Showing posts sorted by relevance for query CCS. Sort by date Show all posts
Showing posts sorted by relevance for query CCS. Sort by date Show all posts

Wednesday, April 21, 2021



The role of hydrogen in our low-carbon transition

Hydrogen fuel has long been hailed as the silver bullet that will free us from fossil fuels, but it's time for a reality check on its production and use in a low-carbon economy .

Mike Childs 
FRIENDS OF THE EARTH
21 Apr 20

Summary
Introduction
The environmental impacts of hydrogen production
Low-carbon hydrogen production
Prioritise using hydrogen when there are no practicable alternatives
Rapid decarbonisation requires a lot more hydrogen
Scale of renewable energy required
ANNEX


View as PDF

Summary

Hydrogen is being hyped as an easy way to provide low-carbon energy for heating, transportation and industry. But as this briefing shows, while hydrogen will be an important component of the low-carbon transition, its production will necessarily be limited over the next decade and it should be prioritised for uses where there’s no low-carbon alternative, such as industry. In other sectors, such as heating, alternative approaches will be needed.
Introduction

The UK has a legal obligation to achieve net-zero greenhouse gas emissions by 2050 at the latest, although Friends of the Earth and others are calling for this target to be achieved earlier. Regardless of the end date, it is cumulative emissions that matter in the fight against climate breakdown, which is why the UK’s Climate Change Act has interim targets in the form of 5-year carbon budgets.

The current fifth carbon budget mandates a 57% reduction in greenhouse gas emissions by 2030 but will need adjusting because of the new net-zero target. The Committee on Climate Change (CCC) will make recommendations in December 2020 for the scale of cuts required by 2030 (the mid-point of the fifth carbon budget), as well as making recommendations for 2035 (the sixth carbon budget).

The role of hydrogen in meeting the reduction targets is increasingly being discussed.

For example:
The National Infrastructure Commission (NIC) recently published a report1 stating that the cheapest route to zero-carbon power is 90% renewable energy generation, supported by burning hydrogen to make electricity when renewable energy production is low. It says that using hydrogen reduces total energy system costs by around 20%.
It’s also increasingly suggested that hydrogen could be used for zero-carbon production of steel, cement and other industrial products. The Oxford Institute for Energy Studies has recently published a detailed briefing2 on this issue.
Hydrogen is being promoted for use in some transportation, such as trains and heavy goods vehicles.
Over recent years the gas industry has been promoting a switch for home heating from natural gas to hydrogen3 (although in doing so it has been criticised for significantly under-estimating the costs, not fully considering the risks of leakages from home pipework not suited for hydrogen, and underplaying the challenges involved).2 See below for more discussion of hydrogen in heating.

The future role of hydrogen is broadly accepted but the question of how it should be produced remains. This choice could have a significant impact on greenhouse gas emissions. Key decisions must be made soon and making the wrong choices could perpetuate our reliance on fossil fuels.
The environmental impacts of hydrogen production

There are two broad routes for hydrogen production:
From fossil fuels, either gas using steam methane reformation (SMR) or coal. This is sometimes known as "blue hydrogen."
By electrolysis, using electricity to split water into hydrogen and oxygen. This is sometimes known as "green" hydrogen, particularly if the electricity used is from renewable sources.

Virtually all current global hydrogen production is made directly from fossil fuels. Only 2% of global hydrogen production is from electrolysis and it accounts for only 4% in the UK.

Production of hydrogen from fossil fuels is a carbon-intensive process

According to the CCC, hydrogen produced from natural gas by SMR has a carbon-emissions intensity of around 285 gCO₂/kWh. This excludes the impact of fugitive emissions from extraction of natural gas, estimated to be 15-70 gCO2e/kWh,4 although this could be 25-40% higher according to recent research.5 Hydrogen from coal gasification has an intensity of around 675 gCO₂/kWh.

In comparison, the carbon-emissions intensity of the electricity grid in 2019 was less than 200 gCO₂/kWh and is declining fast. Emissions from the global production of hydrogen are more than double the UK’s total territorial emissions.6

Carbon capture and storage will not deliver zero carbon

Hydrogen production from fossil fuels can be partly decarbonised by carbon capture and storage (CCS). However, doing so brings an energy penalty and extra costs. According to the International Energy Agency (IEA) Greenhouse Gas R&D Programme,7 CCS rates are generally designed to be 85-90% efficient (ie 10-15% of the carbon emissions aren’t captured). The IEA report suggested that while it should be technically possible to achieve capture rates of 99% using CCS, doing so brings an additional efficiency penalty for the power plant, meaning that even more energy is needed to produce the same amount of hydrogen. This in turn increases the amount of upstream fugitive emissions from the extraction and transportation of fossil fuels.
Low-carbon hydrogen production

Electrolysis using renewable electricity has negligible carbon emissions, although if it uses grid electricity, its emissions will be higher than the carbon-emissions intensity of the grid, because the production process is not 100% efficient. That’s why it’s better to use electricity directly, in electric vehicles for example, rather than converting it to hydrogen. As an illustration, in 2018 hydrogen made using grid electricity would’ve had a carbon-emissions intensity of 288-388 gCO₂/kWh, when the grid’s intensity was 216 gCO₂/kWh.

The carbon intensity of hydrogen production from the electricity grid is therefore already lower than hydrogen made from fossil fuels (see chart below). This difference will only increase over time as the carbon-emissions intensity of the electricity grid reduces. In 2019 it fell below 200 gCO₂/kWh and it’s forecast to drop below 100 gCO₂/kWh by 2030 and 41 gCO2/kWh by 2035.
Carbon intensity of various hydrogen production methods compared to natural gas. Note that data for natural gas include fugitive emissions from natural gas extraction. CCS assumed to be 95% capture rate.

Scaling up production and the real cost of producing hydrogen

Hydrogen production using natural gas (SMR) is an established process. This has the advantage that manufacturing capacity can be ramped up relatively quickly (the H21 project envisages a 12.5 GW hydrogen from natural gas plant, built in a modular 1.25 GW plant each year from 2026), but the downside is that there are unlikely to be significant cost reductions. However, the necessary CCS elements are still in development and in practice unlikely to be available at scale until the 2030s.

The government’s action plan for CCS states that "our ambition is that the UK should have the option to deploy [CCS] at scale during the 2030s, subject to the costs coming down sufficiently."8 The recent Budget stated it will invest "at least £800 million" for a CCS infrastructure fund that will support efforts to "establish CCS in at least two UK sites, one by the mid-2020s, a second by 2030."

Will CCS be at scale in time?

Given the chequered past of developing CCS in the UK, it would be a brave bet that the UK would have large-scale operational CCS facilities by 2030, when significant inroads to decarbonising heating need to be made.

Will hydrogen from natural gas be affordable?

The cost of making hydrogen from natural gas with CCS is also uncertain, because no plant is operational. One recent proposal to the government, for a CCS plant based in Aberdeen with its associated existing infrastructure, estimated the cost at 8 p/kWh, with peak hydrogen production of 6 tonnes/hour from a 200 MW plant.9 Unsurprisingly, this is considerably higher than wholesale natural gas prices, which average 1-2 p/kWh.10Such increased cost would be passed onto the consumer, significantly increasing the price of gas for home heating and making it at least as expensive as electricity.

Electrolysis – scope for cost reductions?

Hydrogen production using electrolysis is a newer technology, which will make it harder to scale up production quickly. However, a recent Bloomberg New Energy Finance (NEF) report says that the cost of electrolysers in North America and Europe has fallen by 40% since 2014, and costs are even lower in China (80% cheaper than those in the West).11

British company ITM has recently secured government support with others to develop a modular 100 MW electrolyser system with peak hydrogen production of 40 tonnes/day (this hydrogen could supply 0.6 TWh/year). Although this is a tiny fraction of the amount needed in the future and less than 2% of current UK hydrogen production, the project aims to "validate a complete production system capable of delivering hundreds of megawatts of electrolysers per year."12 This is the beginning of a process to start scaling up the production of hydrogen from electricity.

Hydrogen production from electrolysis also has the advantage that it can be located near to use, as it only needs an electricity supply and no carbon capture facilities. For example, it could be located at a train depot for hydrogen refuelling.

Cost of making hydrogen by electrolysis uncertain

As this is a newer technology, it has scope for significant further cost reductions, as has been seen in the renewable energy and battery sectors. The CCC suggested the cost might be around 6-8 p/kWh, although it also forecast much lower costs for hydrogen from natural gas with CCS at around 4 p/kWh. The more recent Bloomberg NEF report suggests that the costs of producing hydrogen by electrolysis may be similar to producing it from natural gas with CCS by 2030 and cheaper by 2050.11

According to the Oxford Institute for Energy Studies: "the levelised cost of SMR/CCS is likely to be significantly lower [than electrolysis] at current gas and electricity prices … In the longer term, assuming appropriate scale up and cost reduction of renewable electricity and electrolysis, it will be preferable for [electrolysis] to become the dominant production technology to minimise the continued use of fossil fuels."2

The NIC also sees natural gas being the main source for hydrogen production, albeit alongside electrolysis when electricity prices are low.1 A Navigant Consulting analysis on behalf of the Electricity Network Association assumes that hydrogen production costs will fall to 5-6 p/kWh by 2050, for both hydrogen from natural gas and electrolysis using dedicated renewables.13

Will hydrogen be affordable?


It’s likely that for at least the next decade, making hydrogen from natural gas will be cheaper than from electrolysis, but this may not be true in 10 years’ time. Both approaches are more expensive than natural gas, which poses affordability questions for some future uses, such as in households, where it could increase levels of fuel poverty. Significant scale-up of either approach is highly unlikely over at least the next 10 years, but for different reasons. The lack of CCS facilities at scale will hold back production of hydrogen from natural gas, whereas electrolysis is a developing technology that’s still exploring how to build capacity at scale quickly.

Current and future demands for hydrogen production

The UK currently produces and uses around 700,000 tonnes of hydrogen per year (equivalent to around 29 TWh). This is produced from natural gas using carbon-intensive processes without CCS. Nearly all of it is for refining fuels and ammonia production. Replacement of this with low-carbon hydrogen would be a sensible priority.

In the future, potential additional demand would be very significantly higher than this.

Decarbonising electricity

The NIC has recommended that the best low-cost route for decarbonising electricity production is by achieving 90% renewable energy by 2050, backed up by hydrogen combustion in 55 GW of turbines, producing 77 TWh of electricity.

Decarbonising industry

The CCC suggests up to 82 TWh of hydrogen might be needed by industry.4
In 2018, the Hybrit project in Sweden started constructing a pilot plant to manufacture primary steel using hydrogen produced via electrolysis, aiming to have a fully commercialised carbon-free process by 2035.
Cement production requires intense heat (>1600 °C), which could be provided by either an electric or hydrogen kiln furnace. The Oxford Institute for Energy Studies says that since neither has yet been developed at commercial scale, it’s not yet clear which option will prove more cost effective.
The chemicals industry is already a significant user of hydrogen. Emissions reductions can be made by increasing the use of hydrogen through process changes. A report commissioned by the European Chemical Industry Council said that "hydrogen is a key enabler for a major part of low-carbon technologies."14
Natural gas is also used in glass and ceramics production, although whether these can be switched to hydrogen is currently unclear according to the Institute of Engineering and Technology.6

Decarbonising transport

Hydrogen has been suggested as a route for decarbonising shipping (in the form of ammonia fuel), long-distance HGVs, trains, buses and cars. The Oxford Institute for Energy Studies suggests that batteries are likely to be a better option for trains in most cases, with batteries recharging when travelling on electrified track. Where the distance between recharging points exceeds 200 km, trains that also have hydrogen fuel cells make more sense.2 Similarly, electric buses and cars are far preferable to hydrogen-powered ones.

Is it realistic to power the whole domestic sector with hydrogen?

Northern Gas Networks’ H21 project is an extreme example, proposing wholescale switching to hydrogen, with all home heating provided by boilers burning hydrogen.

By 2050, it would require around 8 million tonnes of hydrogen (equivalent to 300 TWh) to heat 3.7 million homes and businesses in the north of England. Production of this amount would require 140 GW of electrolysers powered by wind (current UK wind capacity is around 22 GW). And it would consume a vast quantity of water, equivalent to the annual consumption of 1.2 million homes.

Alternatively, producing this hydrogen from natural gas would require around 60 plants the size of the largest in the world,6 and these would not be low carbon. The cost for householders would be substantial, potentially driving many more homes into fuel poverty. It would require the replacement of all boilers and gas cookers, and potentially all pipework in the home.

Decarbonising domestic heating

Another way to start decarbonising heating is by adding hydrogen to the gas supply, up to around 20%. The safety and practicalities of this are currently being tested. More than 20% could be added, but would require changing boilers and gas cookers. But even if this extra hydrogen was produced by renewable energy, it would only have a small impact on reducing emissions.

The most sustainable home heating approach is to use electricity largely or wholly, with hydrogen either as a domestic back-up (using hybrid heat pumps that can switch between electricity and gas) or to produce electricity when renewable sources are low. The former is more energy efficient (because using hydrogen directly in the home is more efficient than burning it to make electricity) and is the route preferred by the CCC,4 but requires ongoing use of the gas grid, whereas the latter approach doesn’t.

Viability

Hydrogen is needed for the move to net zero, replacing natural gas in parts of the energy system where electrification isn’t feasible or is prohibitively expensive. But scaling up hydrogen production will take time, and in practice hydrogen production from natural gas with CCS or electrolysis will be very limited before 2030 and still limited for the decade after.

Yet even meeting existing carbon budgets means more action is needed before 2030 on reducing emissions, and significantly more if the CCC recommends deeper cuts by 2030, which it should.
Prioritise using hydrogen when there are no practicable alternatives

Low-carbon hydrogen use should be prioritised where no alternative readily exists, such as shipping, industry and some heavy goods vehicles. Uses where electric options exist should use this approach, including domestic heating and most transport.

In practice, this means:
In homes the focus must be on energy efficiency and electrification via the installation of heat pumps (with an ambitious stretch target of 10 million installed by 2030). Friends of the Earth, the Energy Savings Trust, and others are calling for all homes to have at least a C-rated Energy Performance Certificate by 2030. Hydrogen should only be used at times of peak demand, either directly through the gas grid for use in hybrid heat pumps or for production of electricity.
In transport a faster transition to electric vehicles is needed, including necessary investments in grid infrastructure. Localised hydrogen production for some heavy transport will be necessary where a switch to electric isn’t possible. For shipping, hydrogen converted to ammonia is likely to be the most practical route.
In industry a switch to electricity should be prioritised where possible, and hydrogen where not. This will have an impact on costs, so measures to ensure that UK manufacturers are not disadvantaged by this move should be taken.

The CCC’s "Further Ambition" scenario suggested that around 270 TWh of hydrogen is needed, with industry using 120 TWh, shipping using 70 TWh, 53 TWh for peak heating and 25 TWh in transport. It envisages only 2 TWh for electricity production, unlike the 77 TWh suggested by the more recent NIC report. The CCC will be producing a new analysis this September and may upgrade its recommended use of hydrogen.
Rapid decarbonisation requires a lot more hydrogen

Based on the CCC’s "Further Ambition" scenario and the more recent NIC recommendation of a 90% renewable energy grid, it’s clear that the UK needs to produce a lot more hydrogen (equivalent to more than 300 TWh).

Furthermore, to reduce emissions as deeply as possible requires this to be met through electrolysis rather than natural gas, because of the fugitive emissions from natural gas extraction and transportation. This will require around 140 GW of windfarms, in addition to the renewables needed to decarbonise the electricity grid to meet other demands.
Scale of renewable energy required

The NIC report suggested up to 237 GW of renewable energy, producing 530 TWh of electricity, will be needed by 2050 to meet the government’s net-zero goal. If all the hydrogen required (see above) were produced by electrolysis, this amount of renewable energy would need to increase significantly.

Currently, total renewable capacity (excluding biomass) is only about 34 GW. In other words, we need to see more than a seven-fold increase in renewable power, yet currently the UK is aiming to increase renewable energy capacity only fourfold by 2050.15

Hydrogen is needed to reach net zero. To meet net-zero ambitions, it should be produced by electrolysis. For this to happen, national and local government need to support much higher deployment rates of renewable energy than they’re currently achieving.
ANNEX

Hydrogen supply projects supported by the government

In February 2020, the UK government announced financial support for several hydrogen production projects across the UK,16 summarised below. A wider range of projects is funded by industry, the UK government, Ofgem and devolved nations in the Institute of Engineering and Technology "Transitioning to Hydrogen" report.6

Dolphyn – involves producing hydrogen from seawater powered by offshore wind in deep waters off the north of Scotland. The government says the funding will enable the detailed design of a 2 MW prototype system.

HyNet – looks at producing hydrogen from natural gas with CCS and blending the hydrogen into the existing gas grid at volumes that don’t require changes to appliances. The project has been given £7.48 million to permit further project development including engineering design to deliver a "shovel ready" project. Of two potential locations – the Mersey and the Humber – the Mersey is seen as the most attractive.

Gigastack – invovles producing hydrogen from renewable power, using electricity from Orsted’s Hornsea Two offshore windfarm to generate renewable hydrogen for the Phillips 66 Humber Refinery. The £7.5 million funding will also support the development of plans for large-scale production of electrolysers.

Acorn – looks at producing hydrogen from natural gas with CCS for blending into gas consumed in Aberdeen. The £2.7 million grant will enable further engineering studies.

HyPER – this project has been awarded £7.4 million for the pilot development of a novel process for hydrogen production from natural gas developed by the Gas Technology Institute at Cranfield University.



Mike Childs, Policy & Insight Unit, April 2020



Wednesday, February 21, 2024

 

Developing Onboard Carbon Capture and Storage for the Maritime Industry

LCO2 carrier
Courtesy ABS

PUBLISHED FEB 21, 2024 2:00 PM BY HAMID DAIYAN

 


Technology to enable the reduction of emissions from ships is emerging with support from class, writes Hamid Daiyan, Sustainability Manager, ABS.

The potential of onboard carbon capture and storage (CCS) to reduce emissions from shipping is subject to ever-growing interest from the shipping industry. As vessel operators seek to comply with current and future regulations and achieve long-term climate goals, carbon capture promises to play a key role.

One of the key drivers to this is the presently limited availability of low-carbon fuels, which is pushing the industry to consider all options for lower emissions beyond energy efficiency measures.

Regulation continues to shape the process. Recent International Maritime Organization (IMO) meetings have considered submissions on this topic and an Intercessional Working Group (IWG) has been established to consider these proposals.

ABS is currently working with vendors and shipowners to understand how this emerging technology can be adapted and absorbed into the maritime industry, its implications for vessel design and operations and its likely impact on carbon emission reduction.

Technology

Existing CCS technologies are largely employed in shore-based applications. These technology platforms need to be marinised for shipboard application and in such a way that balances effective performance against capex and opex and additional fuel consumption.

Onboard CCS reduces greenhouse gas emissions from ships by capturing and storing the carbon dioxide produced onboard. This can be done either before or after the combustion process, using different methods and the captured carbon can be stored onboard in different ways, depending on the technology used.

Two potential onboard carbon storage methodologies are:

Liquefaction: The CO2 is compressed and cooled to form a liquid, which can be stored in tanks or cylinders onboard and can be transferred to shore facilities or other vessels.

Mineralization: CO2 is reacted with minerals to form solid carbonates, which can be stored in containers.

Supply Chain

The evolution of the carbon value chain to include carbon capture and storage onboard ship – as well as its transport at scale for sequestration – will have a large and sustained impact on the shipping industry’s stakeholders, including ports, bunker suppliers and fuel producers.

The capture of carbon dioxide from the vessel propulsion system will require a storage arrangement that can be connected to port facilities for ‘de-bunkering’ or transfer of the captured carbon to portside storage.

This may include direct connections at the berth or could feature the development of a new class of small, dedicated vessels similar to today’s bunker fleet built to handle the shipping of liquefied CO2 to storage or processing facilities.

What is not clear is which ports or marine locations will become centers for carbon storage and how they will manage this process. Ports will need to be intimately involved in the development of the supply chain as they could be the site both of storage and fuel production from LCO2.

Other factors that vessel operators need to consider are that vessels with CCS onboard may need to have offtake agreements in place for the LCO2, including facility certification and a legal framework covering the transfer of responsibilities.

Application Challenges

There are several challenges associated with onboard CCS, which include the high cost and complexity of the value chain which involves multiple actors and stages such as capture, storage, transport, injection, and monitoring of CO2. Each stage has its own technical, operational, and safety requirements that require attention.

The value chain that will handle and store ever larger volumes of carbon is still in the development phase; large-scale storage and processing capacity will be required. For onboard CCS to scale sufficiently, the shipping industry will need to collaborate with other stakeholders in order to establish the required infrastructure and agreements.

Stronger regulation is needed to create a long-term pathway against which owners can invest. Additionally, the public's perception and acceptance of CCS are influenced by their awareness and understanding of the benefits and risks of the technology.

ABS Activities

ABS has been working with global shipping organizations on joint development projects (JDPs) to showcase the safety and feasibility of using onboard CCS. We take a technology-neutral approach - working with vendors and stakeholders across the supply chain to provide Approvals in Principle and New Technology Qualifications to validate concepts and encourage full-scale pilots. We expect the first systems to be potentially available next year.

Additionally, ABS is collaborating with universities and research institutes to explore the potential of various carbon capture technologies for marine and offshore applications. ABS is dedicated to supporting the decarbonization of the shipping industry and advancing the development of onboard carbon capture as one of the potential solutions.

ABS has established a set of guidelines to direct the maritime industry on how to apply carbon capture technology. These guidelines also comprise an optional ‘CCS-Ready’ notation for vessels, based on their level of preparation or readiness for future installations.

The Future

The 81st meeting of the Marine Environment Protection Committee next March will see the topic of carbon capture for shipping on the agenda, with debate likely on the application of systems in retrofits to existing vessels.

The deliberations of the IWG should be considered during this meeting and by this stage it is possible that results from full-scale industry projects will also be available as a commentary on the regulatory development process.

As noted, though the technology is still in development for maritime applications, the demand from shipping for applicable and certified systems means that widespread adoption is possible by 2030.

This adoption path assumes that the storage and processing ecosystem expands at a similar rate. Both these milestones depend on the speed of regulatory development. To achieve the IMO’s stated aim of net zero carbon emissions by 2050, uptake of onboard carbon capture technology will need to be consistent, with rules governing its application in place to drive rapid adoption.

Hamid Daiyan is the Sustainability Manager at ABS.

The opinions expressed herein are the author's and not necessarily those of The Maritime Executive.

Sunday, November 26, 2023

 

High cost, low profitability and storage challenges: Is carbon capture a realistic climate solution?

NO

A stack of trays holding treated limestone, used to absorb CO2 form the air, at Heirloom's new plant, in Tracy, California.
By Angela Symons & Leah Douglas with Reuters

Here's why carbon capture is no easy solution to climate change.

Carbon capture technology is central to the climate strategies of many world governments.

It is also expensive, unproven at scale, and can be hard to sell to a nervous public.

This currently makes the model of capturing carbon dioxide emissions from the air and storing them for money unworkable.

As nations gather for COP28 - the 28th United Nations climate change conference - in Dubai at the end of November, the question of carbon capture’s future role in a climate-friendly world will be in focus.

So where are we up to with carbon capture and what stands in the way of its widespread deployment?

What is carbon capture?

Carbon capture is a way of reducing carbon emissions by capturing them at the source or removing them from the atmosphere.

The most common form of carbon capture technology involves capturing the gas from a point source like an industrial smokestack. 

From there, the carbon can either be moved directly to permanent underground storage (CSS) or it can be used in another industrial purpose first - a process known as carbon capture, utilisation and storage (CCUS).

Another form of carbon capture is direct air capture (DAC), in which carbon emissions are captured from the air.


Carbon dioxide storage tanks are seen at a cement plant and carbon capture facility in Wuhu, Anhui province, China, September 2019.REUTERS/David Stanway/File Photo

How many carbon capture projects currently exist?

There are currently 42 operational commercial CCS and CCUS projects across the world with the capacity to store 49 million tonnes of carbon dioxide annually, according to the Global CCS Institute, which tracks the industry. 

That is about 0.13 per cent of the world’s roughly 37 billion tonnes of annual energy and industry-related carbon dioxide emissions.

Some 30 of those projects, accounting for 78 per cent of all captured carbon from the group, use the carbon for enhanced oil recovery (EOR), in which carbon is injected into oil wells to free trapped oil. Drillers say EOR can make petroleum more climate-friendly, but environmentalists say the practice is counter-productive.

The other 12 projects, which permanently store carbon in underground formations without using them to boost oil output, are in the US, Norway, Iceland, China, Canada, Qatar and Australia, according to the Global CCS Institute

It is unclear how many of these projects, if any, turn a profit.

About 130 direct air capture facilities are being planned around the world, according to the International Energy Agency (IEA), though just 27 have been commissioned and they capture just 10,000 tonnes of carbon dioxide annually.

The US in August announced $1.2 billion (€1.1b) in grants for two DAC hubs in Texas and Louisiana that promise to capture two million tonnes of carbon per year, though a final investment decision on the projects has not been made.

High cost of carbon capture is a setback

One stumbling block to rapid deployment of carbon capture technology is cost.

CCS costs range from €14 to €110 per tonne of captured carbon depending on the emissions source. DAC projects are even more expensive, between €550 and €916 per tonne, because of the amount of energy needed to capture carbon from the atmosphere, according to the IEA.

Some CCS projects in countries like Norway and Canada have been paused for financial reasons.

Developers say they need a carbon price, either in the form of a carbon tax, trading scheme or tax break, that makes it profitable to capture and store the carbon. Without that, only carbon capture projects that increase revenue in a different way - like through increased oil output - are profitable.

Countries including the US have rolled out public subsidies for carbon capture projects. The Inflation Reduction Act, passed in 2022, offers a $50 (€46) tax credit per tonne of carbon captured for CCUS and $85 (€78) per tonne captured for CCS, and $180 (€165) per tonne captured through DAC.

Though those are meaningful incentives, companies may still need to take on some added costs to move CCS and DAC projects ahead, says Benjamin Longstreth, global director of carbon capture at the Clean Air Task Force.

Some CCS projects have also failed to prove out the technology's readiness. A $1 billion (€1.15b) project to harness carbon dioxide emissions from a Texas coal plant, for example, had chronic mechanical problems and routinely missed its targets before it was shut down in 2020, according to a report submitted by the project’s owners to the US Department of Energy.

The Petra Nova project restarted in September.

A model of carbon capture and storage designed by Santos Ltd, at the Australian Petroleum Production and Exploration Association conference in Brisbane, May 2022.
REUTERS/Sonali Paul/File Photo

Problems with where to store captured carbon

Where captured carbon can be stored is limited by geology. This reality would become more pronounced if and when carbon capture is deployed at the kind of massive scale that would be needed to make a difference to the climate. 

The best storage sites for carbon are in portions of North America, East Africa and the North Sea, according to the Global CCS Institute.

That means getting captured carbon to storage sites could require extensive pipeline networks or even shipping fleets - posing potential new obstacles.

In October, for example, a $3 billion (€3.5b) CCS pipeline project proposed by Navigator CO2 Ventures in the US Midwest - meant to move carbon from heartland ethanol plants to good storage sites - was cancelled due to concerns from residents about potential leaks and construction damage.

Companies investing in carbon removal need to take seriously community concerns about new infrastructure projects, says Simone Stewart, industrial policy specialist at the National Wildlife Federation.

"Not all technologies are going to be possible in all locations," Stewart says.

Wednesday, April 06, 2022

FACT FILE

What is carbon capture and storage?

The technology could help ‘neutralise’ emissions from power plants, according to UN report on climate change

THE WEEK STAFF
5 APR 2022

A carbon capture facility in Longanet, Scotland
Jeff J Mitchell/Getty Images

Carbon dioxide should be removed from the air and stored underground as part of a raft of urgently needed measures to tackle global warming, a landmark report by UN scientists has advised.

The latest review by the Intergovernmental Panel on Climate Change (IPCC) found that technologies including carbon capture and storage (CCS) were “likely to be necessary” to ensure that any “temperature overshoot” beyond the maximum 1.5C above pre-industrial levels required to limit climate change was “temporary”, The Guardian’s environment correspondent Fiona Harvey reported.

However, the UN body “was also clear that they cannot substitute for ending our dependence on fossil fuels now”, she added.
Capturing carbon

Countries worldwide are “planning far too many new coal-fired power plants, gas installations and other fossil fuel infrastructure to stay within the carbon budgets needed to meet the 1.5C goal”, said The Guardian’s Harvey.

But the UN’s climate change panel said that while the only long-term solution was to phase out coal use, CCS could help to “neutralise emissions from new power plants”.

CCS is the process in which harmful carbon is caught from “concentrated industrial emissions at their source, preventing them from entering the atmosphere at all”, explained The Independent’s environment correspondent Harry Cockburn. The gas is then “liquified” and pumped underground for long-term storage at sites such as depleted oil or gas fields.

CSS has been “discussed for two decades”, said The Guardian’s Harvey, but is “currently only used at a small scale”.

Another similar technology is also being developed. Known as greenhouse gas removal (GGR) or carbon dioxide removal (CDR), the process “involves removing carbon from the atmosphere by chemical means”, wrote Harvey.

According to The Independent’s Cockburn, “there is a consensus that investing and utilising these technologies needs to be rapidly scaled up to have the impact required to keep the targets of the Paris Climate Agreement in sight”.

But critics have suggested “that industries and processes which already emit greenhouse gases could, or already are, using the burgeoning technology as a kind of get-out-of-jail-free card”, he added. Sceptics reportedly fear that businesses and political leaders may “​​pin their future carbon reduction targets on installing or investing in GGR or CCS technology”.
Fix for the future?

The International Energy Agency (IEA) reported last November that the strengthening of climate goals and new investment incentives was “delivering unprecedented momentum for CCS, with plans for more than 100 new facilities announced in 2021”.

These new technologies “will play an important role in meeting net zero targets, including as one of few solutions to tackle emissions from heavy industry and to remove carbon from the atmosphere”, the Paris-based intergovernmental organisation said.

CSS has also been backed by Robert Gross, professor of energy policy at Imperial College London and director of the UK Energy Research Centre. “We will need not just net zero but to start to remove CO2 from the air,” he told The Guardian.

“We cannot do one instead of the other, but we have reached the point where it is likely that humanity will need to do both to avoid dangerous climate change.”
False dawn

While interest in CCS is growing, some critics have claimed that “most schemes to capture and reuse carbon actually increase emissions”, New Scientist reported.

Research has found that carbon capture technologies typically “emit more carbon than they remove”, said the magazine, which suggested that such “projects, which have attracted billions of dollars in investment, won’t do much to achieve the Paris Agreement’s emission targets”.

Current efforts to roll out CCS are also “dwarfed by the size of the challenge” of combating emissions, said Sky News’ economics and data editor Ed Conway. The UK “is littered with pilot projects that fell by the wayside”, reported Conway, who questioned whether the technology can “fulfil its promise”.

The Independent’s Cockburn pointed out that even the world’s largest “direct air-capture” machine, at Iceland’s Orca plant, “is capable of sucking up just 4,000 tonnes of CO2 a year – a tiny fraction of global emissions, which totalled 31.5 billion tonnes in 2020”.

All the same, many governments “plan to rely heavily on still-developing carbon capture technologies, or tree-planting over massive areas of land, in order to offset emissions”, Time reported.

But the IPCC has repeatedly warned that “​​they should not be considered a substitute for cutting fossil fuel use”, the magazine added.


THE REALITY IS THAT CCS IS NOT GREEN NOR CLEAN IT IS GOING TO BE USED TO FRACK OLD DRY WELLS SUCH AS IN THE BAKAN SHIELD IN SASKATCHEWAN
https://plawiuk.blogspot.com/2014/10/the-myth-of-carbon-capture-and-storage.html

ALSO SEE https://plawiuk.blogspot.com/search?q=CCS

Sunday, November 28, 2021

Why Big Oil's Pivot to Carbon Capture and Storage—While It Keeps on Drilling—Isn't a Climate Solution

No carbon removal approach—neither mechanical nor biological—will solve the climate crisis without an immediate transition away from fossil fuels.


View of the Tesoro Anacortes oil refinery in Skagit County, Washington on January 15, 2017.
(Photo: Linda, Fortuna future/Flickr/cc)

JUNE SEKERA, NEVA GOODWIN
November 26, 2021 by The Conversation

After decades of sowing doubt about climate change and its causes, the fossil fuel industry is now shifting to a new strategy: presenting itself as the source of solutions. This repositioning includes rebranding itself as a “carbon management industry.”

This strategic pivot was on display at the Glasgow climate summit and at a Congressional hearing in October 2021, where CEOs of four major oil companies talked about a “lower-carbon future.” That future, in their view, would be powered by the fuels they supply and technologies they could deploy to remove the planet-warming carbon dioxide their products emit – provided they get sufficient government support.

That support may be coming. The Department of Energy recently added “carbon management” to the name of its Office of Fossil Energy and Carbon Management and is expanding its funding for carbon capture and storage.

But how effective are these solutions, and what are their consequences?

Coming from backgrounds in economics, ecology and public policy, we have spent several years focusing on carbon drawdown. We have watched mechanical carbon capture methods struggle to demonstrate success, despite U.S. government investments of over US$7 billion in direct spending and at least a billion more in tax credits. Meanwhile, proven biological solutions with multiple benefits have received far less attention.

CCS’s troubled track record

Carbon capture and storage, or CCS, aims to capture carbon dioxide as it emerges from smokestacks either at power plants or from industrial sources. So far, CCS at U.S. power plants has been a failure.

Seven large-scale CCS projects have been attempted at U.S. power plants, each with hundreds of millions of dollars of government subsidies, but these projects were either canceled before they reached commercial operation or were shuttered after they started due to financial or mechanical troubles. There is only one commercial-scale CCS power plant operation in the world, in Canada, and its captured carbon dioxide is used to extract more oil from wells – a process called “enhanced oil recovery.”

In industrial facilities, all but one of the dozen CCS projects in the U.S uses the captured carbon dioxide for enhanced oil recovery.

This expensive oil extraction technique has been described as “climate mitigation” because the oil companies are now using carbon dioxide. But a modeling study of the full life cycle of this process at coal-fired power plants found it puts 3.7 to 4.7 times as much carbon dioxide into the air as it removes.

The problem with pulling carbon from the air

Another method would directly remove carbon dioxide from the air. Oil companies like Occidental Petroleum and ExxonMobil are seeking government subsidies to develop and deploy such “direct air capture” systems. However, one widely recognized problem with these systems is their immense energy requirements, particularly if operating at a climate-significant scale, meaning removing at least 1 gigaton – 1 billion tons – of carbon dioxide per year.

That’s about 3% of annual global carbon dioxide emissions. The U.S. National Academies of Sciences projects a need to remove 10 gigatons per year by 2050, and 20 gigatons per year by century’s end if decarbonization efforts fall short.

The only type of direct air capture system in relatively large-scale development right now must be powered by a fossil fuel to attain the extremely high heat for the thermal process.

A National Academies of Sciences study of direct air capture’s energy use indicates that to capture 1 gigaton of carbon dioxide per year, this type of direct air capture system could require up to 3,889 terawatt-hours of energy – almost as much as the total electricity generated in the U.S. in 2020. The largest direct air capture plant being developed in the U.S. right now uses this system, and the captured carbon dioxide will be used for oil recovery.

Another direct air capture system, employing a solid sorbent, uses somewhat less energy, but companies have struggled to scale it up beyond pilots. There are ongoing efforts to develop more efficient and effective direct air capture technologies, but some scientists are skeptical about its potential. One study describes enormous material and energy demands of direct air capture that the authors say make it “unrealistic.” Another shows that spending the same amount of money on clean energy to r
eplace fossil fuels is more effective at reducing emissions, air pollution and other costs.

Several CCS plans for US power plants have been scrapped

The U.S. government has approved hundreds of millions of dollars for developing commercial-scale power plant CCS projects in the U.S. that ultimately were withdrawn, canceled or shut down. Only one power plant is currently operating with commercial-scale CCS worldwide: Canada's Boundary Dam.


The cost of scaling up

A 2021 study envisions spending $1 trillion a year to scale up direct air capture to a meaningful level. Bill Gates, who is backing a direct air capture company called Carbon Engineering, estimated that operating at climate-significant scale would cost $5.1 trillion every year. Much of the cost would be borne by governments because there is no “customer” for burying waste underground.

As lawmakers in the U.S. and elsewhere consider devoting billions more dollars to carbon capture, they need to consider the consequences.

The captured carbon dioxide must be transported somewhere for use or storage. A 2020 study from Princeton estimated that 66,000 miles of carbon dioxide pipelines would have to be built by 2050 to begin to approach 1 gigaton per year of transport and burial.

The issues with burying highly pressurized CO2 underground will be analogous to the problems that have faced nuclear waste siting, but at enormously larger quantities. Transportation, injection and storage of carbon dioxide bring health and environmental hazards, such as the risk of pipeline ruptures, groundwater contamination and the release of toxins, all of which particularly threaten the disadvantaged communities historically most victimized by pollution.

Bringing direct air capture to a scale that would have climate-significant impact would mean diverting taxpayer funding, private investment, technological innovation, scientists’ attention, public support and difficult-to-muster political action away from the essential work of transitioning to non-carbon energy sources.
A proven method: trees, plants and soil

Rather than placing what we consider to be risky bets on expensive mechanical methods that have a troubled track record and require decades of development, there are ways to sequester carbon that build upon the system we already know works: biological sequestration.

Trees in the U.S. already sequester almost a billion tons of carbon dioxide per year. Improved management of existing forests and urban trees, without using any additional land, could increase this by 70%. With the addition of reforesting nearly 50 million acres, an area about the size of Nebraska, the U.S. could sequester nearly 2 billion tons of carbon dioxide per year. That would equal about 40% of the country’s annual emissions. Restoring wetlands and grasslands and better agricultural practices could sequester even more.

Storing carbon in trees is less expensive per ton than current mechanical solutions.
Lisa-Blue via Getty Images

Per ton of carbon dioxide sequestered, biological sequestration costs about one-tenth as much as current mechanical methods. And it offers valuable side-benefits by reducing soil erosion and air pollution, and urban heat; increasing water security, biodiversity and energy conservation; and improving watershed protection, human nutrition and health.

To be clear, no carbon removal approach – neither mechanical nor biological – will solve the climate crisis without an immediate transition away from fossil fuels. But we believe that relying on the fossil fuel industry for “carbon management” will only further delay that transition.

This work is licensed under a Creative Commons Attribution 4.0 International License

JUNE SEKERA
June Sekera is a Visiting Scholar at The New School for Social Research, a Senior Research Fellow at Boston University’s Global Development Policy Center, and a Senior Research Associate at the Institute for Innovation and Public Purpose at University College London.

NEVA GOODWIN
Neva Goodwin was hired by Tufts University in 1991, and in 1995 joined with Bill Moomaw to found the Global Development and Environment Institute.