Showing posts sorted by date for query CRISPR. Sort by relevance Show all posts
Showing posts sorted by date for query CRISPR. Sort by relevance Show all posts

Saturday, September 28, 2024

 ANOTHER AQUARIST FAVORITE

Stowers scientists uncover a critical component that helps killifish regenerate their fins



The findings are a step toward closing the gap on how we could one day deploy regenerative medicine in humans



Stowers Institute for Medical Research

Stowers scientists discuss new insights into how killifish regenerate their fins 

video: 

Stowers scientists discuss findings of killifish limb regeneration research, shedding light on the evolutionary aspects of regeneration and the potential for developing novel therapeutic strategies in regenerative medicine for humans. 

 

view more 

Credit: Stowers Institute for Medical Research





KANSAS CITY, MO—September 26, 2024—Spontaneous injuries like the loss of a limb or damage to the spinal cord are impossible for humans to repair. Yet, some animals have an extraordinary capacity to regenerate after injury, a response that requires a precise sequence of cellular events. Now, new research from the Stowers Institute for Medical Research has unveiled a critical timing factor—specifically how long cells actively respond to injury—involved in regulating regeneration.

recent study published in iScience on September 20, 2024, sought to understand exactly how an organism knows how much tissue has been lost post-injury. Led by former Predoctoral Researcher Augusto Ortega Granillo, Ph.D., in the lab of Stowers President and Chief Scientific Officer Alejandro Sánchez Alvarado, Ph.D., the team investigated how African killifish properly regrow their tail fin following damage. By analyzing tissue dynamics during regrowth, they found that in addition to known factors, including how many cells are participating and where they are located, the length of time cells spend engaged in the repair process is also key.

“One of the greatest unsolved mysteries of regeneration is how an organism knows what has been lost after injury,” said Sánchez Alvarado. “Essentially, the study points to a new variable in the equation of regeneration. If we can modulate the rate and the length of time that a tissue can launch a regenerative response, this could help us devise therapies that may activate and perhaps prolong the regenerative response of tissues that normally would not do so.”

Shortly after a killifish tail injury, the remaining tissue needs to know how much damage has occurred. Then, this tissue must enlist the right number of repair cells to the site of injury for the right amount of time. Damage sensing, repair cell recruitment, and timing somehow must work together to regrow the tail.

“If an animal that can regenerate extremities, like a tail, loses just a tiny portion, how does it know not to regenerate a whole new tail but just the missing piece?” said Sánchez Alvarado. To address this question, the team probed different locations of injury in the killifish tail fin.

They found that skin cells both near an injury and in distant, uninjured regions launch a genetic program that primes the whole animal to prepare for a repair response. Then, skin cells at the site of injury sustain this response and temporarily change their state to modify the surrounding material called the extracellular matrix. Ortega Granillo likens this matrix to a sponge that absorbs secreted signals from the injured tissue that then guides repair cells to get to work. If the signals are not received or not interpreted correctly, the regeneration process may not restore the tail’s original shape and size.

“We very clearly defined when and where—at 24 hours post-injury and in the extracellular matrix—the transient cell state is acting in the fin tissue,” said Ortega Granillo. “Knowing when and where to look allowed us to make genetic disruptions and gain a better understanding of the function of these cell states during regeneration.”

To investigate whether these distinct cellular states communicate information to the extracellular matrix—the supportive structure surrounding cells—during the repair process, the researchers employed the CRISPR-Cas9 gene editing technique. They specifically targeted a gene known to modify the extracellular matrix, as they had observed its activation at the onset of the regeneration response. By disrupting the function of this gene, the team aimed to determine its role in relaying information from cells to the matrix during regeneration.  

“These modified animals no longer know how much tissue was lost,” said Ortega Granillo. “They still regenerated, but the speed of tissue growth was deficient. This is telling us that by changing the extracellular space, skin cells inform the tissue how much was lost and how fast it should grow.”

Indeed, the speed and amount of tissue regenerated in these genetically modified killifish increased regardless of whether the tail injury was mild or severe. This finding opens the possibility that cell states that modify the matrix increase regenerative regrowth. If the cell states could be adjusted, it may be a way to stimulate a more robust regeneration response.  

From an evolutionary perspective, understanding why certain organisms excel at regeneration while others, such as humans, have limited regenerative abilities is a driving force in the field of regenerative biology. By identifying general principles in organisms with high regenerative capacity, researchers aim to potentially apply these insights to enhance regeneration in humans. This comparative approach not only sheds light on the evolutionary aspects of regeneration but also holds promise for developing novel therapeutic strategies in regenerative medicine.

“Our goal is to understand how to shape and grow tissues,” said Ortega Granillo. “For people who sustain injuries or organ failure, regenerative therapies could restore function that was compromised during illness or following injury.”

Additional authors include Daniel Zamora, Robert Schnittker, Allison Scott, Alessia Spluga, Jonathon Russell, Carolyn Brewster, Eric Ross, Daniel Acheampong, Ning Zhang, Ph.D., Kevin Ferro, Ph.D., Jason Morrison, Boris Rubinstein, Ph.D., Anoja Perera, and Wei Wang, Ph.D.

This work was funded by institutional support from the Stowers Institute for Medical Research and the Howard Hughes Medical Institute.

About the Stowers Institute for Medical Research

Founded in 1994 through the generosity of Jim Stowers, founder of American Century Investments, and his wife, Virginia, the Stowers Institute for Medical Research is a non-profit, biomedical research organization with a focus on foundational research. Its mission is to expand our understanding of the secrets of life and improve life’s quality through innovative approaches to the causes, treatment, and prevention of diseases.

The Institute consists of 21 independent research programs. Of the approximately 500 members, over 370 are scientific staff that include principal investigators, technology center directors, postdoctoral scientists, graduate students, and technical support staff. Learn more about the Institute at www.stowers.org and about its graduate program at www.stowers.org/gradschool.

The African Killifish 



Friday, September 20, 2024

 

CRISPR/Cas9 modifies euglena to create potential biofuel source



Mutant microalgae produce wax esters for biofuel feedstock with improved cold flow


Osaka Metropolitan University

Modifying euglena for biofuel-ready wax esters 

image: 

Genome editing of Euglena gracilis led to stable mutants that produced wax esters with shorter carbon chains, giving the esters properties more suitable for use in biofuel.

view more 

Credit: Osaka Metropolitan University




News about biofuels sometimes mentions used cooking oil as a feedstock, but if these substances contain animal fat, they can solidify in colder temperatures. This happens because, chemically, the fatty acids of these and many other saturated fats have long carbon chains with single bonds. Enter the euglena. An Osaka Metropolitan University team has found a way to have one species of this microalgae produce wax esters with shorter carbon chains than usual.

Using CRISPR/Cas9 to edit the genome of Euglena gracilis, Dr. Masami Nakazawa and her team at the Graduate School of Agriculture’s Department of Applied Biochemistry produced stable mutants that created wax esters two carbons shorter than the wild-type species.

This improvement in the cold flow of the wax esters makes them more applicable as feedstock for biofuels. Among the factors favorable to using Euglena gracilis as a biofuel source are its ability to grow easily through photosynthesis and anaerobic production of wax esters.

“This achievement is expected to serve as a fundamental technology for replacing some petroleum-based production of wax esters with biological sources,” Dr. Nakazawa affirmed.

The findings were published in Bioresource Technology.

###

About OMU 

Established in Osaka as one of the largest public universities in Japan, Osaka Metropolitan University is committed to shaping the future of society through “Convergence of Knowledge” and the promotion of world-class research. For more research news, visit https://www.omu.ac.jp/en/ and follow us on social media: XFacebookInstagramLinkedIn.

Monday, September 16, 2024

 Research shows brain synchronization between humans and dogs

By 

Reviewed by Danielle Ellis, B.Sc.

Sep 16 2024

Study reveals how mutual gazing and petting synchronize human and dog brains, while autism-related gene mutations in dogs reduce this connection. 

Study: Disrupted Human–Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. Image Credit: sergey kolesnikov/Shutterstock.com
Study: Disrupted Human–Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. Image Credit: sergey kolesnikov/Shutterstock.com

In a recent study published in Advanced Science, researchers studied cross-species interbrain connections between dogs and humans. They also investigated whether autism-related gene abnormalities in dogs impede social interaction between human-dog pairs.

Background

The human-dog connection has developed with time, with dogs tamed for their protective and hunting capacities. They have become valuable members of households, offering companionship and emotional support. Interspecies partnerships generate mutual benefit but seldom approach the extent of communication between humans and dogs. Dogs can read, comprehend, and react to various human emotions and linguistic signs via facial expressions, behaviors, and voice tones. However, the brain mechanisms underlying interspecies social communication remain unknown.

About the study

In the present study, researchers investigated the brain processes enabling human-dog communication. They explored the influence of autism-related gene alterations in dogs on social interactions between the two species.

Non-invasive wireless electroencephalograms (EEG) concurrently detected brain activity in beagles (research canines) and humans during social interactions. To validate the findings, researchers assessed interbrain correlations between different areas of the brain under three situations. The situations included no social interactions in separate spaces, with social interaction in one room and without social engagement in one room. Social interactions included petting and mutual gazing.

Researchers compared interbrain coupling during complete social interactions (mutual gaze + petting) to partial social interactions (mutual gaze or petting alone) to evaluate the synergistic effects of mutual gaze and petting on interbrain coupling. They also investigated brain activity associations between dogs and human participants from different trials and recorded the brain activities of the two species during social interactions for five days to evaluate the impact of social familiarity on interbrain neural coupling.

Subsequently, researchers conducted an additional five-day investigation to assess the durability or changes in interbrain interactions across prolonged periods. Linear regressions investigated the association between the duration of social interactions and interbrain activity. Generalized partial directed coherence (GPDC) algorithms assessed the directionality of interbrain activity coupling.

Researchers developed an autism spectrum disorder (ASD) model for dogs with SH3 and multiple ankyrin repeat domain 3 (Shank3) mutations using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) genome editing.

Behavioral studies such as the three-chamber test and human-dog interaction experiments revealed autism-like symptoms in the mutants. Over five days, researchers explored the interbrain neuronal connection between mutant canines and humans. Theta/beta wave ratios (TBR) indicated attention problems in the mutants during the social interactions between humans and dogs.

Researchers also explored the effects of lysergic acid diethylamide (LSD), a psychedelic, on brain function. They delivered a single dosage of 7.5 μg/kg bodyweight of LSD intramuscularly and observed its effects after 24 hours.

Results

Petting and mutual gazing resulted in interbrain synchronization in the parietal and frontal areas of the brain during human-dog interactions, respectively. These brain areas are involved in joint attention. The interbrain association in these brain areas of dogs and humans caused by mutual gazing or stroking alone was much lower than that during combined social interactions, including petting and mutual gazing.

Over five days, the synchronization intensity increased as the human-dog dyad became more familiar. Linear regression analyses revealed a strong positive association between social contact time, interbrain activity correlations, and GPDC values. After a week of social contacts, logistic growth curve regressions revealed that interbrain correlation in the frontal and parietal areas had plateaued. 

Interbrain correlations between humans and dogs in various sessions were much lower than in the same interaction sessions. The findings demonstrate that reciprocal involvement between dogs and humans is vital for interbrain neural connections. During the human-dog social interactions, the human takes the lead, and the dog follows. The mutant canines displayed lower attention and eliminated interbrain connections. A single dosage of LSD corrected the problems.

Conclusions

The study found that interbrain neural synchronizations between family dogs and human beings are identical to those observed during human-human interactions. The frontoparietal network is essential for interbrain activity coordination and sensory information attention. Dogs with Shank3 mutations demonstrated poor brain circuitry and attention, comparable to those with ASD. A single dosage of LSD restored reduced interbrain connection and joint attention in the mutant dogs, indicating that LSD may improve social impairment in ASD patients.

 The findings point to possible interbrain neural activity biological markers for autism spectrum disorder diagnosis and the development of designed non-hallucinogenic LSD analogs to address social deficiencies. Further research into brain coupling may improve the knowledge of the neurological mechanisms that underpin social interactions between regularly developing humans and those with mental illnesses like ASD.

Journal reference:

A Boy And His Dog (1975) Official Trailer

Tuesday, September 10, 2024

Nigeria: 

Oluwatayo Ajayi-Moses Unveils Plans to Tackle Plant Disease That Threatens Food SecurityFacebookTwitterWhatsApp

Oluwatayo Ajayi-Moses, a dedicated researcher in genomics, phenomics, and bioinformatics, is on a mission to tackle one of the most pressing challenges in agriculture today: plant diseases that threaten food security.

With over ten years of experience in microbiological techniques and currently pursuing a Ph.D. at North Dakota State University, Ajayi-Moses is leveraging cutting-edge scientific methods to safeguard crops and enhance food production.

Ajayi-Moses's passion lies in decoding the genetic mysteries of small grains to develop more resilient crops. Through his work, he aims to mitigate the effects of plant pathogens, ensuring a stable and secure food supply for the United States and beyond. His research focuses on identifying genetic markers that can help in breeding disease-resistant plants, ultimately reducing the need for chemical pesticides and fostering sustainable farming practices.

As a researcher specializing in plant molecular genetics and bioinformatics, my goal is to develop innovative solutions to combat plant diseases and enhance food security.

His impactful research involves utilizing advanced techniques such as genomic library preparation, molecular cloning, and CRISPR-Cas9 gene editing. These methods allow him to investigate and manipulate the genetic material of plants, aiming to enhance their resistance to diseases and environmental stressors. Ajayi-Moses has a proven track record of scientific excellence, with thirteen published scientific articles and presentations at international conferences, highlighting his contributions to the fields of plant genetics and agricultural biotechnology.

With extensive experience as a Graduate Research Assistant at the Small Grains Genotyping Laboratory, under the U.S. Department of Agriculture, Ajayi-Moses collaborates with multidisciplinary teams to conduct genomic analyses on small grains. His work is crucial in identifying genetic diversity and agronomic traits that can be harnessed to improve crop resilience and yield.

My specialties include genomic data analysis, high-throughput data analysis, and bioinformatics. I also have extensive experience in computational biology, Python programming, R Studio, and molecular diagnostics.

During his academic tenure, Ajayi-Moses has also demonstrated strong leadership skills, serving as President of the Genomics Phenomics and Bioinformatics Student Association at North Dakota State University. His commitment to advancing plant science research is evident in his proactive approach to mentoring students and his active participation in various academic societies.

Ajayi-Moses's ability to translate complex genomic data into practical agricultural solutions has positioned him as a leading figure in plant disease research. His dedication to enhancing food security through innovative genetic research aligns with the national interest, as it contributes to the sustainability of the agricultural sector and the well-being of the U.S. population.

With a robust background in microbiology, genomics, and bioinformatics, Ajayi-Moses is driving forward the frontier of plant science, making significant strides in the fight against plant diseases. His work not only has the potential to revolutionize crop protection but also to ensure a more resilient and secure food future for generations to come.

Monday, September 09, 2024

Gene therapy restores vision in first-ever trial for rare, inherited blindness



Patients born with a certain genetic blindness experienced the world in an entirely new way after a single treatment with gene therapy developed at UF.


University of Florida




After the treatment, one patient saw her first star. Another saw snowflakes for the first time. Other patients were newly able to navigate outside of the home or to read the labels on their child’s Halloween candy.

The cause of these seemingly miraculous improvements? A gene therapy developed by University of Florida scientists, which restored useful vision to most patients with the rare, inherited blindness known as Leber congenital amaurosis type I, or LCA1, in a small trial. 

Those who received the highest dose of the gene therapy saw up to a 10,000-fold improvement in their light sensitivity, were able to read more lines on an eye chart, and improved in their ability to navigate a standardized maze. For many patients, it was akin to finally turning on dim lights after trying to navigate their homes in the pitch black for years, the researchers said.

The trial also tested the safety profile of the treatment. Side effects were largely limited to minor surgical complications. The gene therapy itself caused mild inflammation that was treated with steroids.

“This is the first time that anyone with LCA1 has ever been treated, and we showed a very clean safety profile, and we also showed efficacy. These results pave the way for advancing the therapy in a phase 3 clinical trial and eventually commercializing it,” said Shannon Boye, Ph.D., chief of the Division of Cellular and Molecular Therapy at UF, co-author of the study and co-founder of Atsena Therapeutics, the UF spinoff that developed the gene therapy and funded the study.

“Atsena is pleased to advance the foundational work that Shannon and Sanford Boye developed in their laboratory many years ago and thrilled that the 12-month data from our ongoing clinical trial have been published in a prestigious medical journal,” said Kenji Fujita, M.D., chief medical officer of Atsena Therapeutics and co-author of the study. “We look forward to sharing further results from this program as we continue progressing what has the potential to be a breakthrough in treating blindness in children and adults with LCA1.”

Shannon Boye, UF professor of pediatrics and Sanford Boye, associate scientist of pediatrics, and their collaborators at the University of Pennsylvania and Oregon Health and Science University published the results of the clinical trial Sept. 5 in the journal The Lancet.

LCA1 is rare. Only about 3,000 people have the condition across both Europe and the U.S. It is caused by having two defective copies of the gene GUCY2D, which is required for the light-sensitive cells in the eyes to function properly. People with the disease tend to have severely impaired vision that makes it difficult or impossible to drive, read, or navigate the world visually. 

Shannon Boye has been developing the gene therapy targeting LCA1 for more than 20 years, since she enrolled as a graduate student at UF in 2001. In collaboration with her husband Sanford Boye, Shannon Boye’s lab developed the virus-based transport system that is essential for delivering functioning copies of the GUCY2D gene into the correct cells in the eyes. The Boyes founded Atsena Therapeutics in 2019 to bring the LCA1 treatment and other gene therapies to market.

“Most pharmaceutical companies are not interested in treating these rare diseases, because they are not strong revenue generators,” Sanford Boye said. “But we think these patients deserve attention, because we have treatments that work and provide really meaningful improvements to their quality of life.”

The study enrolled 15 subjects for treatment at the University of Pennsylvania or Oregon Health and Science University. Subjects received one of three different doses of the therapy to identify the safest and most effective dose for future trials. All patients received the treatment in one eye, which involved a surgical injection in the retina.

Researchers followed the patients for a year to test their vision in the treated eye compared to the untreated eye. Subjects who received higher doses saw greater improvements in their vision. 

The researchers expect the gene therapy to last indefinitely, requiring just a single treatment per eye. So far, they have seen visual improvements last at least five years.

Broad access to the treatment will require approval by the FDA following a phase 3 clinical trial, which tests the therapy in a larger population of patients.