutron stars to merge. Two stars in a binary system first have to explode to leave behind neutron stars. Then, it can take billions and billions of years for the two neutron stars to slowly get closer and closer and finally merge. But observations of very old stars indicate that parts of the universe were enriched with heavy metals before most binary neutron stars would have had time to merge. That’s pointing us to an alternative channel.”

Astrophysicists have hypothesized that heavy elements also might be produced by the collapse of a rapidly spinning, massive star — the exact type of star that generated the B.O.A.T. Using the infrared spectrum obtained by the JWST, Blanchard studied the inner layers of the supernova, where the heavy elements should be formed.  

“The exploded material of the star is opaque at early times, so you can only see the outer layers,” Blanchard said. “But once it expands and cools, it becomes transparent. Then you can see the photons coming from the inner layer of the supernova.”

“Moreover, different elements absorb and emit photons at different wavelengths, depending on their atomic structure, giving each element a unique spectral signature,” Blanchard explained. “Therefore, looking at an object’s spectrum can tell us what elements are present. Upon examining the B.O.A.T.’s spectrum, we did not see any signature of heavy elements, suggesting extreme events like GRB 221009A are not primary sources. This is crucial information as we continue to try to pin down where the heaviest elements are formed.”

Why so bright?

To tease apart the light of the supernova from that of the bright afterglow that came before it, the researchers paired the JWST data with observations from the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile. 

“Even several months after the burst was discovered, the afterglow was bright enough to contribute a lot of light in the JWST spectra,” said Tanmoy Laskar, an assistant professor of physics and astronomy at the University of Utah and a co-author on the study. “Combining data from the two telescopes helped us measure exactly how bright the afterglow was at the time of our JWST observations and allow us to carefully extract the spectrum of the supernova.”

Although astrophysicists have yet to uncover how a “normal” supernova and a record-breaking GRB were produced by the same collapsed star, Laskar said it might be related to the shape and structure of the relativistic jets. When rapidly spinning, massive stars collapse into black holes, they produce jets of material that launch at rates close to the speed of light. If these jets are narrow, they produce a more focused — and brighter — beam of light.

“It’s like focusing a flashlight’s beam into a narrow column, as opposed to a broad beam that washes across a whole wall,” Laskar said. “In fact, this was one of the narrowest jets seen for a gamma-ray burst so far, which gives us a hint as to why the afterglow appeared as bright as it did. There may be other factors responsible as well, a question that researchers will be studying for years to come.”

Additional clues also may come from future studies of the galaxy in which the B.O.A.T. occurred. “In addition to a spectrum of the B.O.A.T. itself, we also obtained a spectrum of its ‘host’ galaxy,” Blanchard said. “The spectrum shows signs of intense star formation, hinting that the birth environment of the original star may be different than previous events.”  

Team member Yijia Li, a graduate student at Penn State, modeled the spectrum of the galaxy, finding that the B.O.A.T.’s host galaxy has the lowest metallicity, a measure of the abundance of elements heavier than hydrogen and helium, of all previous GRB host galaxies. “This is another unique aspect of the B.O.A.T. that may help explain its properties,” Li said. 

The study, “JWST detection of a supernova associated with GRB 221009A without an r-process signature,” was supported by NASA (award number JWST-GO-2784) and the National Science Foundation (award numbers AST-2108676 and AST-2002577). This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope.

Twinkle twinkle baby star, 'sneezes' tell us how you are


Researchers find that baby stars discharge plumes of magnetic flux during formation



KYUSHU UNIVERSITY

Illustration of the 'sneeze' of magnetic flux from a baby star 

IMAGE: 

THE BABY STAR AT THE CENTER SURROUNDED BY A BRIGHT DISK CALLED A PROTOSTELLAR DISK. SPIKES OF MAGNETIC FLUX, GAS, AND DUST IN BLUE. RESEARCHERS FOUND THAT THE PROTOSTELLAR DISK WILL EXPEL MAGNETIC FLUX, GAS, AND DUST—MUCH LIKE A SNEEZE—DURING A STAR'S FORMATION.

view more 

CREDIT: ALMA (ESO/NAOJ/NRAO)




Fukuoka, Japan—Kyushu University researchers have shed new light into a critical question on how baby stars develop. Using the ALMA radio telescope in Chile, the team found that in its infancy, the protostellar disk that surrounds a baby star discharges plumes of dust, gas, and electromagnetic energy. These 'sneezes,' as the researchers describe them, release the magnetic flux within the protostellar disk, and may be a vital part of star formation. Their findings were published in The Astrophysical Journal.

Stars, including our Sun, all develop from what are called stellar nurseries, large concentrations of gas and dust that eventually condense to form a stellar core, a baby star. During this process, gas and dust form a ring around the baby star called the protostellar disk.

"These structures are perpetually penetrated by magnetic fields, which brings with it magnetic flux. However, if all this magnetic flux were retained as the star developed, it would generate magnetic fields many orders of magnitude stronger than those observed in any known protostar," explains Kazuki Tokuda of Kyushu University's Faculty of Sciences and first author of the study.

For this reason, researchers have hypothesized that there is a mechanism during star development that would remove that magnetic flux. The prevailing view was that the magnetic field gradually weakened over time as the cloud is pulled into the stellar core.

To get to the bottom of this mysterious phenomenon, the team set their sights on MC 27, a stellar nursery located approximately 450 light-years from earth. Observations were collected using the ALMA array, a collection of 66 high-precision radio telescope constructed 5,000 meters above seas level in northern Chile.

"As we analyzed our data, we found something quite unexpected. There were these 'spike-like' structures extending a few astronomical units from the protostellar disk. As we dug in deeper, we found that these were spikes of expelled magnetic flux, dust, and gas," continues Tokuda.

"This is a phenomenon called 'interchange instability' where instabilities in the magnetic field react with the different densities of the gases in the protostellar disk, resulting in an outward expelling of magnetic flux. We dubbed this a baby star's 'sneeze' as it reminded us of when we expel dust and air at high speeds."

Additionally, other spikes were observed several thousands of astronomical units away from the protostellar disk. The team hypothesized that these were indications of other 'sneezes' in the past.

The team expects their findings will improve our understanding of the intricate processes that shape the universe that continue to captivate the interest of both the astronomical community and the public.

"Similar spike-like structures have been observed in other young stars, and it's becoming a more common astronomical discovery," concludes Tokuda. "By investigating the conditions that lead to these 'sneezes' we hope to expand our understanding of how stars and planets are formed."

###

For more information about this research, see "Discovery of Asymmetric Spike-like Structures of the 10 au Disk around the Very Low-luminosity Protostar Embedded in the Taurus Dense Core MC 27/L1521F with ALMA," Kazuki Tokuda, Naoto Harada, Mitsuki Omura, Tomoaki Matsumoto, Toshikazu Onishi, Kazuya Saigo, Ayumu Shoshi, Shingo Nozaki, Kengo Tachihara, Naofumi Fukaya, Yasuo Fukui, Shu-ichiro Inutsuka, and Masahiro N. Machida The Astrophysical Journal https://doi.org/10.3847/1538-4357/ad2f9a

About Kyushu University 
Founded in 1911, Kyushu University is one of Japan's leading research-oriented institutes of higher education, consistently ranking as one of the top ten Japanese universities in the Times Higher Education World University Rankings and the QS World Rankings. The university is one of the seven national universities in Japan, located in Fukuoka, on the island of Kyushu—the most southwestern of Japan’s four main islands with a population and land size slightly larger than Belgium. Kyushu U’s multiple campuses—home to around 19,000 students and 8000 faculty and staff—are located around Fukuoka City, a coastal metropolis that is frequently ranked among the world's most livable cities and historically known as Japan's gateway to Asia. Through its VISION 2030, Kyushu U will “drive social change with integrative knowledge.” By fusing the spectrum of knowledge, from the humanities and arts to engineering and medical sciences, Kyushu U will strengthen its research in the key areas of decarbonization, medicine and health, and environment and food, to tackle society’s most pressing issues.